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Abstract
In this paper, we describe a novel method – VinVL+L – that enriches the visual representations (i.e. object tags and
region features) of the State-of-the-Art Vision and Language (VL) method – VinVL – with Location information. To verify
the importance of such metadata for VL models, we (i) trained a Swin-B model on the Places365 dataset and obtained
additional sets of visual and tag features; both were made public to allow reproducibility and further experiments, (ii) did
an architectural update to the existing VinVL method to include the new feature sets, and (iii) provide a qualitative and
quantitative evaluation. By including just binary location metadata, the VinVL+L method provides incremental improvement
to the State-of-the-Art VinVL in Visual Question Answering (VQA). The VinVL+L achieved an accuracy of 64.85% and
increased the performance by +0.32% in terms of accuracy on the GQA dataset; the statistical significance of the new
representations is verified via Approximate Randomization. The code and newly generated sets of features are available at
https://github.com/vyskocj/VinVL-L.

Keywords
Vision and Language, Visual Question Answering, Location Recognition, Oscar, VinVL

1. Introduction
Multi-modal understanding systems can answer general
questions from visual and textual data. These questions
are largely focused on objects and their relations, appear-
ances, or behaviors. Rest of them are asked about the
overall scene, such as location or weather. Most of multi-
modal systems are split into visual and textual modules,
followed by image-text alignment. Faster R-CNN [1] re-
gion features of detected objects are commonly used for
visual representation and BERT [2] embeddings for the
textual. However, such visual model only provides infor-
mation about objects, from which the entire multi-modal
system must decide simple questions like "Are people
inside or outside?".

We intuitively feel that in general, the objects are re-
lated to indoor/outdoor scene division even if they cannot
be directly assigned. They have a certain weight on the
basis of which the correct answer can be decided. For
example, cars, sky, and trees are more likely to belong
to an outdoor scene, however, the scene may be indoors,
and these categories can be detected through the garage
door. In addition to [3, 4, 5], the mentioned paradigm
of splitting image-text modules follows VinVL [6] based
on Oscar [3] that additionally adds object tags, i.e., tex-
tual output from an Object Detection network, to region
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Figure 1: Example predictions of the proposed VinVL+L.
We compare VinVL+L with the State-of-the-Art VinVL on the
randomly selected input pair (i.e. image and question) from
the GQA test set. The VinVL+L better aligns the answer to
the question thanks to the enriched visual features.

features. However, a clear cross-modal representation of
the scene is still missing, which can harm the network,
as shown in Figure 1.

Our method, based on VinVL, brings a new represen-
tation including information about the location into the
system. This representation is obtained using a classifi-
cation network trained on the Places365 dataset having a
total of 365 location categories. All of these categories are
directly split into one of the indoor and outdoor supercat-
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egories. All of these labels are then passed as scene tags
to our VinVL+L method to predict the answers. Besides,
we utilize scene features that are generated in the same
way as the region features of Oscar/VinVL. Finally, we
evaluate influences on answers while using these novel-
ties. An example of the top 3 predictions of the VinVL and
our VinVL+L is visualized in Figure 1. More examples are
shown in Section 5.3 and Appendix A. Our contributions
are:

• We enrich visual representations of the VinVL
using the global information about the image -
location.

• We present the effectiveness of each new cross-
modal representation as we compare their related
models including a reproduced version of the
VinVL.

• We improve the VinVL in visual question answer-
ing (VQA) with an overall accuracy of 64.85% on
the GQA dataset.

• We provide data with the location context that
we generated for the GQA dataset.

2. Related Work
Many Vision and Language (VL) methods, like [3, 6, 7, 8],
focus on pre-training generic models by combining mul-
tiple datasets from different tasks. Then the models are
fine-tuned to downstream tasks that include: image cap-
tioning, visual reasoning, or visual question answering.
In this section, we briefly review recent approaches to VL
tasks and their commonly used Vision Encoders, which
are the most relevant for our work.

