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Abstract
We present a Coq formalization of the Quantified Reflection Calculus with one modality, or QRC1. This

is a decidable, strictly positive, and quantified modal logic previously studied for its applications in proof

theory. The highlights are a deep embedding of QRC1 in the Coq proof assistant, a mechanization of the

notion of Kripke model with varying domains and a formalization of the soundness theorem. We focus

on the design decisions inherent to the formalization and the insights that led to new and simplified

proofs.
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1. Introduction

The Quantified Reflection Calculus with one modality, denoted by QRC1 and introduced in [1],

is a strictly positive quantified modal logic inspired by the unimodal fragment of the Reflection

Calculus, RC1 [2, 3]. The quantified strictly positive language consists of a verum constant and

relation symbols as atomic formulas, with the only available connectives being the conjunction,

the diamond, and the universal quantifier. QRC1 statements are assertions of the form ϕ⇝ ψ
where ϕ and ψ are in this strictly positive language.

QRC1 was born out of the wish for a nice quantified provability logic for theories of arithmetic

such as Peano Arithmetic (PA), even though Vardanyan [4] showed that this is impossible

in general. In fact, the full quantified provability logic of PA is Π0
2-complete, and thus not

recursively axiomatizable, let alone decidable. However, restricting the language to the strictly

positive fragment is a viable solution [5].

The main results obtained for QRC1 and described in [5] are soundness with respect to

varying domain Kripke models, completeness for finite and constant domain Kripke mod-

els, and soundness and completeness with respect to two different (but related) arithmetical

interpretations, marking it as a provability logic.

Here we report on an ongoing formalization [6] of part of the work presented in [5]. We

will sometimes cite [1] as well, since it includes a more detailed, albeit less general, version

of some of the same results. The current paper focuses on the formalization of the language
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and axiomatization of QRC1 (Sections 2 and 3 respectively), as well as of its Kripke semantics

(Section 4) and soundness (Section 5). The formalization of the Kripke completeness is ongoing

and will be described in a future work. The formalization of the arithmetical results has not

been tackled yet.

1.1. Related Work

Quantified modal logic has been extensively studied [7], and even formalized. For example,

[8] describes a modular Isabelle formalization of several quantified modal logics, including

soundness and completeness theorems for them. On the other hand, [9] describes a set of Coq

tactics to facilitate showing that a user-defined and possibly quantified modal logic proves a

given statement. We have not made use of this library as our main goal was to prove meta-

theorems of QRC1, for which a deep embedding is more appropriate. There has also been work

on a custom proof assistant for quantified modal logic [10], as well as an automated theorem

prover for normal quantified modal logics [11].

Furthermore, there are several implementations of propositional modal logics, both in Coq

[12, 13, 14] and in other proof assistants [15], as well as presentations of first-order logics

[16, 17]. QRC1 itself has never been mechanized before.

1.2. External Tools

Coq [18] is a general purpose interactive and formal proof management system. It provides a

formal language expressive enough to write theorem statements and their proofs, as well as

specifications of algorithms and their implementations. These proofs are verified by the Coq

kernel, and are thus correct up to hypothetical (and unexpected) errors in the implementation of

the kernel itself [19]. Coq has been extensively used to formalize both mathematical theorems

[16, 20, 12, 21, 22, 23, 13] and software correctness [24, 25].

The core language is called Calculus of Inductive Constructions, a constructive type theory

with support for inductive types, among other features. Even though the base theory is con-

structive, several common axioms are admissible, including excluded middle. We do not make

use of any axioms in this development.

The Mathematical Components libraries, also known as MathComp [26], are libraries of

formalized mathematics originally developed for the mechanization of the Four Color Theorem

[20]. They serve as an alternative to Coq’s standard library and provide the theories of basic

types such as natural numbers and lists (mathcomp-ssreflect), as well as finite sets of so-

called choice types (mathcomp-finmap, [27]). This development is based on MathComp and

uses the SSReflect proof language [28].

