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Abstract
Deep reinforcement learning has obtained impressive results in the last few years. However, the
limitations of deep reinforcement learning with respect to interpretability and generalization have been
clearly identified and discussed. In order to overcome these limitations, neural-symbolic methods for
reinforcement learning have been recently proposed. This paper presents preliminary results on a new
neural-symbolic method for reinforcement learning called State-Driven Neural Logic Reinforcement
Learning. The discussed method generates sets of candidate logic rules directly from the states of the
environment. Then, it uses a differentiable architecture to select a good subset of the generated rules
to successfully complete the training task. The experimental results presented in this paper provide
empirical evidence that the discussed method can achieve good performance without requiring the user
to specify the structure of the generated rules. Besides being preliminary, the experimental results also
suggest that the presented method has sufficient generalization capabilities to allow using learned rules
in environments that are sufficiently similar to the training environment. However, this is a preliminary
work, and the experimental results show that the proposed method is not yet sufficiently effective.
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1. Introduction

Deep reinforcement learning has received increasing interest from the research community
in recent years because its methods have obtained impressive results on many complex tasks
(e.g., [1, 2, 3, 4, 5]). However, the limitations of deep reinforcement learning from the perspective
of the interpretability of learned strategies are well known. Moreover, these methods are
expected to have limited generalization capabilities because they are unable to reuse learned
strategies on tasks that are different from the ones used for training [6, 7].

In order to overcome these two major limitations, neural-symbolic methods for reinforcement
learning have gained relevant interest and appreciation. Many research proposals have tried
to combine neural approaches with first-order logic, such as DLM [8], dNL [9], and NLRL [7].
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These three methods use differentiable architectures [10] to learn sets of logic rules that solve
the tasks used for training. Therefore, these methods are able to effectively combine the benefits
of neural architectures, such as the ability to cope with uncertain environments, with good
interpretability and generalization capabilities. However, these methods require the user to
provide large amounts of data to guide the search. Moreover, they have not been currently
tested on complex reinforcement learning tasks. Finally, they often require large amounts of
computational resources to successfully solve even simple tasks.
This paper proposes a novel neural-symbolic method for reinforcement learning, called

SD-NLRL (State-Driven Neural Logic Reinforcement Learning), that is largely based on NLRL.
For a given learning task, NLRL generates a set of candidate rules using a top-down approach
that requires the user to specify a set of hyper-parameters, called program template, to guide
the generation of rules. On the contrary, SD-NLRL generates its candidate rules directly from
the states of the environment. Actually, SD-NLRL uses a modified version of the differentiable
architecture of NLRL to select the best subset of the generated rules that solves the task under
investigation. In order to fairly compare SD-NLRL with NLRL, SD-NLRL was used on the
tasks that are described in the paper [7] that introduced NLRL. Actually, the two methods are
compared using two cliff-walking tasks and three block manipulation tasks.

The work presented in this paper is closely related to relational reinforcement learning [11],
which represents states and actions using first-order logic and induces a relational regression tree
that associates each state-action pair to a Q-value. The literature documents several extensions
(e.g., [12, 13, 14]) of the original relational reinforcement learning method. However, these
extensions do not use differentiable architectures, and therefore they are not able to exploit the
most recent breakthroughs of deep reinforcement learning.

A recent work on neural-symbolic reinforcement learning that is closely related to SD-NLRL
is documented in [9], which proposes an adaptation of dNL [15] for reinforcement learning
tasks. dNL uses neural networks that learn logic formulae in conjunctive or disjunctive normal
forms. dNL requires the user to provide the structure of the neural network together with the
number of free variables to be used in the learned rules. On the contrary, SD-NLRL uses a
differentiable architecture based on the states of the environment, and it does not require the
user to provide additional parameters to define the structure of the learned rules.

Another method that is closely related to SD-NLRL is DLM [8], which is based on NLM [16].
NLM obtained notable results on some reinforcement learning tasks using a deep neural network
to mimic the logical deduction. However, the learned policies that NLM provides are not directly
interpretable. DLM extends NLM by replacing neural operators with fuzzy operators, and
therefore it is able to learn interpretable policies. However, DLM learns ground rules only.
Moreover, both NLM and DLM require the user to specify the architecture of the neural network,
which is not required by SD-NLRL.

