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Abstract
We present an overview of the CLEF-2023 CheckThat! lab Task 4, which focused on predicting the
factuality of reporting of entire news outlets. This is a different level of granularity compared to previous
efforts, which focused on fact-checking, where the target is a claim, or fake news detection, where the
target is an article. We briefly summarize the participating systems and discuss the dataset, the task,
and the evaluation setup. The task attracted a large number of registrations, and eventually five teams
made submissions. All participants improved over the baseline by a margin using both deep learning and
traditional machine learning approaches. We make the dataset and the associate code freely available to
the research community with the aim to promote further research on this problem.
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1. Introduction

The study of factuality of news media reporting is of paramount importance for society at a
time where anybody can create a website and become a “news producer.” This has given rise to
various initiatives to promote the dissemination of accurate, impartial, and truthful information
to the public [1]. This includes manual fact-checking efforts, as well as automatic systems. These
include the SemEval-2017 task on Rumor Detection [2], the FEVER challenge at EMNLP’2018
[3], the CLEF’2018 CheckThat! Lab on Automatic Identification and Verification of Claims in
Political Debates [4, 5, 6], the SemEval-2019 task on Fact-Checking in Community Question
Answering Forums [7, 8], and the CLEF 2021-2022 CheckThat! lab tasks on fake news detection
[8, 9]. All these previous initiatives focused on fact-checking a claim or an article. In contrast,
the Task 4 of the CheckThat! Lab 2023 [10] specifically targets the factuality of reporting of
entire news outlets.
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The CheckThat!2023 Lab offered five tasks in its sixth edition: Task 1 focuses on check-
worthiness in multimodal and multigenre content [11], Task 2 investigates the subjectivity of
news articles [12], Task 3 studies the political bias of news articles and news media [13], Task
4 (this paper) examines the factuality of reporting of news media, and Task 5 delves into the
process of authority finding in Twitter [14].

Below, we focus on Task 4, which focuses on the factuality of reporting of news media. We
describe the dataset that we created for the task, which consists of news outlets annotated for
factuality of reporting on a 3-point scale (left/center/right), and a set of articles from these
outlets, which the participants had to use to determine the factuality of the news outlet.

The participants adopted a variety of approaches, ranging from transformer-based models
to traditional machine learning. The most successful team used RoBERTa, incorporating a
robustness-improving strategy using adversarial training components, a common method in
deep learning, to enhance the performance of their system. They also capitalized on the extensive
training data available. Other participants combined stylometry features with a more traditional
Random Forest classifier.

The rest of this paper is organized as follows: Section 2 provides an overview of the task
and explains the dataset used for it. Section 3 discusses the evaluation setup. Section 4 presents
the results and provides details about the systems submitted by the participants. Section 5
highlights related work. Finally, Section 6 concludes the paper with key findings and outlines
potential avenues for future research.

2. Task and Dataset

In this section, we first formulate the task, and then we discuss the dataset we developed for
the task.

2.1. Task definition

The goal of the task is to determine the factuality of reporting at an entire news outlet. We offer
the task in English, and we formally define it as follows:
Task 4: Given a set of news articles from a news outlet, predict the factuality of that news

outlet’s reporting as low, mixed, or high factuality.

2.2. Dataset

For this task, we developed and released a new dataset consisting of 1,189 media sources, along
with their annotations for factuality in English. We further release a set of articles for each
news outlet, a total of 10k news articles, which are to be used to predict the factuality of their
source. To assess the factuality of news media, we used a 3-point scale: low, mixed, and high.
We derived these labels from the Media Bias/Fact Check.1 Examples of news media and their
corresponding factuality assessments are provided in Table 1. Table 2 gives some statistics about
the sources and the articles in the training, the development, and the test sets, respectively.

1http://mediabiasfactcheck.org
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Table 1
Examples of media outlets with different level of factuality.

Name URL Bias

BBC https://www.bbc.com High
Reuters https://www.reuters.com High
Fox News https://foxnews.com Mixed
Breitbart https://www.breitbart.com Mixed
WhiteHouse.News https://whitehouse.news Low
Infowars-Alex Jones https://apnews.com Low

Table 2
Statistics about the dataset: training, development, and test partitions.

Class Train Dev Test Total

High 593 72 72 737
Mixed 233 32 31 296
Low 121 16 19 156

947 120 122 1,189

3. Evaluation Settings

The evaluation process is divided into two phases: development and testing. In the development
phase, we provided training and development datasets, which allowed the participants to fine-
tune their systems and to adjust the system parameters based on the results on the development
dataset. Throughout the testing phase, the participants were asked to submit the predictions
generated by their systems using the provided test set that did not include any gold labels.
Although they had the freedom to submit multiple runs of their system’s output, only the last
submitted run was counted as their official entry on the leaderboard.

This is an ordinal classification task, and thus we used Mean Absolute Error (MAE) as the
official evaluation measure.

4. Results and Overview of the Systems

4.1. Results

Table 3 shows the results for four baselines on the development set. We can see that the Ngram
baseline works best, while the random baseline is the worst, with middle and majority class
baselines falling in between.