Other interactive proof assistants could have been used to achieve similar results, but Coq

provides many advantages. Its underlying theory is strong enough to prove our results, there are

several well-developed libraries for many useful data structures, and the community is large and

active. Furthermore, algorithms implemented in Coq can be extracted to other programming

languages more suited for computation, such as OCaml. We do not make use of extraction in

this development yet, but could do so in the future to obtain a certified and practical decision

procedure for QRC1.
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1.3. Formalization

This paper tries to be accessible to someone who has never used Coq, or even other interactive

proof assistants. For this reason, we mostly highlight the interesting design decisions and

difficulties that would plausibly arise in other formalization efforts and stick to standard mathe-

matical notation. The only exception is Section 4.1, where we briefly comment on a well-known

issue with type hierarchies and the solution we implemented.

When possible, we mention the Coq name for each definition and theorem presented here.

These names are hyperlinks to an online rendition of their source code. There is also a summary

of the formalization available online,1 serving as a kind of documentation.

In Coq, every term has a type, and every type is also a term (and thus has a (larger) type

itself). There is a special type, called Prop, which is meant to represent logical propositions.

Thus, when P : Prop we think of P as the statement of a lemma, and of inhabitants of P as

proofs of P . Most of the time, we don’t care which particular proof of P was used to show P
was inhabited (i.e., proved).2 In contrast, when defining a non-Prop object, we often do care

about which specific inhabitant was chosen. For example, the statement 0 : nat is much more

informative than the statement “nat is inhabited”. We refer to inhabitants of Prop as proofs or

non-informative terms, and to other objects as informative terms.

Even though it is possible, there are some issues with including proofs in the middle of

otherwise-informative terms. It has been our experience that a Coq development becomes much

simpler when this is avoided and informative terms are clearly separated from non-informative

ones.3 We only mix these when defining objects meant exclusively for theorem statements

(as in Section 4.1), or when we couldn’t find an alternative. Even then, postponing this mix

as much as possible led to a clear improvement in the complexity of the implementation, as

described in Section 5.2.

We briefly present some figures comparing this formalization with mathematical text describ-

ing the same definitions, theorems, and proofs. With this information, we calculate this project’s

de Bruijn factor [32], which is the quotient between the compressed size of the formalization

and the compressed size of natural language text describing the same results. The formalization

described in this document takes up about 10.8K of memory when compressed (corresponding

to about 1200 lines of code), roughly 1.4 times as much as the compressed size of the LATEX

source for [1] (corresponding to about 8 pages). Strikingly, the ongoing formalization of the

completeness theorem is already at 39.0K or 3800 lines of code (including the code shared with

the soundness formalization), while the relevant LATEX source is about 2.8 times smaller (14

pages long).

1https://ana-borges.gitlab.io/QRC1-Coq/v0.1.0/Summary.html
2The proof mining field [29] is a clear exception, although if one were to implement proof mining techniques in Coq,

one would probably use something other than Prop to represent logical propositions.
3This is arguable and boils down to style. There is a well-known Coq textbook [30] describing the opposite strategy.

Here we tried to follow the MathComp guidelines [31] instead.
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2. Quantified and Strictly Positive Formulas

We define the names of variables, VarName, as simply the natural numbers, ensuring that we

have a countable number of variables available. We then define the concept of signature as

including a finite set of constant names, a finite set of predicate names, and a function from the

predicate names to the natural numbers assigning an arity to each one. Our language includes

no non-constant function symbols.

A term is either a variable or a constant. We define the appropriate canonical instances for

eqType (equality on terms is decidable), countType (there is a countable amount of terms)

and choiceType (there is a choice operator for terms). This makes it possible to talk about

finite sets of terms using the machinery of the Finite Maps Library [27] later on.

A formula is either ⊤, a predicate name together with a tuple of terms of the arity given

by the signature, a conjunction of two other formulas, a diamond of one other formula, or

a universal quantifier of a variable and another formula. We use the standard mathematical

notation in this text, and reasonable approximations for this notation in the Coq development.