The remaining of this paper is structured as follows. Section 2 discusses the proposed method.
Section 3 presents an experimental comparison of SD-NLRL and NLRL. Finally, Section 4
concludes this paper discussing some of the current limitations of SD-NLRL and outlining
possible research directions for the future.



2. SD-NLRL

The first part of this section presents a brief recall of the subset of first-order logic, namely
Datalog, that is considered in this work. Then, this section proceeds with a brief introduction
to NLRL, which is the neural-symbolic method for reinforcement learning that represents the
base of SD-NLRL. Finally, SD-NLRL is described focusing on its main differences from NLRL.

2.1. Datalog

Datalog is a subset of first-order logic, and its syntax comprises three main primitives: predicate
symbols, variable symbols, and constant symbols. Predicate symbols, or predicates, represent
relations among objects in the domain of discourse. Constant symbols, or constants, represent
the objects of the domain of discourse. Variable symbols, or variables, represent references to
unspecified objects of the domain of discourse. An atom 𝛽 is defined as 𝑝(𝑡1, … , 𝑡𝑛), where 𝑝 is a
predicate and 𝑡1, … , 𝑡𝑛 are terms, which can be either variables or constants. For example, if on(X,
table) is an atom that is true if the first object is on the second object, then on is the predicate
symbol, 𝑋 is a variable, and table is a constant. When the terms 𝑡1, … , 𝑡𝑛 are all constants, the
atom is called ground. A rule in the form 𝛽 ← 𝛽1, … , 𝛽𝑛 is called definite clause. For the sake of
simplicity, in this work, the word rule is considered as a synonym of definite clause. When a
predicate is defined using ground atoms only, it is called extensional predicate. On the contrary,
when a predicate is defined using a set of definite clauses, it is called intensional predicate.

2.2. NLRL

NLRL is an adaptation for reinforcement learning tasks of 𝜕ILP [10], a neural-symbolic method
for ILP. In particular, in NLRL, both the environment and the background knowledge are
described using ground atoms, and, for a given task, NLRL generates a set of candidate rules
using a set of hyper-parameters called program template. Formally, a program template is
defined as a quadruple:

⟨Pred𝑎, arity𝑎, Π, 𝑇 ⟩, (1)

where Pred𝑎 and arity𝑎 denote, respectively, the number and the arity of the auxiliary predicates,
𝑇 denotes the number of forward chaining steps, and Π denotes a set of rule templates for each
intensional predicate, either target or auxiliary. Each rule template is formally defined as ⟨𝑣 , 𝑖𝑛𝑡⟩,
where 𝑣 denotes the number of free variables in the rule, and 𝑖𝑛𝑡 indicates if the body of the
rule can contain intensional predicates. Therefore, NLRL is based on strong assumptions on
the rule generation process, and the user must specify many hyper-parameters to guide this
process. Moreover, in NLRL, the body of each rule must contain exactly two atoms, and several
additional constraints are enforced to further limit the space of generated rules. The needed
program template provides many details on the form of the generated rules, and it is often
difficult to appropriately tune all these hyper-parameters in real-world applications. It is worth
noting that the program template must be accurately designed. In fact, the size of the generated
rules grows very quickly with the complexity of the program template, which is determined,
for example, by the number of auxiliary predicates.



In order to solve a reinforcement learning task, NLRL associates a trainable weight with each
generated rule. In particular, NLRL defines a valuation vector in 𝐸 = [0, 1]|𝐺|, where 𝐺 is the
set of ground atoms. Each component of a valuation vector represents how likely the related
ground atom is expected to be true. The deductive process can be formalized as a mapping
𝑓 ∶ 𝐸 × 𝐸 → 𝐸 defined, for the 𝑡-th iteration, as:

𝑓 𝑡(𝑒, 𝑒0) = {
𝑔(𝑓 𝑡−1(𝑒, 𝑒0), 𝑒0) if 𝑡 > 0
𝑒0 if 𝑡 = 0,

(2)

where 𝑒0 is the initial valuation vector, and 𝑔 represents a single forward chaining step. Let
⊕ denote the probabilistic sum, which is defined as 𝑎 ⊕ 𝑏 = 𝑎 + 𝑏 − 𝑎 ⊙ 𝑏, where ⊙ denotes
element-wise multiplication. Then, 𝑔 can be defined as:

𝑔(𝑒, 𝑒0) = 𝑒0 +∑
𝑝

⨁
0≤𝑖≤𝑛

∑
0≤𝑗≤𝑘

𝑤𝑝
𝑖,𝑗ℎ

𝑝
𝑖,𝑗(𝑒), (3)

where 𝑛 is the number of rule templates that define predicate 𝑝, 𝑘 is the number of rules generated
from the 𝑖-th rule template, 𝑤𝑝

𝑖,𝑗 is the trainable weight associated with the 𝑗-th rule generated
from the 𝑖-th rule template for predicate 𝑝, and ℎ𝑝𝑖,𝑗(𝑒) represents a single deduction step using
the 𝑗-th rule generated from the 𝑖-th rule template for predicate 𝑝.

For a given learning task, NLRL generates a set of candidate rules for each rule template, but
only one rule can be selected for each rule template. Therefore, each weight 𝑤𝑝

𝑖,𝑗 is obtained by
applying a softmax function to the underlying vector of weights 𝜃𝑝𝑖 :

𝑤𝑝
𝑖,𝑗 = softmax(𝜃𝑝𝑖 )[𝑗]. (4)

Given a rule 𝑐, each function ℎ𝑐 ∶ 𝐸 → 𝐸 takes a valuation representing the truth value of the
ground atoms and computes a valuation that represents the truth value of the atoms resulting
from the application of the rule. For each function ℎ𝑐, NLRL builds the following matrix 𝑋𝑐:

𝑋𝑐[𝑟 , 𝑚] = {
𝑥𝑟[𝑚] if 𝑚 < |𝑥𝑟|
(0, 0) otherwise

𝑥𝑟 = {(𝑎, 𝑏) | satisfies𝑐(𝛾𝑎, 𝛾𝑏) ∧ head𝑐(𝛾𝑎, 𝛾𝑏) = 𝛾𝑟},

(5)

where 𝑥𝑟 is a set of pairs of indexes, and each pair refers to two ground atoms that entail the
ground atom of index 𝑟. Each matrix 𝑋𝑐 is a 𝑛 × 𝑤 × 2 matrix, where 𝑤 is the maximum number
of ground atoms that entail each ground atom. It is worth noting that the unused index pair
(0, 0) must reference to a pair of atoms. Therefore, NLRL introduces the falsum atom ⊥ in 𝐺,
and it maps (0, 0) to (⊥, ⊥). In order to perform the forward chaining steps during the training
phase, NLRL computes two slices of 𝑋𝑐, namely 𝑋1, 𝑋2 ∈ ℕ𝑛×𝑤, as:

𝑋1 = 𝑋𝑐[_, _, 0] 𝑋2 = 𝑋𝑐[_, _, 1]. (6)

NLRL retrieves the actual truth values of each ground atom to obtain 𝑌1, 𝑌2 ∈ [0, 1]𝑛×𝑤 using
gather ∶ 𝐸 × ℕ𝑛×𝑤 → ℝ𝑛×𝑤 as follows:

𝑌1 = gather(𝑒, 𝑋1) 𝑌2 = gather(𝑒, 𝑋2). (7)



Then, NLRL builds a new matrix 𝑍𝑐 ∈ [0, 1]𝑛×𝑤 defined as:

𝑍𝑐 = 𝑌1 ⊙ 𝑌2. (8)

Finally, NLRL defines ℎ𝑐(𝑒) as:

ℎ𝑐(𝑒) = 𝑒′ where 𝑒′[𝑘] = max
1≤𝑗≤𝑤

𝑍𝑐[𝑘, 𝑗] (9)

Note that the maximum operator implements fuzzy disjunction while element-wise multiplica-
tion provides for fuzzy conjunction.

