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Abstract
This contribution discusses the potential of Artificial Intelligence (AI) to enhance Human-Computer Interaction (HCI) methods.
Researchers at the Laboratory of Computer Graphics and Parallel Computing at the University of Basilicata have developed
several AI-based systems for HCI applications. These systems include an upper limb segmentation system, an XR gesture
recognition system, and a virtual dressing room that utilizes Body Tracking and Anthropometric Measurement Systems. The
systems use deep learning algorithms to accurately track body movements and interpret hand gestures in real-time, creating a
more natural and intuitive interaction with XR environments. The virtual dressing room enables users to create a 3D model of
themselves and try on virtual clothing and accessories, ensuring a perfect fit through Anthropometric Measurement System
calculations. These AI-based systems have significant potential to enhance user experience and interaction in the HCI field.
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1. Introduction
In recent years, researchers have considered AI a transfor-
mative technology [1, 2] as it affects nearly every aspect
of human life. One of the areas where AI is showing
tremendous potential is in the realm of media and gam-
ing. In particular, the development of eXtended Reality
(XR) applications, which encompass virtual, augmented,
and mixed-reality experiences, has led to a search for
new and innovative ways to engage and immerse users.
Starting from the development of XR applications, re-
searchers are exploring new ways of interaction with
these platforms that go beyond traditional HCI methods,
such as mouse and keyboard input. Such researches are
due because traditional HCI methods limit the ability of
users to immerse themselves in XR environments [3].
Therefore, to enhance the user experience, researchers
are turning to AI to develop more natural and intuitive
forms of interaction.
This contribution presents an overview of some of

the main research activities focused on AI for the HCI
field, conducted by the Laboratory of Computer Graphics
and Parallel Computing of the University of Basilicata.
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This includes several AI-based systems for HCI applica-
tions. One of these systems is an upper limb segmen-
tation system, which utilizes deep learning techniques
for upper limb segmentation in egocentric vision and
unconstrained real-world scenarios. The laboratory has
also developed an XR gesture recognition system, which
utilizes machine learning algorithms to recognize and
interpret hand gestures in real-time within virtual and
augmented reality environments. Furthermore, the labo-
ratory has created a virtual dressing room that utilizes
Body Tracking and Anthropometric Measurement Sys-
tems. This system enables users to create a realistic 3D
model of themselves, which can be used to try on virtual
clothing and accessories. The Body Tracking system uses
deep learning algorithms to accurately track the user’s
body movements and apply them to the virtual model.
At the same time, the Anthropometric Measurement Sys-
tem calculates the user’s body measurements to ensure
a perfect fit for virtual clothing. Overall, these AI-based
systems have great potential to enhance user experience
and interaction in the field of HCI.

2. Egocentric Upper Limb
Segmentation

One promising area of research in HCI is the development
of egocentric vision-based approaches that enable users
to control their virtual avatars using their body move-
ments. Many applications involving the use of hands are
based on hand segmentation, which is usually used as
a pre-processing step in various contexts such as HCI,
human-robot interaction, hand gesture recognition, and
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mixed reality. With the increasing popularity of wearable
devices, there has been a growing interest in egocentric
or first-person vision (FPV) systems for hand segmenta-
tion. However, most existing approaches focused only on
the hand up to the wrist or bare arm. They were limited
in their ability to deal with occlusions, varied lighting
conditions, and dynamic camera and wearer movement.
This study extended the hand segmentation task to fo-
cus on upper limb segmentation in egocentric vision
and unconstrained real-world scenarios. We trained an
encoder-decoder deep convolutional neural network us-
ing the DeepLabv3+ [4] architecture to overcome the
limitations of the existing methods. The DeepLabv3+
encoder consists of a backbone network, followed by an
atrous spatial pyramid pooling module (ASPP) [5] and a
1 × 1 convolutional layer. We selected atrous rates of 6,
12, and 18 for the ASPP atrous convolutions. We utilized
convolutional and bilinear upsampling operations for the
decoder to obtain spatial information from the encoder
features and refine the segmentation result, resulting in
detailed object boundaries.

