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Abstract
This paper focuses on the “change of balance” problem in cross-version bug prediction where the percentage of buggy
modules changes between different versions. Such difference badly affects the prediction performance. To mitigate this
problem, this paper employs a dynamic model selection approach equipped with two prediction models (always-buggy
model and always-non-buggy model) and Bandit algorithm to select better models in each one-module-by-one prediction.
An experiment with data sets of 20 releases of 10 open source software showed that the proposed approach can improve
F1-measure compared with the conventional cross-version prediction.
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1. Introduction
Defect-prone software module prediction (or simply, bug
prediction) has been studied for the effective software
quality assurance [1][2][3]. Typically, prediction is held
in cross-version situation where a prediction model is
built from data of a past project, and it is applied to the
next version of that project. Based on the prediction
result, practitioners can allocate limited testing efforts
to the defect-prone (buggy) modules to find more bugs
with smaller effort.

However, it has been pointed out that such cross-
version prediction very often does not work well because
of concept drift [4][5]. As one of the factors of concept
drift, this paper focuses on the “change of balance” be-
tween the number of buggy modules and not buggy mod-
ules. Indeed, such balance very often changes between
different versions of software. For example, in case of
Ant project, the percentage of buggy modules was 10.9%
in version 1.5 while it becomes 29.3% in next version 1.6
(as shown in Table 2). Such a difference badly affects the
prediction performance of the models in general.

To mitigate this problem, assuming that the modules
are predicted one by one manner, this paper employs a dy-
namic model selection approach equipped with two pre-
diction models: (1) always-buggy model and (2) always-
non-buggy model. The always-buggy model outputs
“buggy” to any modules input to the model, while the
always-non-buggy model outputs “not buggy” to any
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modules. By employing Bandit algorithm to give scores
to two models in each one-by-one prediction, we expect
that the relatively better model is wisely selected regard-
less of the percentage of bugs in the target version.

To date, there are several attempts to employ Bandit
algorithm in bug prediction [6][7], none of them tries to
solve the “change of balance” problem in cross-version
bug prediction.

To evaluate the proposed method, this paper conducts
an empirical study using datasets of 20 releases of 10
open source software projects.

2. Cross-version bug prediction
and its balance problem

2.1. Cross-version bug prediction
To date, various bug prediction techniques have been pro-
posed and evaluated [1][2][3][7][8]. Bug prediction is
carried out before software testing and/or code review. In
this paper, we focus on bug module classification, which
aims to classify a module as buggy (containing one or
more bugs) or not buggy (containing no bug). The ob-
jective variable is the probability that a module belongs
to the buggy class. Typically, prediction is held in cross-
version manner where a prediction model is built from
data of a past project, and it is applied to the next version
of that project.

2.2. Problem of change of balance
between versions

In cross-version bug prediction, balance between the
number of buggy modules and not buggy modules is a
dominant factor of prediction accuracy. For example, if
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buggy modules are extremely less than not buggy mod-
ules, it is very difficult to gain high precision [9]. More-
over, such balance very often changes between different
versions, and this cause bad prediction performance in
cross-version prediction.

In case the older version has fewer bugs than the newer
version, precision tends to become large and recall tends
to become small. On the other hand, if the older version
has more bugs than the newer version, precision tends
to be small and recall tends to be large. For example,
in case of Ant project, the older version has fewer bugs
(as shown in Table 2), and in such a case, precision is
high (.600) but recall becomes small (.163) as later shown
in Table 4. Such change of balance between versions
very often happens in cross-version prediction, making
it difficult to obtain high prediction accuracy.

3. Proposed solution

3.1. Bandit algorithm
Here, we introduce Bandit algorithm which we employ
in this paper to mitigate the problem of balance between
versions. The K-arm bandit problem is a problem where
a user faced with slot machines, must decide which ma-
chines to play. Each machine gives different average
reward that the user does not know in advance. The goal
is to maximize the user’s cumulative reward. Consider
K slot machines. In game turn n, the user will receive a
reward which depends on the machine he chooses. A ba-
sic example is the case where machine 𝑖 brings a reward
of 1 with probability 𝑝 and −1 with probability 1 − 𝑝.
In our study, considering that a user wants to conduct
unit testing for a set of modules, instead of selecting a
slot machine, the user selects a module (i.e., a source file)
one-by-one and tries to find the bug prediction model
that brings the highest average reward (i.e. prediction
performance) to conduct testing. The strategy for the
armed bandit problem is an algorithm that chooses the
next prediction model based on previous choices and the
rewards obtained. This paper introduces the most basic
algorithm called epsilon-greedy algorithm. In this algo-
rithm, in each trial, an arm is selected at random for a
proportion 𝜖, and the best arm (having the largest total
reward) is selected for a proportion 1− 𝜖. The proper 𝜖
value may depends on the context. As a simple example,
here we consider two arms X and Y exist, and want to
maximize the cumulative reward by selecting appropri-
ate arm. An example of arm selection in each trial is
illustrated in Table 1. Each trial is proceeded as follows.