2.3. The proposed method

In order to generate a set of suitable candidate rules to solve a reinforcement learning task,
NLRL requires the user to specify a large amount of data about the structure of the solution.
On the contrary, SD-NLRL requires the complete set of possible states, and it automatically
generates a set of abstract rules that can represent the solutions of the learning task.
The rule generation process that characterizes SD-NLRL is described as the generate_rules

function in Algorithm 1. This function requires the set of possible action atoms 𝐴, the set
of possible states 𝑆, and the set of background atoms 𝐵. The function subdivides each state
into a set of groups 𝑉 using the get_groups function. Each group contains a subset of the state,
and each atom in a group is, directly or indirectly, connected with the other atoms in the
same group through its constants. Therefore, different groups have different constant sets, and
each group represents a feature of the state that contributes to the truth value of the action
predicate. Then, for each pair of group and action, the generate_rules function retrieves the
constants that are shared between the action atom and the group using the get_shared function.
The generate_rules function inserts into the group the background atoms that include at least
one shared constant. In fact, the shared constants are the most significant constants because
they relate the features of the state with the action to be taken. Then, generate_rules function
computes, using the get_free function, the set of free constants, which are the constants that are
not shared between the action atom and the group after the inclusion of the related background
atoms. If the set of free constants is empty, the generate_rules function computes the final rules
using the unground function, which transforms each ground term of the rule into a corresponding
variable. Otherwise, the function produces a rule for each free constant. In particular, the
function transforms the free constants that are different from the one taken in consideration.
Then, it includes in the body of the generated rule the background atoms that contain the
considered free constant. Finally, the unground function transforms the remaining constants in
the rule into variables. The generation of a new rule for each free constant is useful to reduce
the complexity of each rule. In fact, the goal of the function is to extract the most simple features
from each state and let the differentiable architecture select the most appropriate subset of the
rules that is capable to solve the learning task. The unground function starts from the body of
the rule given as second argument, and it proceeds from left to right. Then, it transforms the
head of the rule given as first argument. The third argument of the unground function is a set of
constants. If the set is not empty, the function transforms only the constants that are included
in this set.



Algorithm 1 The function that performs the generation of rules in SD-NLRL
1: function generate_rules(𝐴, 𝑆, 𝐵)
2: rules ← {}
3: for each 𝑠 ∈ 𝑆 do
4: 𝑉 ← get_groups(𝑠)
5: for each 𝑔 ∈ 𝑉 do
6: for each 𝑎 ∈ 𝐴 do
7: shared ← get_shared(𝑎, 𝑔)
8: insert atoms 𝑏 ∈ 𝐵 into 𝑔 if constants(𝑏) ∩ shared ≠ ∅
9: free ← get_free(𝑎, 𝑔)
10: if free = ∅ then
11: 𝑟 ← unground(𝑎, 𝑔, {})
12: rules ← rules ∪ 𝑟
13: else
14: for each 𝑓 ∈ free do
15: fixed ← free ⧵ {𝑓 }
16: partial_rule ← unground(𝑎, 𝑔,fixed)
17: insert 𝑏 ∈ 𝐵 into the body of partial_rule if 𝑓 ∈ constants(𝑏)
18: r ← unground(𝑎, body(partial_rule), {})
19: rules ← rules ∪ r
20: end for
21: end if
22: end for
23: end for
24: end for
25: return rules
26: end function

The discussed function used by SD-NLRL for the generation of rules allows an action predicate
to be defined by an unpredetermined number of rules. Moreover, the body of each rule can
consist of an arbitrary number of atoms, and no limits on the arity of the predicates in these
atoms is fixed. The differentiable architecture of NLRL is modified in SD-NLRL to coherently
support the changes of the rule generation process. In particular, the deductive process is
modified, and SD-NLRL defines a single deduction step 𝑔 as:

𝑔(𝑒, 𝑒𝑜) = 𝑒𝑜 +∑
𝑝

⨁
0≤𝑗≤𝑘

𝑤𝑝
𝑗 ℎ

𝑝
𝑗 (𝑒), (10)

where 𝑤𝑝
𝑗 is the weight associated to the 𝑗-th rule defined for predicate 𝑝, and ℎ𝑝𝑗 (𝑒) represents

a single deduction step that uses the 𝑗-th rule defined for predicate 𝑝. Note that, in order to
ensure that the weights 𝑤𝑝