Vision Encoders Convolutional Neural Networks
(CNNs) gained popularity in image classification when
AlexNet [9] won the ImageNet 2012 competition. In the
subsequent period, models with skip-connections [10,
11, 12, 13] with blocks having small feed-forward net-
works in parallel connections [12, 14, 15], or with a fo-
cus on optimization [16, 17, 18, 19, 20] were created. In
recent years, Transformer-based methods, such as Vi-
sion Transformer [21], or its modification with shifted
windows [22], gained favor thanks to computational effi-
ciency and accuracy. These image classification models
are often used as backbone architectures in object detec-
tion to predict bounding boxes with a classification of
each object in the image. The most popular detectors
are the one-shot Yolo-based architectures [23, 24] and
two-shot Faster R-CNN-based architectures [1], which
are generally slower but more accurate than the one-shot
ones. The image classification or object detection models
are further used as Visual Encoders in the VL tasks.

BERT-based VL Methods End-to-end methods such
as MDETR [7] use a pre-trained image classification
backbone to extract features and concatenate them with
word embeddings taken from a BERT-based model [2, 25].
However, some existing VL methods [3, 4] reuse the ex-
tracted features from another approach, e.g., a bottom-up
mechanism [5] that extracts object regions via Faster R-
CNN, to fine-tune a novel method with an unchanged
visual model. These methods include Oscar [3], which
introduces object tags as cross-modal representation to
improve the alignment of the image-text pairs. Based
on Oscar, VinVL [6] improves visual representation by
pre-training larger model on multiple object detection
datasets. Since this method holds State-of-the-Art results
on the GQA dataset [26] and represents the image as a
set of regional features while suppressing global scene
information, we decided to improve the alignment of the
cross-modal representation by location recognition.

3. Datasets
The early datasets, such as VQA [27] and COCO-QA [28],
contain only the core annotation needed for the vision
question answering: an image, a question, and a desired
one-word answer. However, we are interested in dataset
containing richer annotations to recognize types of loca-
tions in the image input. It does contain the GQA dataset,
but only for part of the images. Therefore, there are two
existing datasets Places365 and GQA suitable for our task.
Both datasets are thoroughly described below.

Places365 [29] This dataset consists of 365 location
categories that we can directly map to indoors/outdoors
category. The balanced training set varies from 3,068 to
5,000 images per location category, while the validation
set consists of 50 images per category.

GQA dataset [26] This dataset consists of 22,669,678
questions (from which the test2019 split contains
4,237,524 questions) over 113,018 images with 1,878 pos-
sible answers to open and binary yes/no questions. In
addition to questions and answers, each image contains
annotations of objects, the relations between them, and
their attributes. Besides, each image contains global in-
formation in the form of location and weather, the dis-
tribution of which is shown in Table 1. Regarding the
evaluation of the results, the following metrics are used:

• Accuracy – overall accuracy, primary metric,
• Binary – accuracy of yes/no questions,
• Open – accuracy of open questions,
• Consistency – overall accuracy including equiva-

lent answers,
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• Plausibility – relative number of answers making
sense with respect to the dataset,

• Validity – relative number of answers that are in
the question scope,

• Distribution – overall match between the distri-
butions of true answers and model predictions.

Table 1
GQA dataset. Distribution of annotated global information
about the scenes on the training and validation split.

Metadata Training Validation
# of images 74,942 10,696
with weather 6,600 (8.8%) 952 (8.9%)
with location 23,370 (31.2%) 3,265 (30.5%)
indoors 4,520 (19.3%) 638 (19.5%)
outdoors 18,850 (80.7%) 2,627 (80.5%)

4. Methodology
The Vision and Language (VL) approaches are commonly
divided into two phases: pre-training and fine-tuning. In
pre-training, multiple datasets of different tasks are com-
bined to create generic models. In fine-tuning, these mod-
els are then trained on each of these datasets, called down-
stream tasks. In this study, we focus on improving the
current State-of-the-Art VinVL [6] in GQA dataset [26].
This improved version learns the image-text representa-
tion with respect to the global information of an entire
image, such as indoors/outdoors, which is given by novel
scene tags and features.