Five teams participated in this task, and their results are shown in Table 4. The CUCPLUS [15]
team was ranked first with a MAE of 0.295, exhibiting the highest predictive accuracy. They are
followed by the NLPIR-UNED and Accenture teams, with MAEs of 0.344 and 0.467, respectively.
UBCS and Awakened ranked fourth and fifth with MAEs of 0.541 and 0.705, respectively. Notably,
all teams improved over the baseline by a margin.



Table 3
Results for the baseline models on the development set.

Team MAE

Ngram 0.392
Majority class (i.e., high) 0.533
Middle class (i.e., center) 0.733
Random 0.800

Table 4
Official evaluation results on the leaderboard.

Rank Team MAE

1 CUCPLUS [15] 0.295
2 NLPIR-UNED 0.344
3 Accenture [16] 0.467
4 UBCS [17] 0.541
5 Awakened 0.705

6 Ngram baseline 0.943

4.2. Overview of the Systems

CUCPLUS[15] tried to reduce the influence of redundant data and to enhance the model
resilience using RoBERTa coupled with regularized adversarial training.
Accenture[16] aimed to maximize the amount of training data and developed a RoBERTa
model that learns the factual reporting patterns of news articles and news sources.
UBCS [17] explored the effectiveness of stylometric features combined with a Random Forest
classifier to evaluate the factuality of news media reporting. They proposed to leverage writing
styles as a distinctive marker to differentiate between accurate and less factual news sources.
Ngram baseline uses TF.IDF to transform the text data into a numerical form, and an SVM to
generate label predictions.

5. Related Work

Journalists, policymakers and researchers have shown significant interest in studying factuality
across different levels: claim-level, user-level, article-level, and medium-level [18, 19, 20, 21, 22,
23, 24, 25]. Claim-level fact-checking has often been analyzing user interactions with these
assertions on social media platforms, as explored in [26, 27]. In the realm of user-level reliability
assessment, some studies, such as [28], have focused on the automatic detection of Twitter trolls
during the COVID-19 pandemic, leveraging Test Time Evasion (TTE) in combination with a
Markov chain-based mechanism. Additional studies, e.g.,!by [29, 30], focused on identifying
opinion-manipulating trolls and sockpuppets in social media. At the article level, factuality has
sometimes been examined alongside political bias, as the two are closely intertwined [31, 32].



In terms of online resources, the source’s reliability usually pertains to the source’s credibility,
like the URL domain or the media outlet. Conversely, when it comes to social media and Internet
forums, reliability is often linked to analyzing user behavior, including efforts to spot trolls who
are suspected of or are confirmed to be swaying opinions, according to [29, 33].

The focus on factuality has been a constant across previous editions of the CLEF
CheckThat!lab in 2018-2022. In the inaugural 2018 edition [34], Task 2 [6], offered in English
and Arabic, asked the participants to evaluate the factual accuracy of claims made by politicians
as part of debates or speeches. The data, mainly drawn from the 2016 US Presidential Campaign,
was used to classify these claims as true, half-true, or false. Subsequently, in CLEF 2019 [7],
Subtask 2D delved into the concept of factuality by predicting the trustworthiness of a claim
using reliable websites. A claim was deemed true if it was accurate as stated or backed by
sufficient credible evidence; otherwise, it was considered false.

Maintaining the CheckThat! tradition [35, 36, 37], one task was explicitly dedicated to the
assessment of veracity. Compared to previous editions, which used binary classification for claim
reliability, that edition introduced a 3-point scale. Given a check-worthy claim as a transcribed
sentence, it could now be classified as true, half-true, or false. In the CheckThat! lab CLEF
2021 [38, 39], a pilot task was introduced with the aim to predict the veracity of a news article
along with its topical domain. The subtask 3A, primarily focused on classifying the factuality of
news articles on a 4-point scale: true, partially true, false, or other. Lastly, in the most recent
CheckThat! 2022 lab, Nakov et al. [9] expanded Task 3 to include the prediction of the veracity
of the main claim in a news article.

More directly related to the current task is work on detecting the factuality of reporting at
the level of news outlets. Baly et al. [31] collected gold labels from Media Bias/Fact Check using
diverse information for media bias and factuality analysis. Baly et al. [23] proposed a multi-task
ordinal regression framework to simultaneously model the factuality of reporting and the
political bias of entire news outlets [18]. Further enhancing their methodology, Baly et al. [19]
incorporated Facebook followers and speech signals from the news outlet’s YouTube channel,
where available, as part of their information sources. Hounsel et al. [40] made predictions based
on the domain, the certificate, and the hosting information from the website infrastructure
as potential indicators of source reliability [18]. Bozhanova et al. [41] predicted the factuality
of news outlets using observations about user attention in their YouTube channels. Finally,
Panayotov et al. [42] modeled the inter-media similarity based on audience overlap.

6. Conclusion and Future Work

We presented an overview of Task 4 of the CLEF 2023 CheckThat! lab, which focused on
predicting the factuality of reporting of news media. The task was offered in English and
attracted a diverse range of approaches from transformer-based such as RoBERTa to traditional
machine learning methods such as Random Forests and using stylometry features, which
achieved sizable improvements over the baseline.

In future work, we plan to extend our dataset to more languages. We further aim to move
beyond 3-way classification, towards a more finer-grained ordinal scale.
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