𝑗 are in [0, 1], each weight 𝑤𝑝
𝑗 is normalized:

𝑤𝑝
𝑗 =

max(𝑤𝑝) − 𝑤𝑝
𝑗

max(𝑤𝑝) −min(𝑤𝑝)
. (11)



Moreover, the definition of the deduction step, represented by ℎ𝑝𝑗 (𝑒), has been coherently
modified in SD-NLRL. In particular, SD-NLRL defines a matrix called 𝑋𝑐 ∈ ℕ𝑛×𝑤×𝑑 for each rule
𝑐, as follows:

𝑋𝑐[𝑟 , 𝑚] = {
𝑥𝑟[𝑚] if 𝑚 < |𝑥𝑟|
(0, … , 0) otherwise

𝑥𝑟 = {(𝑎1, … , 𝑎𝑑) | satisfies𝑐(𝛾𝑎1 , … , 𝛾𝑎𝑑) ∧ head𝑐(𝛾𝑎1 , … , 𝛾𝑎𝑑) = 𝛾𝑟}.

(12)

SD-NLRL builds the matrices 𝑋1, … , 𝑋𝑑 ∈ ℕ𝑛×𝑤 before the training phase, where 𝑋𝑖 represents
the 𝑖-th element of the body of the rule 𝑐. Then, SD-NLRL obtains the matrices 𝑌1, … , 𝑌𝑑 ∈ ℝ𝑛×𝑤
using the gather function. These matrices are used to build the matrix 𝑍𝑐 as:

𝑍𝑐 = 𝑌1 ⊙⋯ ⊙ 𝑌𝑑. (13)

Finally, SD-NLRL defines ℎ𝑐(𝑒) in the same way as NLRL does.
The weight normalization rule that SD-NLRL uses allows an action predicate to be defined

by multiple rules. In particular, each weight depends only on the minimum weight and on
the maximum weight defined for the predicate. Therefore, SD-NLRL can associate the same
weight with different rules. However, the adopted normalization technique does not work well
when SD-NLRL generates only one rule for an action predicate. Moreover, this normalization
technique implies that a rule with weight 0 and a rule with weight 1 are always learned, which
can prevent SD-NLRL from learning the optimal strategy in some cases.

3. Experimental results

In order to assess the performance of SD-NLRL, the proposed method has been used on the
reinforcement learning tasks that are discussed in [7]. In particular, the considered tasks are:
CLIFFWALKING, WINDYCLIFFWALKING, UNSTACK, STACK, and ON. In the CLIFFWALKING
task, the agent must go from a start position to a goal position of a 5 × 5 grid without reaching
a cliff. The WINDYCLIFFWALKING task is similar to CLIFFWALKING, but the agent has a 10%
chance of going downwards, no matter which action it takes. The other three tasks require the
agent to manipulate blocks. In particular, STACK requires the agent to pile up all the blocks in
a single column, UNSTACK requires the agent to move all blocks to the floor, and ON requires
the agent to move a specified block onto another specified block. For a fair comparison between
NLRL and SD-NLRL, SD-NLRL was tested using the task configurations documented in [7].

Note that, as previously discussed, SD-NLRL tries to subdivide each state into disjoint groups
of atoms, but the states of block manipulation tasks are composed of densely connected atoms.
Therefore, SD-NLRL generates a large number of complex rules. Unfortunately, the required
computational resources increase considerably as the size of the rules and the number of rules
increase. Therefore, SD-NLRL fails to complete the training phases of the block manipulation
tasks, and only the cliff-walking tasks are discussed in the remaining of this section.
The implementation of SD-NLRL is based on the official implementation of NLRL1. In par-

ticular, the implementation of SD-NLRL and the implementation of NLRL share the same
1github.com/ZhengyaoJiang/NLRL

github.com/ZhengyaoJiang/NLRL


Table 1
A performance comparison between NLRL and SD-NLRL on the CLIFFWALKING and on the WINDY-
CLIFFWALKING tasks. The optimal values are taken from [7].