Although various neural networks are available as the
network backbone, we opted for the Xception model [6]
due to its favourable qualitative and quantitative results
for image classification tasks, surpassing prior networks
like VGG-16, ResNet-152, and Inception V3 while still
achieving a fast computation time. Our experimental test-
ing revealed that it was the most effective model for our
case study [7]. Specifically, we utilized the Xception-65
model adapted by Chen et al. [4] for semantic segmenta-
tion tasks. It comprises 65 layers and replaces the origi-
nal max-pooling layers with atrous depthwise separable
convolutions. These convolutions factorize a standard
convolution into a depthwise convolution (spatial convo-
lution carried out independently for each channel) with
atrous convolution, followed by a pointwise (1 × 1) con-
volution. Additionally, batch normalization and ReLU
were included after each 3 × 3 depthwise convolution.

Our dataset includes about 46, 000 varied RGB images
with accurate labels, which enables our model to learn a
wide range of realistic activities without any fine-tuning
or domain adaptation. The RGB images used in this
study were obtained from various sources and captured
in unconstrained real-world scenarios, showing various
situations such as different indoor and outdoor environ-
ments, lighting conditions, skin tones, hand-to-hand and
hand-to-object occlusions, and a variable amount of mo-
tion blur. The images were well-annotated and collected
from an egocentric perspective. The upper limb seg-
mentation task dataset was compiled from three differ-
ent sources: EDSH [8], TEgO [9], and EgoCam. EDSH
dataset includes indoor and outdoor video frames show-
ing different lighting conditions and a user’s bare limb
during real-life actions. TEgO is a large dataset of high-
resolution indoor images showing two subjects’ hands

and forearms with different skin tones, lighting, and ob-
ject occlusions. The EgoCam dataset, which we manually
labelled, shows four male and female people in simple
and cluttered environments, indoor and outdoor real-life
scenes, and inter-hand occlusions. A subset of the first
two datasets was used, and data with labelling errors
were discarded. The images were cropped and resized
to 360 × 360 to accelerate the training. The upper limb
segmentation dataset was divided into training and test
subsets. Additionally, we evaluated the network’s gen-
eralization level on challenging cases using another test
set named EgoGestureSeg. This subset was taken from a
benchmark dataset for egocentric hand gesture recogni-
tion called EgoGesture and consisted of 235 images man-
ually labelled by Gonzalez-Sosa et al. [10]. The images
were captured in challenging indoor/outdoor scenarios
and showed clothed and bare limbs, natural or artificial
light, and various occlusions and motion blur.

We trained the network using our upper limb segmen-
tation train set, and a training method similar to Chen
et al. [11]. We utilized the stochastic gradient descent
optimization algorithm with momentum set at 0.9, the
base learning rate 𝛼0 set to 0.0001, and a batch size of 8.
We also used a cross-entropy loss function and a polyno-
mial learning rate policy, which was more effective than
other policies and resulted in faster convergence [12, 5].
This policy adjusts the learning rate 𝛼𝑡 during training
according to the following equation:

𝛼𝑡 = 𝛼0 × (1 −
𝑡
𝑇
)
𝑝

(1)

Here, 𝛼𝑡 represents the learning rate at the current iter-
ation step 𝑡, 𝑇 represents the total number of iterations
(set at 90𝐾 for our training phase), and 𝑝 represents the
power value, set to 0.9.
During network training, we utilized pre-trained

weights from the ImageNet [13] and MS-COCO [14]
datasets and accelerated the process with one Nvidia
Titan Xp GPU with 12GB memory. We employed Python
3.6 and the tensorflow [15] machine learning library,
which was tested on Microsoft Windows 10 Pro. Finally,
we applied data augmentation by randomly flipping im-
ages and labels left/right during training to prevent model
overfitting. Our trained network achieved impressive re-
sults for both whole upper limb and hand-only segmenta-
tion tasks in egocentric view and unconstrained real-life
scenarios, significantly outperforming the state-of-the-
art (SOTA). We assessed our outcomes against the SOTA
arm and hand segmentation techniques in egocentric
vision, namely Ego2Hands [16] and EgoArm [10]. More-
over, we also evaluated HGR-Net [17], which presented
promising results in demanding situations, although it
was not particularly developed for egocentric vision seg-
mentation. The results from HGR-Net were the worst (as
shown in the fourth row of Figure 1), with a poor classifi-



Figure 1: Visual examples of the Upper Limb Segmentation
test set, including input images and corresponding ground-
truth (GT) segmentation masks. The first two images are from
EgoCam, and the last three are from TEgO.