1. In the initial trial, an arm is selected randomly.
Arm X is selected in this case. Earned reward is
−1.

Table 1
An example of applying a bandit algorithm.

Trial Selected Earned X’s total Y’s total
Arm reward reward reward

1 X -1 -1 0
2 Y 1 -1 1
3 X 1 0 1

2. Arm Y is selected for a proportion 1− 𝜖, as Arm
Y’s total reward is larger than that of X. Earned
reward is 1.

3. The arm is randomly selected for a proportion 𝜖.
Arm X is selected in this case. Earned reward is
1.

As we illustrated above, arm X received the reward
of −1 in the initial trial, and this makes arm X difficult
to be selected in later trials. However, the parameter
𝜖 enables arm X to be selected sometimes to give it to
receive positive reward.

3.2. Basic idea to solve the change of
balance problem

The problem of change of balance between two versions
can be classified into the following two cases (a) the
newer version has fewer bugs, or (b) the newer version
has greater bugs. The problem here is that it is not possi-
ble to determine in advance whether we are in case (a) or
(b). However, if the bug prediction and testing is carried
out on a one-by-one basis, we are gradually getting to
be aware of it. That is, we assume the following process:
(1) we conduct bug prediction to all modules, (2) we pick
a single module that has highest probability of being
“buggy”, (3) conduct testing if the module is predicted as
“buggy” and (4) now we know the prediction is correct or
wrong. Repeating the above process, we expect that the
false-positive will increase if we are in case (a). On the
contrary, we expect that the true-positive will increase if
we are in case (b). Based on the above expectation, our
idea is to employ two different types of bug prediction
models as follows:

1. Always-buggy model: It always predicts that there
is a bug in a module.

2. Always-non-buggy model: It always predicts that
there is no bug in a module.

Firstly, we employ a normal bug prediction model to
predict all modules to obtain the probability of being
“buggy” of each module. Then, a one-by-one prediction
process is carried out such that: a module having the
largest probability is picked, the prediction model is se-
lected by Bandit algorithm, prediction result is obtained,
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the reward is given to all prediction models based on the
correctness of the prediction

3.3. Proposed algorithm
Based on the basic idea above, we propose an algorithm
to select a bug prediction model as follows.
(Step. 1) Probability computation

In this step, bug prediction is conducted to all modules
using the ordinary model to obtain the probability of
being “buggy” of all modules.
(Step. 2) Target module selection

We pick a single module that has the highest probabil-
ity of being “buggy”, from a list of unselected modules.
The reason why we start with the buggiest module is
that, it is natural for a practitioner to focus first on the
riskiest part of the software and examine it to see if there
is any bug or serious problem.
(Step. 3) Model selection based on the epsilon-greedy
algorithm

Generate a random number x of [0, 1]; and,
3-1) if 𝑥 < 𝜖, a bug prediction model is randomly

selected from two models (always-buggy and always-
non-buggy).

3-2) If 𝑥 ≥ 𝜖, select a bug prediction model with the
largest sum of recent reward.
(Step. 4) Prediction

Conduct bug prediction with the selected model.
(Step. 5) Testing

Conduct testing if the selected model predicts the tar-
get module as “buggy.” No test is carried out if “not buggy”
is predicted. This is because bug prediction aims to re-
duce the cost of testing by testing only the modules likely
to have a bug.
(Step. 6) Rewarding

Assuming that predictions were made by both two
models, the reward +1 is given to a model if the predic-
tion was correct, and -1 is given if the prediction was in-
correct. Note that rewarding is conducted only if testing
is conducted in Step 5. In Section 3-1, in the conventional
Bandit algorithm, the reward was calculated for only one
selected arm (i.e. bug prediction model), but in our pro-
posal, the reward for all models is calculated. Because,
in the case of a slot machine, we can only bet by putting
money in one of them each time, but since bug prediction
can be executed by all prediction models in every trial,
there is no point in limiting the calculation of reward to
a single prediction model. Therefore, we decided to use
both models in each trial.
(Step. 7) Compute the sum of recent rewards for all mod-
els.

Here, we ignore “old” rewards because we want to se-
lect a model with good “recent” performance. Therefore,
we set a threshold w on the number of trials, and the
calculation of total reward includes only the recent w

Table 2
20 releases of 10 data sets used in the experiment.