Environment Task NLRL SD-NLRL Optimal

CLIFFWALKING training 0.862 ± 0.026 0.674 ± 0.292 0.880
top left 0.749 ± 0.057 0.652 ± 0.200 0.840
top right 0.809 ± 0.064 0.781 ± 0.038 0.920
center 0.859 ± 0.050 0.775 ± 0.198 0.920
6 by 6 0.841 ± 0.024 0.631 ± 0.381 0.860
7 by 7 0.824 ± 0.024 0.520 ± 0.514 0.840

WINDYCLIFFWALKING training 0.663 ± 0.377 −0.808 ± 0.341 0.769 ± 0.162
top left 0.726 ± 0.075 −0.536 ± 0.480 0.837 ± 0.068
top right 0.834 ± 0.061 −0.290 ± 0.548 0.920 ± 0.000
center 0.672 ± 0.579 −0.350 ± 0.430 0.868 ± 0.303
6 by 6 0.345 ± 0.736 −0.991 ± 0.093 0.748 ± 0.135
7 by 7 0.506 ± 0.528 −1.012 ± 0.047 0.716 ± 0.181

hyper-parameters. The only exceptions are the learning rate and the number of deduction
steps. The learning rate of SD-NLRL was set to 0.0005 and 0.0001 for CLIFFWALKING and
WINDYCLIFFWALKING, respectively. The number of deduction steps of SD-NLRL was set to 1
for both tasks because a single forward chaining step is sufficient to obtain the correct truth
values of the action predicates.

Table 1 shows the performance of SD-NLRL for the two considered cliff-walking tasks. The
results shown in Table 1 were obtained performing 5 runs for each task, and each trained model
was evaluated on 100 episodes for each task. Then, the results were averaged over all runs. In
order to evaluate the generalization capabilities of SD-NLRL, the trained models were tested on
other tasks that are slightly different from the ones used for training. In particular, the algorithm
was evaluated on the same tasks discussed in [7]. The considered variants of cliff-walking tasks
are five: top left, top right, and center, which change the starting position of the agent, and 6 𝑏𝑦 6
and 7 𝑏𝑦 7, which use a larger grid size.

The results reported in Table 1 show that SD-NLRL is able to learn an effective strategy that
solves CLIFFWALKING. Moreover, the learned model is able to generalize to different tasks.
However, the results suffers from great variance. In fact, in 1 of 5 five trials, SD-NLRL learned a
strategy that is only able to occasionally get a positive reward. In particular, when the agent does
not succeed to quickly learn a good strategy, it remains trapped in a local optimum and stops
learning. The results for WINDYCLIFFWALKING show even worse performance, and SD-NLRL
consistently fails to learn a good strategy. The algorithm learns over time, but the learning
speed is very slow, and it always remains trapped in a local optimum. This behavior is explained
by the fact that in NLRL rules are generated from a carefully hand-crafted program template.
On the contrary, SD-NLRL automatically generates the rules from the states of the environment,
trying to limit both the size and the number of generated rules. Therefore, SD-NLRL does not
succeed in generating the best rules for each action predicate. Both these problems represent
interesting challenges for the future.



In order to offer a comprehensive view on SD-NLRL, the learned rules that obtain the best
performance in the CLIFFWALKING task (on the right) with their corresponding weights (on
the left) are reported:

1.0 down() :- current(Y,X), last(Y), succ(Z,Y).

1.0 left() :- current(X,Y), succ(Y,Z), zero(Y).

1.0 right() :- current(Y,X), succ(Z,Y), succ(Y,M).
0.99 right() :- current(X,Y), succ(Z,Y), succ(Y,M).
0.98 right() :- current(X,Y), last(Y), succ(Z,Y).
0.70 right() :- current(X,X), succ(Y,X), succ(X,Z).

1.0 up() :- current(X,X), succ(X,Y), zero(X).
0.44 up() :- current(X,X), last(X), succ(Y,X).