4.1. Adding locations to VinVL
Based on VinVL [6], we present an extended architecture
with scene tags and features. In our work, these repre-
sentations are simply generated using a fine-tuned clas-
sification network on the Places365 dataset [29] with an
accuracy of up to 96.1% in case of binary indoor/outdoor
classification (see Section 5.1 for more details). Scene
tags are the predicted location categories. Scene features
are made in the same style as their object counterparts,
i.e., as a 2,048 feature vector (obtained via Global Aver-
age Pooling) concatenated with top-left & bottom-right
corners, and height & width. Besides, the novel scene
representations are prepended before the object ones so
that the scenes in the embeddings always have the same
position for each image-text pair input, as outlined in
Figure 2.

Even though we do not perform pre-training on var-
ious tasks with the new representation, in general, the
yet-established pre-training objective of Oscar/VinVL [6]
can be followed. The change is only in the definition of
the (𝑤, 𝑞, 𝑣) triple input, where 𝑤 is the word embedding

sequence of the text, 𝑞 is the word embedding sequence
of the scene and object tags detected from the image, and
𝑣 is the visual embedding sequence of the entire image
and all detected regions. This input can be viewed from
two different perspectives as [3, 6]:

𝑥 ≜ [, , ,𝑤, 𝑞, ,⏟  ⏞  
𝑄&𝐴

,, , ,𝑣,⏟ ⏞ 
𝑖𝑚𝑔

,]

⏟  ⏞  
𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑉 𝑖𝑒𝑤

𝑜𝑟 [ ,𝑤,⏟ ⏞ 
𝑐𝑎𝑝𝑡𝑖𝑜𝑛

, , ,𝑞, 𝑣, ,⏟  ⏞  
𝑡𝑎𝑔𝑠&𝑖𝑚𝑔

]

⏟  ⏞  
𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑉 𝑖𝑒𝑤

(1)

where Dictionary View defines Masked Token Loss
ℒ𝑀𝑇𝐿, applied on the discrete token sequence ℎ ≜
[𝑤, 𝑞], to predict the masked tokens ℎ𝑖 based on their
surrounding tokens ℎ∖𝑖:

ℒ𝑀𝑇𝐿 = −E(ℎ,𝑣)∼𝒟 log 𝑝(ℎ𝑖|ℎ∖𝑖, 𝑣) (2)

Modality View defines Contrastive Loss ℒ𝐶𝐿 for the
image representation ℎ′ ≜ [𝑞, 𝑣], which is "polluted" by
randomly replacing 𝑞 with another sequence of tags from
the dataset 𝒟. To distinguish the original pair (𝑦 = 1)
from the polluted one (𝑦 = 0), a binary classifier 𝑓(.) as
a fully-connected layer is applied on the top of the [CLS]
token. This loss function is defined as [3]:

ℒ𝐶𝐿 = −E(𝑤,ℎ′;𝑦)∼𝒟 log 𝑝(𝑦|𝑓(𝑤, ℎ)) (3)

Alternatively, VinVL [6] applies the 3-way Con-
strastive Loss ℒ𝐶𝐿3 on ℎ* ≜ [𝑤, 𝑞, 𝑣], instead of the
binary ℒ𝐶𝐿 used in Oscar [3], to predict whether the
(𝑤, 𝑞, 𝑣) triplet is the original one (𝑐 = 0), contains a
polluted 𝑤 (𝑐 = 1), or contains a polluted 𝑞 (𝑐 = 2):

ℒ𝐶𝐿3 = −E(ℎ*;𝑐)∼𝒟 log 𝑝(𝑐|𝑓(𝑤, 𝑞, 𝑣)) (4)

By fusing Equation 2 and 4, or 2 and 3, the full pre-
training objective is:

ℒ𝑃𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = ℒ𝑀𝐿𝑇 + ℒ𝐶𝐿3 (𝑜𝑟 𝐶𝐿) (5)

4.2. Implementation Details
We use the same feature-vector size (i.e. 2,048) in order
to match the size of VinVL. These features are then
concatenated with positions and sizes, as described in
Section 4.1. The models used from the Timm library [30]
are: resnext50d_32x4d [13], gluon_inception_v3 [15], mo-
bilenetv3_small_100 [18], gc_efficientnetv2_rw_t [20],
vit_large_patch16_224_in21k [21], and swin_base_
patch4_window7_224_in22k [22]. All models are
fine-tuned for 20 epochs with SGD and Focal Loss. We
use an initial learning rate of 0.01 and we reduce it with
a plateau scheduler. The batch size is 64 with 2
accumulation steps. We use horizontal flip (probability
of 50%), random resized crop (scale from 0.8 to 1.0), and
random brightness contrast (probability of 20%).
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Figure 2: Illustration of VinVL+L. We represent the image-text pair as a quintuple [ word tokens , scene tags , object tags ,

scene features , region features ], where word tokens, object tags and region features are taken from VinVL [6]. Scene tags
and features are proposed to improve the alignment of cross-domain semantics. The example shows a case where only detected
objects could be classified as outdoors rather than indoors.