The Language.v file then goes on to define several standard notions and facts about them,

such as free variables (fv(ϕ) or fv), substitution (ϕ[t1←t2] or sub), and being free for a variable
in a formula (no occurrence of a free variable becomes bound after the substitution, or freefor),

which we discuss in the next subsection.

2.1. Binders

Our formulas live in a quantified language, and as such there is a distinction between free and

bound variables. This distinction is important when dealing with substitution, since it should

not impact bound variables. Thus, (∀xϕ)[x←y] should be exactly ∀xϕ because x is not a free

variable of that formula.

There is one tricky issue, though: cases where replacing a free variable by a term lead to

a previously free occurrence becoming bound, such as in (∀y S(x, y))[x←y]. Here a naive

substitution would lead to ∀y S(y, y), which clearly does not preserve logical strength. In

informal mathematics it is common to ignore this issue by observing that the names of the

bound variables are ultimately irrelevant: if we wish to replace x by y in ∀y S(x, y), then this

can be achieved by first renaming the bound variable to some fresh name such as z, and then

doing the substitution. The final formula would then be ∀z S(y, z). This is the approach taken

by O’Connor in his formalization of the Gödel-Rosser incompleteness theorem [16]. However,

the paper cites this decision as having led to many issues in the formalization; although it

ultimately works, we did not wish to use the same strategy.

Another common solution for this problem is to use de Bruijn indexes [33]. This avoids

naming bound variables altogether, so this concern does not appear. However, this approach

is complex in its own right and would make the formalization considerably different from the

original paper.

There is a tool named Autosubst [34] that internally uses de Bruijn indexes but generates the

boilerplate code by itself and thus cuts back on the complexity and size of the developments.

We have not yet made use of Autosubst, but it would be interesting to see how many lines of

code and complications it would save. We leave this as future work.
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The approach we settled on was inspired by [35] and the will to avoid mixing non-informative

and informative objects as explained in Section 1.3. We define unguarded substitution, sub,

and add an extra assumption, freefor, as needed. This assumption assures us that if the

substitution goes through then the replacing term will not be captured under any binders.

We already spoke of terms being free for variables in formulas in our previous work [1, 5],

so the formalization is very similar to the informal mathematics. Furthermore, there were no

significant complications in using this approach in the formalization of the Kripke soundness

theorem forQRC1. This was no longer the case for the formalization of the Kripke completeness

theorem, but we postpone discussing this to a future work, when the formalization is completed.

One downside of this strategy is that variable names must be picked with some foresight.

Going back to our example from above, if (∀y S(x, y))[x←y] ever appears in our development

then we can perform the substitution, but won’t be able to use any of the results about it because

here y is not free for x in ∀y S(x, y). Thus it is assumed that in practice the names for the

bound variables do not clash with the names for the free variables, or that bound variables are

renamed as needed.

3. QRC1

The axioms and rules of QRC1 are defined in a deeply embedded way in the QRC1.v file, which

also includes some proofs of simple QRC1 facts.

Definition 3.1 (QRC1Proof). Let ϕ, ψ, and χ be any quantified strictly positive formulas. The

axioms and rules of QRC1 are the following:

(i) ϕ⇝ ⊤ and ϕ⇝ ϕ;

(ii) ϕ ∧ ψ ⇝ ϕ and ϕ ∧ ψ ⇝ ψ;

(iii) if ϕ⇝ ψ and ϕ⇝ χ, then
ϕ⇝ ψ ∧ χ;

(iv) if ϕ⇝ ψ and ψ ⇝ χ, then ϕ⇝ χ;

(v) if ϕ⇝ ψ, then ♢ϕ⇝ ♢ψ;

(vi) ♢♢ϕ⇝ ♢ϕ;

(vii) if ϕ⇝ ψ, then ϕ⇝ ∀xψ
(x /∈ fv(ϕ));

(viii) if ϕ[x←t]⇝ ψ, then ∀xϕ⇝ ψ
(t free for x in ϕ);

(ix) if ϕ⇝ ψ, then ϕ[x←t]⇝ ψ[x←t]
(t free for x in ϕ and ψ);

(x) if ϕ[x←c]⇝ ψ[x←c], then ϕ⇝ ψ
(c not in ϕ nor ψ).