The learned rules represent an effective strategy, and the agent obtains high returns on the
training environment (0.844 ± 0.034). However, the learned strategy is not compact, and some
rules are unnecessary. For example, the last two rule defined for right() and the last rule
defined for up() can be safely omitted. SD-NLRL generates the rules directly from the states
of the environment, and many generated rules are unnecessary or even harmful and they
should be avoided. Therefore, an interesting research direction for the future regards the
reduction of unnecessary rules either refining the rule generation process or introducing a
penalization for redundant rules. It is worth noting that the only rule learned for left() can
compromise the performance of the strategy because the agent oftenmoves left beforemoving up.
Therefore, the learning of strategies when actions are forbidden should be further investigated.
Finally, the learned rules, together with their weights, that obtain the worst performance in the
CLIFFWALKING task are reported for completeness:

0.58 down() :- current(X,X), last(X), succ(Y,X).
1.0 down() :- current(Y,X), last(Y), succ(Z,Y).
0.4 down() :- current(X,X), succ(Y,X), succ(X,Z).
0.67 down() :- current(X,Y), succ(Y,Z), zero(Y).

0.51 left() :- current(X,X), succ(X,Y), zero(X).
1.0 left() :- current(Y,X), succ(Z,Y), succ(Y,M).

1.0 right() :- current(Y,X), succ(Z,Y), succ(Y,M).
0.82 right() :- current(X,X), last(X), succ(Y,X).
1.0 right() :- current(X,Y), last(Y), succ(Z,Y).
0.42 right() :- current(X,X), succ(Y,X), succ(X,Z).

1.0 up() :- current(X,Y), succ(Y,Z), zero(Y).
0.49 up() :- current(Y,X), succ(Y,Z), zero(Y).
1.0 up() :- current(X,X), succ(Y,X), succ(X,Z).



In this case, the number of learned rules is higher, and the agent obtains low returns in the
training environment (0.154 ± 0.629). In fact, many rules are unnecessary or even wrong. Note
that, in both cases, only the rules with a weight greater than 0.3 are shown for space limitations.

From the point of view of the required computational resources, SD-NLRL drastically reduces
the number of generated rules with respect to NLRL. Moreover, SD-NLRL performs only 1
deduction step, thus further reducing the required computational resources. In fact, NLRL
generates 2813 rules for the cliff-walking tasks, while SD-NLRL generates only 36 rules for
the same tasks. The number of generated rules directly influences the required amount of
computational resources. Actually, NLRL requires approximately 10 days to complete a training
process, while SD-NLRL complete a training process in less than 2 hours. The required memory
is reduced as well. SD-NLRL uses approximately 1.6Gb, while NLRL uses approximately 17Gb.
These results are preliminary, and a complete analysis of the computational resources that
SD-NLRL requires is left for the future. However, it is worth noting that SD-NLRL does not
always reduce the required computational resources because it struggle with densely connected
states. In fact, in many cases, SD-NLRL generates a large amount of complex rules because it
does not limit the size and the number of generated rules. Therefore, the generation of compact
and abstract rules even in worst cases represents an important direction for future research.

4. Conclusion

This paper introduced a novel neural-symbolic method for reinforcement learning called
SD-NLRL. The proposed method is based on NLRL, but it generates candidate rules directly
from the states of the environment. The experimental results discussed in the final part of this
paper show that the proposed method is able to effectively learn a good strategy in one of the
cliff-walking tasks, and that the method is also able to generalize this strategy to tasks that
are slightly different from the one used for training. However, SD-NLRL fails to solve block
manipulation tasks because it is not able to generate compact rules from the densely connected
states that characterize these tasks. The generation of compact, yet general, rules from densely
connected states represents an important challenge for the future. Moreover, SD-NLRL often
remains trapped in local optima, and this is unquestionably evident when the difficulty of the
task under investigation increases. Another important challenge for the future is to make SD-
NLRL more robust against the traps represented by local optima. In addition, the analysis of the
learned rules suggests that: SD-NLRL learns many unnecessary rules, and it is not able to learn
an effective strategy when an action is forbidden. Both these problems are two other relevant
challenges for the future. Finally, the assumption that the environment is able to provide the set
of all possible states represents another important limitation of SD-NLRL. Therefore, a relevant
improvement of the method regards the design of an iterative rule-generation process in which
new rules are generated only when new states are encountered. In summary, this is a prelimi-
nary work, and the current form of the proposed method cannot be considered competitive with
other neural-symbolic methods for reinforcement learning like NLRL. However, the presented
experimental results are encouraging, and an improved version of SD-NLRL can be considered
as a viable means toward effective neural-symbolic reinforcement learning.
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