In the case of the VL model, we use the pre-trained
Oscar+BASE with VinVL features and follow their pre-
sented procedure which is the same as the original Oscar,
i.e., pre-training on the unbalanced "all-split" of the GQA
dataset for 5 epochs, and fine-tune the best model with
respect to overall accuracy on the "balanced-split" for 2
epochs. All the results are shown in Section 5.2 together
with a reproduction of VinVL that we improve.

5. Experiments
Our approach is divided into two separate steps. First, we
adapt several image classification models to the Places365
dataset and select the most accurate model to generate
a visual representation for the VL model. Then, we fine-
tune the VL model using its original and our new visual
features.

5.1. Location Recognition
We selected several pre-trained image classification net-
works in order to cover a certain range of different ap-
proaches to location recognition. These methods include
those focused on high inference speed, methods con-
taining skip-connections, parallel paths, or transformers.
Results of fine-tuned models on the Places365 dataset
are shown in Table 2. ResNeXt-50, EfficientNetV2, and
ViT-Large have similar performance, while ViT-Large
performs slightly worse in indoors/outdoors classifica-
tion. It is because when the ViT-Large is not right, it is
more often the incorrect indoors/outdoors supercategory
than in the case of the previous two mentioned models.
The best results are achieved by Swin-Base in both 365
locations and binary indoors/outdoors recognition. It
obtains 56% top-1 accuracy in recognizing 365 locations,

Table 2
Performance evaluation of selected networks. We do the
evaluation on the Places365-val dataset on all categories and
AccuracyIO on their binary supercategories (Indoor/Outdoor).

Backbone Accuracy Top3 AccuracyIO
MobileNetV3 47.9 70.8 94.6
InceptionV3 53.1 76.0 95.3
ResNeXt-50-D 54.2 77.0 95.6
EfficientNetV2 54.7 77.4 95.6
ViT-Large 54.9 77.7 95.5
Swin-Base 56.0 78.7 96.1

which is 1.1% higher than that of the second-best ViT-
Large. Therefore, this model is further used to extract
novel visual representations for our VinVL+L.

5.2. Visual Question Answering
Statistical significance of novel features We show
the advantages of the new visual representations by com-
paring our method with the reproduced VinVL using the
same training pipeline – see Table 5. The used scene tags
as 365 location categories (C), or indoors/outdoors (IO),
are denoted in subscripts of the model name. Besides, we
compute the statistical significance [33] between the two
models to show that recognizing the location categories
truly brings benefits and it is not just a coincidence. For
demonstration, we compare the reproduced VinVL with
our VinVL+LC on the validation dataset. Our goal is to
reject the null hypothesis defined as "there is no differ-
ence between system A and B". To do this, we shuffle the
predictions between systems A and B with a probability
of 50%, and we compare the performance with the initial
one (all repeated 10,000 times). Consequently, we reject
the null hypothesis at the 95% significance level, i.e., a
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Table 3
Results of individual methods according to the official leaderboard. We show the prior State-of-the-Arts performance
on GQA dataset, sorted by primary metric – Accuracy. The meaning of individual metrics is described in Section 3.

Method ↑Accuracy ↑Binary ↑Open ↑Consist. ↑Plausib. ↑Valid. ↓Distrib.
Bottom-Up [5] 49.74 66.64 34.83 78.71 84.57 96.18 5.98
MMN [4] 60.83 78.90 44.89 92.49 84.55 96.19 5.54
Oscar [3] 61.62 - - - - - -
MDETR [31] 62.45 80.91 46.15 93.95 84.15 96.33 5.36
LXR955 [8] 62.71 79.79 47.64 93.10 85.21 96.36 6.42
NSM [32] 63.17 78.94 49.25 93.25 84.28 96.41 3.71
VinVL [6] 64.65 82.63 48.77 94.35 84.98 96.62 4.72

Table 4
Performance evaluation of individual scene tags. We compare the reproduced VinVL with additional scene tags as
Indoors/Outdoors (IO), and/or 365 location category (C). The last row indicates improvement/deterioration as a difference
between our best model and the reproduced VinVL.