cation of the limbs evident from the per-class metrics in
Table 1. It is possible that HGR-Net was not specifically
designed to segment limbs captured from an egocentric
perspective, and a general-purpose approach may not be
enough to produce optimal results. EgoArm performed
well in identifying a large part of the limb but had dif-
ficulty with background pixels and tended to classify
objects incorrectly as limbs. Ego2Hands also struggled
with accurate segmentation (as seen in the last image of
Figure 1). In contrast, our network performed exception-
ally well in various scenarios, including different lighting
conditions, skin tones, and occlusions caused by objects,
as illustrated in the fifth row of Figure 1.
Our work is the first to evaluate and prove the effec-

tiveness of a deep learning model for upper limb segmen-
tation in such cases. It provides a promising direction for
future research in egocentric vision-based HCI.
The study case was published in the Virtual Reality

journal with the title “Egocentric upper limb segmentation
in unconstrained real-life scenarios” [18].

3. XR Hand Gesture Recognition
System

In recent years, there has been a growing interest in devel-
oping HCI systems that provide users with more intuitive
and natural ways to interact with technology. Hand ges-
ture recognition (HGR) has emerged as one of the most
promising techniques for achieving this goal. With the
latest HMDs, such as Oculus Quest 2 and Vive Focus
3, incorporating onboard hand-tracking sensors, HGR

has become an increasingly popular way to enhance the
user experience. However, these devices are not always
accessible due to their high cost and usability issues, but
new technologies have emerged that allow HGR through
general-purpose low-cost devices. In this context, we pro-
pose a deep learning approach that enables HGR to use a
simple, low-cost RGB camera. This approach promises to
democratize access to HGR and enhance the user experi-
ence of a wide range of HCI systems. To create a system
for HGR independent of camera features, we developed a
pipeline that uses landmarks predicted by the MediaPipe
Hands solution as input to a feed-forward neural network
(FFNN). Our FFNN is trained on a dataset of 15 static and
dynamic gestures and can predict corresponding hand
gestures based on the input landmarks. These gestures
involve a range of combinations of open and closed fin-
gers and hands. The input for the model is represented by
21 hand landmarks obtained from MediaPipe, and each
landmark is made up of 𝑥, 𝑦, and 𝑧 coordinates. However,
only the 𝑥 and 𝑦 coordinates were used for this model,
and the 𝑧 coordinate was ignored. The FFNN is char-
acterized by a single hidden layer of 32 units that uses
the pixel space of the hand landmark model as input. A
rectified linear unit (ReLU) activation function was used
on the hidden layer, while a Softmax [19] activation func-
tion was used on the last FFNN layer. Dynamic gestures
were handled differently in this model; instead of using
recurrent neural networks (RNNs) [20] and other data
sequences-based approaches, a simple FFNN was used.
This decision was made due to the real-time performance
requirement of the dynamic gestures, as XR collaborative
applications are well-suited for synchronous dynamic
gestures. The proposed gestures were divided into two
templates; static gestures and dynamic gestures. Static
gestures were represented by a fixed hand pose that the
FFNN directly predicts. Dynamic gestures were char-
acterized by moving hands and can be further divided
into single and combo gestures based on the number of
tracked hands. A dataset of 130, 000 hand pose samples
was manually labelled and used to train the FFNN model.
The FFNN was trained for 2000 epochs using the Adam
optimizer [21] algorithm with a learning rate of 0.0001,
resulting in a prediction accuracy of 98%. Testing was
conducted in real-time using RGB sensors from the Intel
RealSense D455 camera, the 40MP Huawei P30 back cam-
era, and the 1080p MacBook Pro (M1 Pro) camera. The
HGR system proposed in this study was designed for col-
laborative use in a multi-user XR 3D environment. Each
gesture was mapped to a specific action in the XR 3D en-
vironment, and the approach was validated in a Unity 3D
game engine environment. The Netcode mid-level net-
working library was utilized to enable multi-user scene
authoring. The application was tested with two clients
equipped with a simple RGB camera for hand landmark
tracking and gesture prediction. Users could interact with



Figure 2: An example of our HGR system in use. This Figure
shows how to move objects in a virtual scene using hand
gestures and showing their tracking in AR. If necessary, it is
possible to view and interact with the elements of the scene
in AR.