If ϕ⇝ ψ, we say that ψ follows from ϕ in QRC1.

We briefly comment on the above axioms and rules. The first six statements correspond to

axioms and rules of RC1, while the two quantifier rules are standard in first-order logic. The final

two rules, called term instantiation and constant elimination respectively, fulfill an essential role

in the completeness of QRC1. The best way to think of them is as quantifier rules in disguise.

Since our semantics (described in Section 4) interprets the free variables of both sides of⇝ in the

same way, we can also think of such free variables as being generalized outside this implication.

In other words, P (x) ⇝ Q(x) can be thought of as ∀x (P (x) ⇝ Q(x)). We never explicitly
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write the latter, since it falls outside the scope of the strictly positive language. However, we

do wish to arrive at the conclusions such a formula promises, namely, we wish to be able to

simultaneously instantiate x on both sides of⇝ by any term (accomplished by Rule 3.1.(ix))

and to simultaneously “generalize” a given term as well (accomplished by Rule 3.1.(x)).

We used a deep embedding to represent the axioms and rules of QRC1, which facilitates the

proofs of meta-theorems such as soundness and completeness. However, it is still quite easy

to use this embedding to prove theorems of QRC1 itself, as the simple formalization of the

following lemma illustrates.

Lemma 3.2. The following are theorems (or derivable rules) of QRC1:

(i) AllC: ∀x ∀y ϕ⇝ ∀y ∀xϕ;

(ii) All_sub: ∀xϕ⇝ ϕ[x←t] (t free for x in ϕ);

(iii) Diam_All: ♢∀xϕ⇝ ∀x♢ϕ;

(iv) alphaconversion: ∀xϕ⇝ ∀y ϕ[x←y] (y free for x in ϕ and y /∈ fv(ϕ));

(v) TermIr: if ϕ⇝ ψ, then ϕ⇝ ψ[x←t] (x not free in ϕ and t free for x in ψ);

(vi) Const_AllIr: if ϕ⇝ ψ[x←c], then ϕ⇝ ∀xψ (x not free in ϕ and c not in ϕ nor ψ).

Like other provability logics, QRC1 is irreflexive, i.e., ϕ ⇝ ♢ϕ is not provable. However,

unlike other provability logics, this fact can be proved without semantics. Its formalization is

called Diam_irreflexive.

4. Kripke Semantics

The Kripke semantics for QRC1 generalizes the Kripke semantics for propositional modal logics

by transforming each world into a first-order model. Each of the worlds has its own domain,

and the only restriction on the domains is that there must be a function between each pair

fulfilling certain properties (cf. Definition 4.2). We present here the version implemented in Coq

and comment on the slight discrepancies with the definition from [5] afterward.

Definition 4.1 (rawFrame, rawModel). A Kripke modelℳ in a signature Σ is a tuple ⟨W,R,
{Mw}w∈W , {ηw,u}w,u∈W , {Iw}w∈W , {Jw}w∈W ⟩ where:

• W is a finite set (the set of worlds, where individual worlds are referred to as w, u, v, etc);

• R is a binary relation onW (the accessibility relation);

• Mw is a finite set for each w ∈ W (the domain of the world w, whose elements are

referred to as d, d0, d1, etc);

• ηw,u is a function fromMw toMu for eachw, u ∈W (the compatibility function between

w and u);
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• for each w ∈ W , the interpretation Iw assigns an element of the domainMw to each

constant c ∈ Σ, written cIw ; and

• for each w ∈ W , the interpretation Jw assigns a set of n-tuples SJw ⊆ ℘((Mw)
n) to

each n-ary relation symbol S ∈ Σ.

The ⟨W,R, {Mw}w∈W , {ηw,u}w,u∈W ⟩ part of the model is called its frame. We say that the

frame (or model) is constant domain if all the Mw coincide and all the ηw,u are the identity

function.