Method ↑Accuracy ↑Binary ↑Open ↑Consist. ↑Plausib. ↑Valid. ↓Distrib.
VinVL (reproduced) 64.53 82.36 48.79 94.14 84.77 96.55 4.72
VinVL+LIO 64.65 82.43 48.94 94.17 84.81 96.61 4.73
VinVL+LC+IO 64.71 82.38 49.12 94.06 84.84 96.65 4.55
VinVL+LC 64.85 82.59 49.19 94.00 84.91 96.62 4.59
ΔVinVL+LC − VinVL +0.32 +0.23 +0.40 -0.14 +0.14 +0.07 -0.13

Table 5
Accuracy of answers on the validation dataset. We evalu-
ate the reproduced VinVL with our improved versions on the
balanced validation GQA dataset.

Backbone Accuracy Binary Open
VinVL (reproduced) 63.2 52.5 82.3
VinVL+LC+IO 63.4 52.7 82.3
VinVL+LC 63.8 53.0 83.0
VinVL+LIO 64.1 53.7 82.6

threshold is equal to 0.05, with obtained 𝑝-𝑣𝑎𝑙𝑢𝑒 = 0.03.
The same conclusion is reached for VinVL+LIO. In the
case of the VinVL+LC+IO, the difference is not significant,
so the null hypothesis cannot be rejected.

The significance may seem small from a general point
of view. However, it should be considered that these
results were achieved by simply adding locations to the
system. To improve significance, scene features should
be generated from the same model as region features. In
addition, other global information such as weather may
be included.

Comparison on the test set Although we followed
the original training pipeline, on which the results of our
models are based, it should be noted that the reproduced
VinVL works worse than the original version. There-
fore, we decided to select models after the 1st, 3rd, and
5th epochs from the pre-training on the unbalanced set.
Then we fine-tuned these models for 2 epochs on the
balanced set to slightly increase the final performance.

We selected the best model with respect to overall accu-
racy on the validation set, and we pushed the results into
the evaluation server. The performances of the models
are listed in Table 4. The reproduced version of VinVL
still has worse performance than the original one, but
the difference is decreased with this modification of the
training.

According to the results, all of our models answer more
accurately and outperform the reproduced model in all
metrics, except in some cases of Consistency and Distri-
bution. For example, even the VinVL+LC answers 0.40%
better on open questions and 0.23% better on yes/no ques-
tions, resulting in 0.32% higher overall accuracy, it has
0.14% lower performance in Consistency metric. This
means that when our model fails, the prediction is truly
meaningless to the given question. However, this model
shows the best performance compared with other ver-
sions of VinVL+L: VinVL+LIO holds only the highest Con-
sistency (+0.03% compared with reproduced VinVL and
+0.17% compared with VinVL+LC), and VinVL+LC+IO out-
performs all compared models in Validation and Distribu-
tion. We show the results of the prior State-of-the-Arts
in Table 3. Even though, our VinVL+L method notice-
ably surpasses the original version in the primary metric:
+0.20% of overall accuracy for VinVL+LC.

5.3. Summary and Discussion
An improvement in the visual question answering is
achieved by taking global information about the visual
component into account. Table 4 and 5 confirm this fact
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Who is wearing the dress?

VinVL

Woman

(our) VinVL+L

Woman

What is the woman doing?

VinVL

Walking

(our) VinVL+L

Sitting

Inside what is the pizza?

VinVL

Box
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Box

What is inside the container next to the glass?