visible gameObjects using the designed hand gestures,
and a set of user interaction actions were implemented
and associated with the hand gestures. The scene could
be viewed using various devices and modes, including
desktop mode, virtual, AR, and MR, using a smartphone,
HMD, or Google Cardboard. The HGR system was also
trained to recognize egocentric hand tracking. Figure 2
shows an example of the scene in desktop mode, with
hand movement visualization for debugging purposes.
The proposed work was presented at the 2022 IEEE

International Conference on Metrology for Extended
Reality, Artificial Intelligence and Neural Engineer-
ing (MetroXRAINE) with the title “An easy Hand Ges-
ture Recognition System for XR-based collaborative pur-
poses” [22].

4. Virtual Dressing Room with
Body Tracking

Virtual Dressing Rooms (VDRs) are an emerging technol-
ogy that allows users to try on clothing virtually without
physically wearing the clothes. The system uses com-
puter vision and deep learning to track the user’s body
and simulate the clothing in real-time. This technology
has the potential to revolutionize the retail industry, pro-
viding customers with a more personalized shopping
experience and reducing the need for physical inventory.
To improve the usability of VDRs, there have been ef-
forts to incorporate HCI principles and anthropometric
measurement systems. HCI aims to improve the interac-
tion between humans and computers, making the virtual
dressing room more intuitive and user-friendly. On the
other hand, anthropometric measurement systems use
body measurements better to simulate the fit of clothing
on a specific individual. In this context, deep learning
has been shown to be a promising technology for virtual

dressing rooms, as it can learn from vast amounts of data
and adapt to different body shapes and clothing styles.
This approach can lead to more accurate simulations and
a more realistic virtual shopping experience.
Our research aims to address the on-the-market solu-

tions’ limitations, such as the absence of dress animations,
the presence of artefacts due to the incorrect tracking
of body measurements, and clothes that do not adapt
to the user’s body. We developed a 3D virtual dressing
room application called TryItOn using Unreal Engine
4.27 (UE4), known for its ability to create hyper-realistic
environments that provide an immersive virtual reality
experience. With TryItOn, users can try on digital gar-
ments and choose from various sizes. A single RGB-D
camera system accurately captures the user’s body mea-
surements and tracks their movements in real-time. This
information is utilized to create a 3D model of the user
that is as realistic as possible. Additionally, a third-party
plugin called uDraper1 is used for modelling and sim-
ulating garment movement based on the specific phys-
ical characteristics of the fabric. Using deep learning
in our system allows for accurate anthropometric mea-
surements and tracking of the user’s body movements.
The pipeline for TryItOn consists of two types of op-
erations: one-time and real-time. The former type of
operation is executed solely during the modelling phase.
This includes the creation of the base character before
the release of the application, as well as the modelling
of new garments during the creation and updating of
the clothes catalogue. Meanwhile, real-time operations
are executed during the application runtime. As previ-
ously stated, TryItOn is built on the UE4 platform. Hence,
the models that were created during non-runtime oper-
ations are imported into the UE4 project, and real-time
operations are executed within the game engine. In the
group of one-time operations, a base 3D model character
is created with realistic body measurements. This was
created using the MB-Lab2 add-on for Blender, which
offers a character editor that can generate a realistic 3D
rigged character model. This can be morphed through
the Blender shape keys, with each corresponding to a
specific anthropometric measurement parameter. Our
methodology involves exporting the shape keys, also
known as “morph targets”, in an FBX file, alongside the
mesh and skeleton, which can be imported into a UE4
project. To ensure proper sizing and alignment, we cre-
ated a Python script that converts the Blender and UE4
coordinate systems and includes a collision mesh with
lower LOD to optimize performance. The collision mesh
includes relative morph targets, allowing the garment
physics engine to interact with complex meshes while
remaining hidden from the user’s view. To ensure easy