Project Release Modules Modules % of
Name with modules

bugs with
bugs

Ant 1.5 293 32 10.9
1.6 350 92 26.3

Camel 1.4 856 144 16.8
1.6 945 188 19.9

Forrest 0.7 29 5 17.2
0.8 32 2 6.3

Ivy 1.4 241 16 6.6
2.0 352 40 11.4

Jedit 4.2 367 48 13.1
4.3 492 11 2.2

Log4j 1.1 109 37 33.9
1.2 205 189 92.2

Lucene 2.2 247 144 58.3
2.4 340 203 59.7

Poi 2.5 384 248 64.6
3.0 441 281 63.7

Prop 4 8702 840 9.7
5 8506 1298 15.3

Synapse 1.0 157 16 10.2
1.1 222 60 27.0

trials. We refer to this threshold w simply as “window
size.” The optimum w is experimentally determined.
(Step. 8) If the list of unselected modules is empty then
end else go to Step. 2.

4. Evaluation

4.1. Data set
As shown in Table 2, this paper uses 20 releases of 10 open
source software (OSS) project data sets to conduct cross-
release prediction. Each project includes two releases
where older release is used as a fit data set (for building
a defect prediction model) and newer release is used as a
test data set (for evaluation). The percentage of modules
widely varies among projects and/or versions (smallest is
2.2% and largest is 92.9%.) Metrics included in these data
sets are shown in Table 3. These data sets are donated
by Jureczko et al. [10][11] and the details of the data
measurement are described in [11]. We obtained these
data sets from SeaCraft repository [12].
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Table 3
Metrics used in the data sets.

Name Definition

WMC Weighted Methods per Class
DIT Depth of Inheritance Tree
NOC Number of Children of a class
CBO Coupling Between Classes
RFC Response for a Class
LCOM Lack of Cohesion in Methods
LCOM3 Lack of Cohesion in Methods
NPM The number of public methods
DAM Data Access Metric
MOA Measure of Aggregation
MFA Measure of Functional Abstraction
CAM Cohesion Among Methods of Class
IC Inheritance Coupling
CBM Coupling Between Methods
AMC Average Methods Complexity
Ca Afferent couplings
Ce Efferent couplings
MaxCC Maximum value of cyclomatic complexity of

methods in a class
AvgCC Arithmetic mean of cylcomatic complexity of

methods in a class
LOC Lines of Code

4.2. Bug prediction model
This paper employ random forest because it was shown
as one of the best models in bug prediction [13] and
it shows performance comparable to the modern auto-
ML framework [14]. Although there exist various other
predictors, improvement of defect prediction accuracy
by employing them is out of scope of this study. To build
random forest models, we use the statistical computing
and graphics toolkit R and its randomForest library. We
use the default parameter values of randomForest library,
e.g. the number of trees to grow ntree = 500, and the
number of variables randomly sampled as candidates
as each split mtry = sqrt(p), where p is the number of
predictor variables.

4.3. Accuracy measures
This paper employs three commonly used accuracy mea-
sures to evaluate the prediction performance: precision,
recall and F1-measure.

4.4. Result and discussion
Table 4 shows the result of defect prediction by the con-
ventional method, that is, cross-version bug prediction
with random forest. For the project Ivy, the values of pre-
cision and recall are zero, in such a case we consider the
F1-measure to be zero. The average of precision (0.488)

Table 4
The bug prediction performance of the conventional method.

Project Precision Recall F1
Name

Ant .600 .163 .256
Camel .481 .266 .342
Forrest .200 .500 .286
Ivy 0 0 0
Jedit .132 .455 .204
Log4j .947 .286 .439
Lucene .650 .685 .667
Poi .744 .722 .733
Prop .493 .026 .050
Synapse .636 .117 .197

Average .488 .322 .317

is higher than that of recall (0.322). The average of F1-
measure (0.317) is similar to that of recall.

Table 5 shows the result of the proposed method for
window size 𝑤 = 𝑁/𝐴, 10, 50 and 100, and 𝜖 = 0, .1,
.2, .3 and .4. Here, 𝑤 = 𝑁/𝐴 means there is no window
(it can be considered that 𝑤 = ∞). The gray cells in the
table have the highest values in each window size.

For all 𝑤 and 𝜖 ≥ .2 cases, the average F1-measure
was better than that of the conventional method, which
suggests the effectiveness of the proposed method. Com-
pared with the conventional method, the average preci-
sion was decreased, but the average recall was greatly
improved, resulting in the improved F1-measure. Since
the overlook of bugs is crucial in software testing, we
believe improvement of recall is preferable from the prac-
tical point of view.