The above definition of frame, called rawFrame because it is not necessarily adequate, is not

exactly like the one presented in [5]. Note how above we postulate ηw,u functions for every

pair of worlds. In our previous work, ηw,u was only defined when wRu. This made sense

because the notion of satisfaction only uses the compatibility functions in those cases. However,

including such a non-informative restriction in a Coq definition, although possible, leads to

noticeable inconveniences, as described in Section 1.3.

Our work-around was to change the notion of frame so that functions ηw,u must exist for

every pair of worlds w and u. The fact that in principle we only make use of the ones between

pairs of worlds connected through R is immaterial. We must add an extra assumption to the

notion of adequate frame to maintain soundness, though: ηw,w must be the identity for any

world w.4 This decision was crucial in the mechanization of the soundness of Rule 3.1.(x), which

was the trickiest one. See Section 5.2 for more details.

Note how we do not lose generality with this alternative definition. The extra ηw,u functions

can obviously be dropped to obtain the original definition; on the other hand, as long as the

domainMu is non-empty,5 we can define a function ηw,u fromMw toMu. Since this function

will not be used, it doesn’t matter which one we pick.

The other difference is that we only implement finite models, in the sense that both the

set of worlds and each domain are finite. This does not impact the completeness proof, since

QRC1 has the finite model property [1], but it does mean that the formalized soundness proof

is slightly weaker than the more general one presented in [5].

The relevant frames and models will need to satisfy a number of requisites.

Definition 4.2 (adequateF, adequateM). A frame ℱ is adequate if:

• R is transitive: if wRu and uRv, then wRv;

• the η functions respect transitivity: if wRu and uRv, then ηw,v(d) = ηu,v(ηw,u(d)) for
every d in the domain of w; and

• the ηw,w functions are the identity.

A model is adequate if it is based on an adequate frame and it is:

4This restriction was already implicit for any reflexive world w as a consequence of ηw,w respecting transitivity in

that case (see Definition 4.2).
5We never explicitly require non-empty domains, but a w-assignment g can only exist if the domain of w is non-

empty. Thus, the soundness theorem holds vacuously for empty-domain models, and ignoring such models is not a

loss.
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• concordant: if wRu, then cIu = ηw,u(c
Iw) for every constant c.

Note that in an adequate and rooted model the interpretation of the constants is fully determined

by their interpretation at the root.

The notion of frame is defined by pairing a rawFrame with a proof that it is adequateF,

and similarly for model. We go into more technical details in Section 4.1.

We use assignments to define truth at a world in a first-order model. Fixing a world w, a
w-assignment g is a function assigning a member of the domainMw to each variable in the

language.

Two w-assignments g and h are Γ-alternative, written g ∼Γ h (or Xaltern g h Γ in Coq),

if they coincide on all variables other than the ones in Γ. We write g ∼x h instead of g ∼{x} h.

A w-assignment g is extended to terms by defining g(c) := cIw for any constant c.
We now define satisfaction at a world.

Definition 4.3 (sat). Letℳ = ⟨W,R, {Mw}w∈W , {ηw,u}w,u∈W , {Iw}w∈W , {Jw}w∈W ⟩ be a
model in some signature Σ, and let w ∈ W be a world, g be a w-assignment, S be an n-ary
relation symbol, and ϕ, ψ be formulas in the language of Σ.

We defineℳ, w ⊩g ϕ (ϕ is true at w under g) by induction on ϕ as follows.

• ℳ, w ⊩g ⊤;

• ℳ, w ⊩g S(t0, . . . , tn−1) iff ⟨g(t0), . . . , g(tn−1)⟩ ∈ S
Jw ;

• ℳ, w ⊩g ϕ ∧ ψ iff bothℳ, w ⊩g ϕ andℳ, w ⊩g ψ;

• ℳ, w ⊩g ♢ϕ iff there is a u ∈W such that wRu andℳ, u ⊩ηw,u∘g ϕ;

• ℳ, w ⊩g ∀xϕ iff for all w-assignments h such that h ∼x g, we haveℳ, w ⊩h ϕ.