VinVL

Straw

(our) VinVL+L

Ice cream

Women  GT Resting  GT Pizza bosPizza box  GT PPacket  GT

Figure 3: Wrong predictions w.r.t. Ground Truth labels (GT). We show the wrong predictions of two models (VinVL and
VinVL+L) to randomly chosen image-question pairs from the validation set.

for all our VinVL+L models. In addition, we show the
wrong predictions of our VinVL+L (along with predic-
tions of reproduced VinVL) against the Ground Truth
labels. The image-question pairs are randomly chosen
from the validation set, see Figure 3. Even if our model
answers are wrong in the given examples, it is worth say-
ing that some of the answers are not truly wrong, e.g., in
the second example, in which the woman is truly sitting
and, in our opinion, there is missing additional informa-
tion to say if she is really resting, instead of just sitting.
Besides these examples, we show predictions from the
test2019 set in Appendix A.

It is worth emphasizing that the listed models do not
use scene features, only tags. A model using both scene
tags and features did not achieve the expected results.
This behavior was anticipated for two reasons. First,
even if we follow the generating procedure of the scene
features, the VL model obtains a vector with different
semantics compared to region features. To solve this
issue, the scene features must be generated from the
same model to avoid subsequent confusion. Second, all
image and text representations are passed to the modified
BERT model, which is still a language model pre-trained
on text corpora, with additional visual features added.
Therefore, the words still have a higher weight than the
visual features.

Regarding the performance of the reproduced VinVL,
we used the original code including the pipeline pre-
sented in [6]. However, the network reproduced by us
achieved worse performance in all metrics, e.g., 0.12% in
overall accuracy. Since the main goal is to improve this
method, we decided to primarily compare our models
with the reproduced version, on which the benefits are
best observed. All the listed models were trained using
the same device, hyperparameters settings, only differ in

the used novel visual representations. Therefore, our ar-
ticle only shows the effectiveness of incorporating global
location information into a system that works only on
the basis of objects.

6. Conclusion
This paper presents VinVL+L, an enriched version of the
VinVL with location context as a novel visual representa-
tion. We generate the new representations as scene tags
and features and we prepend them before the original em-
beddings of the architecture. Our version achieves higher
overall accuracy than the original method on the GQA
dataset, and we show that global information about the
entire image influences the answers and thus should not
be ignored. The best results of 64.85% overall accuracy
are achieved with the model using 365 location categories
as scene tags. Besides, we performed an Approximate
Randomization test to verify that the achieved results are
statistically significant. Similarly, weather recognition
for outdoor scenes could be included in the concept to
help the network with alignments of image-text pairs
with respect to global information. All generated data
and code are publicly available on our GitHub.
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A. Additional prediction examples

Where is she sitting?

VinVL

Table

(our) VinVL+L

Restaurant

Where is the umpire?

VinVL

Home plate

(our) VinVL+L

Field

What place is shown?

VinVL

Pen

(our) VinVL+L

Zoo

What place is the photo at?

VinVL

Classroom

(our) VinVL+L

Restaurant

What do you think is covered in snow?

VinVL

Car

(our) VinVL+L

Ground

What is on the freezer in the kitchen?

VinVL

Shelf

(our) VinVL+L

Sticker

Where is the young boy running?

VinVL

Sand

(our) VinVL+L

Beach

What is the red cabin made of?

VinVL

Metal

(our) VinVL+L

Wood

Is there any grass in the scene that is brown?

VinVL

No

(our) VinVL+L

Yes

What is the donut covered with?

VinVL

Icing

(our) VinVL+L

Sprinkles

Which side of the photo is the bus on?

VinVL

Yes

(our) VinVL+L

No

Are there either any cars or vehicles in the image?

VinVL

No

(our) VinVL+L

Yes

What is the piled vegetable?

VinVL

Potato

(our) VinVL+L

Cauliflower

Is there a bird or a cat that is sitting?

VinVL

No

(our) VinVL+L

Yes

Is the man thin?

VinVL

No

(our) VinVL+L

Yes

What is the girl sitting on?

VinVL

Towel

(our) VinVL+L

Blanket

Figure 4: Randomly selected predictions; VinVL+L and VinVL methods evaluated over GQA test2019 set. The
VinVL+L method impacts a decision based on newly included binary location (i.e. indoor and outdoor) metadata. In most
cases where VinVL+L prediction differs from VinVL, the VinVL+L produced a subjectively more reasonable prediction.
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