Interestingly, 𝜖 = .2 or .3 showed the best perfor-
mance for all window sizes. Since 𝜖 = .2 and .3 cases
are always better than 𝜖 = 0 cases, this suggests the ef-
fectiveness of the epsilon-greedy algorithm for dynamic
model selection. On the other hand, the window size
was found to have negative effect on prediction perfor-
mance since 𝑤 = 𝑁/𝐴 cases showed better performance
than 𝑤 = 10, 50 and 100 cases. Therefore, it can be
said that the window is not necessary in the current
form of the proposal. For more detailed analysis, Ta-
ble 6 shows the prediction performance of the proposed
method (𝑤 = 𝑁/𝐴, 𝜖 = .2) for each data set. Compared
to the result of the conventional method (Table 4), 7 data
sets (Ant, Camel, Ivy, Log4j, Lucene, Prop and Synapse)
showed improvements in F1-measure, while 3 data sets
(Forrest, Jedit and Poi) showed decrease in F1-measure.
Looking at Table 2, it seems that the Forrest data set is
too small to evaluate. It has only 2 buggy modules in
new version. Also, the Jedit data set would be inadequate
for evaluation since it contain only 11 buggy modules
out of 492 modules. When ignoring these two data sets,
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Table 5
The average bug prediction performance of the proposed
method.

𝑤 𝜖 Precision Recall F1

N/A 0 .380 .346 .310
.1 .410 .437 .365
.2 .411 .497 .393
.3 .397 .497 .386
.4 .393 .525 .390

10 0 .415 .261 .219
.1 .400 .285 .302
.2 .421 .383 .356
.3 .413 .425 .359
.4 .392 .430 .351

50 0 .371 .318 .263
.1 .448 .423 .387
.2 .427 .459 .374
.3 .395 .401 .349
.4 .394 .473 .363

100 0 .369 .331 .266
.1 .408 .436 .366
.2 .411 .485 .379
.3 .376 .430 .350
.4 .379 .460 .363

the average F1-measure by the conventional method is
.357 and that in the proposed method is .459. Regarding
the Poi data set, where the proposed method was not
effective, the reason for this result may be that the newer
version has fewer bugs than the older version. Based on
the investigation of gained rewards in each trial in this
data set, we found that always-buggy models received
many minus rewards, while always-non-buggy models
did not. This is considered to be not fair for always-buggy
models because testing is conducted only if the predic-
tion result is “buggy.” Therefore, always-buggy models
have larger chance to get minus rewards than always-
non-buggy models. Resolving such asymmetries is an
important issue for the future.

5. Threats to validity
In this section we discuss the threats to validity of our
work. We used the single prediction method (random
forest). Our important future work is to employ other
prediction methods to increase the validity of the result.
Another issue is that we conducted only one trial (i.e. no
repetition) for each prediction. Since random forest can
output different results for the same data set, it is our
future work to conduct repetitions in predictions.

In this study we used data sets of 20 releases of 10 open
source software donated by Jureczko et al. [10][11]. In
future, we will consider using data sets from other data

Table 6
Details of the result of the proposed method (no window,
𝜖 = .2).

Project Precision Recall F1
Name

Ant .437 .598 .505
Camel .342 .356 .349
Forrest .143 .500 .222
Ivy .035 .025 .029
Jedit .026 .091 .041
Log4j .924 .904 .914
Lucene .603 .897 .721
Poi .623 .765 .687
Prop .186 .129 .153
Synapse .381 .267 .314

Average .411 .497 .393

sources to increase the generalization of the results.
In addition, we used three commonly-used perfor-

mance measures (precision, recall and F1-measure) for
evaluation. However, there are several criticism to these
measures [9]. Therefore, we will consider adding other
performance measures such as probability of false alarm
(pf) and Matthews Correlation Coefficient (MCC) [15].

Simulating a sectioning command by setting the first
word or words of a paragraph in boldface or italicized
text is not allowed.

6. Conclusion
In this paper, we proposed an approach to mitigate the
“change of balance” problem in cross-version bug pre-
diction. An experimental evaluation with 10 data sets
showed that, by using the proposed approach, although
the average precision was decreased, the average re-
call was greatly improved, resulting in the improved F1-
measure. Since the overlook of bugs is crucial in general,
we believe that improvement of recall helps practitioners
in software quality assurance.

There are several future works as we denoted in the
threats to validity session. In addition, this paper com-
pared the proposed method with the most basic cross-
version prediction using random forest. Since there are
attempts to mitigate the class imbalance problem, such as
over/under sampling [1], it is our important future work
to compare our approach with these methods.
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