Note how we haven’t required thatℳ be adequate in the definition of satisfaction, as it is

not needed. We will of course assume the models are adequate when proving facts about them.

Note also that the expressionℳ, w ⊩g ϕ is only defined when g is a w-assignment.

The main results on QRC1 are as follows.

Theorem 4.4 (soundness). If ϕ⇝ ψ, then for any adequate modelℳ, for any world w ∈W ,

and for any w-assignment g:

ℳ, w ⊩g ϕ =⇒ ℳ, w ⊩g ψ.

Theorem 4.5 (Completeness, [5]). If ϕ ̸⇝ ψ, then there is an adequate, finite, constant domain

and irreflexive modelℳ, a world w ∈W , and a w-assignment g such that:

ℳ, w ⊩g ϕ and ℳ, w ̸⊩g ψ.

Since we have the finite model property, we can conclude that QRC1 is decidable by Post’s

Theorem.

We focus on the (constructive and axiom-free) formalization of the soundness theorem in

Section 5 and leave the formalization of the completeness theorem to a future work.
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4.1. Type Hierarchies

When defining specific frames or models or operations on arbitrary frames or models such as

Definition 4.3, we use the raw versions. On the other hand, when stating facts about frames or

models we use the adequate versions, if necessary. We make use of implicit coercions in order

to smoothly refer to operations that expect, for example, a rawFrame in a theorem statement

about a frame.

A coercion is a function f : A→ B that is automatically used by Coq when an otherwise

ill-typed statement would be well-typed in the presence of f . For example, we declare a coercion

from rawFrame to world (the set of worlds) that lets us write statements such as forall (F

: rawFrame), forall (w : F), ... that closely resemble the common shorthand of

stating that a world is part of a frame instead of part of the set of worlds of the frame. In this

case Coq automatically infers the implicit coercion world necessary to make the statement

type-check. Explicitly, it would be forall (F : rawFrame), forall (w : world F),

...

We use a small number of coercions in our development, the most important of which are

represented in Figure 1. These coercions serve as a translation between a type and a super-type

(in the sense that the former is a sub-type of the latter). We have a very small type hierarchy.

Formalizations of, say, mathematical algebra or large libraries such as MathComp include rich

hierarchies [36], and there are existing tools to implement and maintain such large hierarchies

such as the Hierarchy Builder [37].

model

frame rawModel

rawFrame

Figure 1: A representation of the four datatypes defined to represent frames and models and the

coercions between them. Each arrow from X to Y represents the coercion Y_of_X.

Still, even with a small hierarchy we do run into some issues. For example, consider the

following unification problem:

rawFrame_of_frame ?F = rawFrame_of_rawModel (rawModel_of_modelM) (1)

In words, given a modelM , a frame ?F must be found such that its rawFrame corresponds

to the rawFrame of the model M . The diamond represented in Figure 1 commutes, and

so we define the canonical coercion frame_of_model as the path to solve (1) with ?F =
frame_of_modelM .
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5. Soundness

We show the soundness of QRC1 (Theorem 4.4) by induction on the proof of ϕ⇝ ψ. Some of

the axioms and rules are trivial, and we do not comment on them.

The soundness of the transitivity axiom (Axiom 3.1.(vi), Trans) follows from both the transi-

tivity of R and the fact that the compatibility functions respect transitivity. We also use the fact

that assignments only matter for variables appearing free in the formula (Lemma 5.1, further

discussed in Section 5.1) to take advantage of the extensional equality of ηw,v and ηu,v ∘ ηw,u.

Lemma 5.1 (sat_Xalternfv). Letℳ be an adequate model, w be any world, g, h be any

Γ-alternative w-assignments, and ϕ be a formula with no free variables in Γ. Then:

ℳ, w ⊩g ϕ ⇐⇒ ℳ, w ⊩h ϕ.