1https://udraper.com/
2https://mb-lab-community.github.io/MB-Lab.github.io/
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integration of the base avatar with existing plugins in
UE4, we replaced the skeleton generated by MB-Lab with
the standard mannequin skeleton included in UE4, which
involved renaming and adjusting bone orientations and
eliminating unnecessary bones. Finally, the modified
skeleton was set to the same starting pose as the UE4
mannequin to maintain consistency within the virtual en-
vironment. The one-time operations group also includes
garment modelling, which can be accomplished using the
uDraper modelling software. This software enables the
creation of a 3D garment by starting from a 2D pattern,
which can also be designed using other software. After
designing the 2D pattern, the different sections must be
stitched together and wrapped around the 3D character
to create the 3D garment.
The real-time operations group includes the anthro-

pometric measurement calculation, the body tracking,
and the physically-based garment simulation. To begin
the calculation of a customer’s anthropometric measure-
ments, advanced deep learning techniques for computer
vision tasks are employed using the FrankMocap frame-
work [23, 24]. This involves analyzing 2D images of the
customer captured through an RGB camera. FrankMocap
employs deep learningmodels trained to reconstruct a hu-
man 3Dmesh and a corresponding 3D skeleton, complete
with body joints, in real-time. Anthropometric Measure-
ment Calculation (AMC), a Python algorithm, has been
developed to compute the anthropometric measurements,
which are classified as linear or circular. AMC calculates
linear measurements by directly measuring the distance
between relevant joints on the skeleton. For circular
measurements, AMC uses FrankMocap’s body joints as
landmarks to detect the points on the 3D mesh for ac-
curate measurements. These measurements are used to
morph the customer’s 3D avatar within the VICO-DR
application. Certain guidelines must be followed to en-
sure accurate measurements, such as being at the correct
distance from the camera, wearing form-fitting clothing,
and having proper lighting conditions. The system in-
cludes instructions, prompts, and real-time feedback to
ensure precise anthropometric measurement calculation,
delivering personalized and engaging virtual avatars for
customers. As we needed the 3D character model to fol-
low the user’s movements, we developed a Body Track-
ing System Plugin (BTSP) for UE4. This plugin supports
three types of cameras: the Azure Kinect camera, the
ZED camera, and a simple RGB camera. We utilized their
proprietary APKs for body tracking for the Azure Kinect
and ZED cameras. However, for the simple RGB camera,
we use the MediaPipe Pose estimation system. Both the
camera APKs and MediaPipe utilize deep learning to ana-
lyze the images captured by the cameras and estimate the
3D position of the joints in real-time. The ZED module
for body tracking focuses on detecting and tracking a per-
son’s bones, represented by two endpoints, also known

as keypoints. The ZED camera can provide 2D and 3D
information on each detected keypoint and local rotation
between neighbouring bones. This information, includ-
ing each person’s 3D position and velocity, is shared in
the outputs. To detect keypoints, the body tracking mod-
ule also employs a neural network. It utilizes the depth
and positional tracking of the ZED SDK module to obtain
the final 3D position of each keypoint. The Azure Kinect
body tracking system uses deep learning for detecting
and tracking human bodies. The system begins by ac-
quiring depth and infrared images through the Azure
Kinect SDK. The infrared image is then passed through a
convolutional neural network, which extracts the users’
2D joint coordinates and silhouette. Each pixel in the 2D
image is assigned the corresponding depth value from
the depth frame, which provides its position in 3D space.
The results are then post-processed to produce accurate
human body skeletons. The MediaPipe Pose estimation
system uses a convolutional neural network to detect
the joints in the image and estimate their 3D positions.
The system is trained on large labelled image datasets
to ensure accurate joint detection and tracking. Once
the joints are detected, and their 3D positions are esti-
mated, BTSP maps them to the UE4 mannequin skeleton
to animate the avatar.
Regarding garment simulation, we used the physics

simulation method of uDraper plugin to create realistic
movement and deformation of virtual garments, allow-
ing them to interact with the avatar’s body and other
objects in the scene. This approach is different from
traditional keyframe animation techniques. The plugin
calculates deformation based on internal and external
forces and requires pre-modeling and pre-simulation of
the virtual garment on the avatar’s collision mesh. To
address the limitation of pre-modeling, we developed a
solution that involves implementing a base avatar that
can be deformed at runtime, allowing garments to adapt
to the avatar’s shape during simulation.

Figure 3 shows the interface of the TryItOn application.
The proposed system is a work-in-progress project

that was presented at the Extended Reality: First Interna-
tional Conference, XR Salento 2022, with the title “TryI-
tOn: A Virtual Dressing Room with Motion Tracking and
Physically Based Garment Simulation” [25].
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