This lemma is all that is needed to show the soundness of the ∀-introduction on the right

rule (Rule 3.1.(vii), AllIr). For both ∀-introduction on the left (Rule 3.1.(viii), AllIl) and

term instantiation (Rule 3.1.(ix), TermI), we use the fact that a formula ϕ is valid under an

assignment g̃ if and only if ϕ[x←t] is valid under an assignment g when g ∼x g̃ and g̃(x) = g(t)
(Lemma 5.2) as the main building block.

Lemma 5.2 (substitution_formula). Letℳ be an adequate model, w be a world, and g, g̃
be x-alternative w-assignments such that g̃(x) = g(t). Then for every formula ϕ with t free for
x:

ℳ, w ⊩g̃ ϕ ⇐⇒ ℳ, w ⊩g ϕ[x←t].

Finally, the soundness of the constant elimination rule (Rule 3.1.(x), ConstE) is the trickiest,

and we postpone its discussion to Section 5.2.

5.1. Finite Sets

We made a decision to only work with finite sets. This allowed us to make use of the nice Finite

Maps library for choice types of MathComp [27] instead of having to prove many basic facts

from scratch. However, Lemma 5.1 (above) made us momentarily reconsider this decision.

This lemma feels intuitive and in fact its proof was omitted in [1] and [5]. However, it is

not as straightforward as it looks. A simple induction is underpowered to solve it; one must

do induction building with the assumption that g and h are (Vars \ fv(ϕ))-alternative instead.
Since Vars \ fv(ϕ) is not a finite set, it can’t be represented by the machinery of the Finite Maps

library. In order to get around this, we defined the notion of Γ-equivalent assignments.

Definition 5.3 (Xeq). Two w-assignments g and h are said to be Γ-equivalent if they agree on

every variable in Γ.

Clearly g and h are (Vars \ fv(ϕ))-alternative if and only if they are fv(ϕ)-equivalent. With

this formulation we can prove Lemma 5.4 by induction first and obtain Lemma 5.1 as an easy

corollary.

Lemma 5.4 (sat_Xeqfv). Letℳ be an adequate model, w be a world, ϕ be a formula, and

g, h be fv(ϕ)-equivalent w-assignments. Then:

ℳ, w ⊩g ϕ ⇐⇒ ℳ, w ⊩h ϕ.
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5.2. Soundness of the Constant Elimination Rule

Recall the constant elimination rule (Rule 3.1.(x), ConstE):

if ϕ[x←c]⇝ ψ[x←c], then ϕ⇝ ψ
(c not in ϕ nor ψ)

The argument for its soundness goes as follows. Suppose that ϕ[x←c]⇝ ψ[x←c] is sound
and thatℳ, w ⊩g ϕ for some adequate modelℳ, world w, and w-assignment g. We wish to

show thatℳ, w ⊩g ψ. We build a new modelℳ[w, c←g(x)] that is identical toℳ except it

interprets c as g(x) inw, in hopes thatℳ[w, c←g(x)] satisfies χ[x←c] if and only ifℳ satisfies

χ, for any formula χ where c does not appear. We can then deduce thatℳ[w, c←g(x)], w ⊩
ϕ[x←c] from our assumption thatℳ, w ⊩g ϕ, and, since ϕ[x←c] ⇝ ψ[x←c] is sound, this
means thatℳ[w, c←g(x)], w ⊩g ψ[x←c], and consequently thatℳ, w ⊩g ψ.
The above proof sketch should be intuitive enough, but it omits a crucial point: the naive

definition ofℳ[w, c←g(x)] is not concordant, because the interpretation of a constant is being

changed at w without being changed anywhere else. It is fine to propagate the change to the

successors of w through the compatibility functions, and this would restore the concordance if

w were the root of the model. However, when w is not the root, there is no clear solution other

than dropping every other world from the model, which is what is done in [1]. It works well

because the satisfaction of a formula at w depends only on the model restricted to w and its

successors.

We originally tried to implement this proof directly: restrictℳ to w and its successors and

then replace the interpretation of c with g(x) at w and with ηw,u(g(x)) at all the successors
u of w. In this proof, the models are adequate every step of the way. However, implementing

this strategy proved rather difficult. A model restricted to w and its successors is naturally

defined as a regular model together with a non-informative statement to the effect that every

world is either w or its successor. Then the next step would be to define a way to change the

interpretation of a constant at the root and propagate it to all its successors. However, trying to

do this on top of restricted models proved hard, in part because there is no built-in concept of

root. Adequate models do not need to be rooted and we didn’t want to include this restriction.

Instead, we ended up changing the proof to postpone including non-informative elements

as much as possible. The key insight is that only the final model needs to be adequate, and

so we can change the constant interpretation first and only then restrict the worlds to obtain

concordance. Here is also where the decision to have compatibility functions for every pair of

worlds shines, as we’ll soon see. We define the constant interpretation for the new model as

follows.

Definition 5.5 (replace_I). Letℳ be a model, w be a world, c be a constant, and d be

an element of the domain of w. If I is the constant interpretation ofℳ, we define a new

interpretation I[w, c←d] as follows. For a given world u, cI[w,c←d]u := ηw,u(d). I[w, c←d]
behaves like I for every other constant.

Note that the above definition is well-typed even ifℳ is not an adequate model, and it

won’t lead to an adequate model unless w happens to be the root ofℳ. Note also that, ifℳ is

adequate, then cI[w,c←d]w = ηw,w(d) = d, because ηw,w is the identity in adequate models.
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Finally, observe that if ηw,u only existed when wRu, we could not have defined I[w, c←d]
like this, for there would be no way to obtain an element of the domain of u in the cases where

u was not a successor of w. Recall that we’re going to drop these worlds later anyway, so it

doesn’t matter which domain element this is; only that we have one in hand. Even though this

could have been implemented in other ways (for example, by designating a default element for

each domain), this particular solution is elegant in its simplicity and symmetry, as there is no

need to have a case distinction on wRu.
The first approximation toℳ[w, c←g(x)] is then a copy ofℳ with the constant interpreta-

tion replaced by I[w, c←g(x)]. We can already prove the desired property about this model

(sat_replace), namely thatℳ[w, c←g(x)] satisfiesχ[x←c] atw if and only ifℳ satisfiesχ at

w, for any formula χ where c does not appear. It now remains to further modifyℳ[w, c←g(x)]
so that it is adequate, by dropping all spurious worlds, obtainingℳ[w, c←g(x)]|w. The final
model, called restrict_replace, is finally adequate and allows us to prove the desired result,

Lemma 5.6, which has the soundness of the constant elimination rule as a corollary.

Lemma 5.6 (sat_restrict_replace). Given a constant c, a formula ϕ where c does not
appear, an adequate modelℳ, a world w, and a w-assignment g, we have:

ℳ, w ⊩g ϕ ⇐⇒ ℳ[w, c←g(x)]|w, w ⊩
g ϕ[x←c].

6. Conclusions and Future Work

In this work we presented a Coq mechanization of the QRC1 logic, its Kripke semantics, and a

formalized proof of its soundness theorem. We discussed the difficulties in translating these

objects and results to Coq as well as our proposed solutions. The formalization process suggested

a slightly different definition of Kripke model that is nevertheless equivalent to the previous

one under common assumptions. This new definition allowed for a simpler soundness proof.

The clear next step is to formalize Theorem 4.5, the completeness of QRC1, possibly making

use of Autosubst [34] to ease complications with binders. With both the axiom system and the

completeness proof, it should be possible to generate a mechanized and formalized decision

procedure for QRC1 via Post’s Theorem, which has already been formalized itself [38]. It would

also be interesting to see if some of the techniques described in the recent formalization of a

decision procedure for GL in HOL Light [15] are applicable, since GL is a closely related logic.

Other modal results on QRC1 could be formalized too, such as the fact that it is the strictly

positive fragment of the quantified modal logics between QK4 and QGL [5]. Finally, the

arithmetical results could be an interesting subject, although these are less elementary and

would need to be part of a larger project including practical definitions of arithmetical theories

such as Peano Arithmetic and its fragments. The Undecidability Library [38] might be a good

basis for such a project.
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