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Abstract
Previous studies have shown that machine learning can predict biological sex from EEG data with high accuracy. However,
the validity and generalizability of these findings across different datasets and tasks still need to be clarified. In this paper, we
investigated the robustness and transferability of sex-related patterns in EEG data using a Convolutional neural network (CNN)
trained on several corpora of EEG recordings ranging from 221 to 12, 000 participants from healthy and diseased subjects.
We evaluated the CNN on datasets from various sources and groups, with varying degrees of shift in their distributions. We
found that CNNs can detect sex from EEG data accurately on datasets without fine-tuning or adaptation when the shift is low.
However, performance drops where the shift is drastic. These results suggest that sex-related patterns in EEG data are robust
and transferable across diverse datasets and relevant tasks. We discuss the implications of these findings for EEG analysis,
machine learning applications, and best practices to avoid sex biases that enhance personalized mental health interventions.
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1. Introduction
Addressing sex biases in medicine and mental health is
vital, as exemplified by the US Food and Drug Admin-
istration’s suspension of ten prescription drugs, eight
of which posed higher health risks in women. The root
cause of this issue lies in a discernible bias towards males
in various research stages [1]. Therefore, recognizing sex
as a crucial biological variable in primary and preclinical
research ensures accurate and replicable results.

Understanding the complex interplay between brain
function and sex is vital to advancing mental health com-
prehension [2]. Electroencephalogram (EEG) signals, re-
flecting brain electrical activity, offer a unique avenue for
exploring sex-related neural patterns. Combined with
large datasets, machine learning has become a powerful
tool in deciphering intricate neurological phenomena.
This research endeavour holds significant implications
for personalized medicine and mental health interven-
tions, offering the potential to enhance early detection,
diagnosis, and treatment of disorders [3]. The intersec-
tion of EEG analysis, machine learning, and large datasets
opens new frontiers in mental health research, promis-
ing more precise and practical approaches to promoting
mental well-being.
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Most of the studies in the field have primarily focused
on differences in brain size and static features [4, 5, 6, 7],
ignoring the dynamic aspects of brain function. To ad-
dress this gap, we propose using EEG, which provides
insights into brain dynamics and activity patterns. How-
ever, one major challenge in utilizing EEG data is its inher-
ent noise. To overcome this issue, we suggest employing
a large number of samples to increase the signal-to-noise
ratio, thus enhancing the reliability and accuracy of the
findings. By incorporating EEG data into the analysis,
we can better understand the brain’s dynamic processes
and their relationship to sex differences and behaviour.

Despite the promising potential of using brain imaging
and machine learning in mental health research to clas-
sify sex-specific markers, a significant challenge arises
from the often small and limited datasets employed in
these studies. For instance, Bučková et al. [8] evalu-
ated deep learning classifiers on a small number of par-
ticipants with Major Depressive Disorder (MDD) and
Jochmann et al. [9], Van Putten et al. [10] applied on
a mid-size dataset on healthy participants(see Table 1
for a comparison). The reliance on insufficient sample
sizes can lead to incomplete and biased conclusions [4],
hindering the generalizability and reliability of findings.
This issue is particularly critical in understanding the
intricate connections between brain function and men-
tal health, where individual variations and complexities
require comprehensive datasets.

To tackle these challenges, we leveraged machine
learning techniques on functional brain imaging data,
specifically EEG, across diverse datasets encompassing
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Table 1
A comparison of previous studies on EEG sex detection. The table shows the name of the study, the dataset used, the number
of participants and recordings in the dataset and in (train, test) splits, participants’ conditions, and the data availability.

Study # of Participants # of Recordings Conditions Dataset
Van Putten et al. [10] 1308 (1000, 308) 1308 All Normal In Lab
Bučková et al. [8] 144 144 MDD In Lab
Jochmann et al. [9] 1282 (1140, 142) 1282 Only Normal Split TUAB
Ours 2417 2417 Normal/Abnormal Public-NMT
Ours 2329 2978 Normal/Abnormal Public-TUAB
Ours 14987 69000 Unlabeled Public-TUEG

varying sample sizes and populations, including both
normal and abnormal 1 populations. Also, we examined
the performance of classifiers under the distribution shift
on unseen data. Ultimately, our findings contribute to
more robust and applicable insights for targeted and per-
sonalized mental health interventions.

2. Material and Methods

2.1. Datasets
We used three publicly available EEG datasets with differ-
ent sample sizes and conditions to investigate the effect
of sex on EEG signals. The datasets are:

NMT (NUST-MH-TUKL EEG): This dataset contains
2, 417 recordings from healthy and pathological subjects,
with a total duration of 625 hours. The recordings are
labelled as normal or abnormal by qualified neurologists
and also include demographic information, such as sex
and age [11].
TUAB (Temple University Hospital Abnormal

EEG Corpus): This dataset is a subset of the TUEG cor-
pus that contains 1, 985 recordings from 1, 652 subjects,
with a total duration of 453 hours. The recordings are
labelled as normal or abnormal by qualified neurologists
[12, 13, 14].

TUEG (Temple University Hospital EEG Corpus):
This dataset is a large open-source corpus of EEG data,
containing over 69, 000 recordings from 14, 987 subjects,
with a total duration of 27, 062 hours. The recordings
are de-identified and annotated with clinical information,
such as age and sex [13, 14].

We utilize patient sex information, encoded as 0 or 1
as our neural network target. We focus on sex instead
of gender due to the dataset’s clinical origin, assuming
patients’ records reflected assigned birth sex rather than
self-identified gender. We applied several preprocessing

1The term “Normal/Abnormal” is used in original datasets to describe
EEG recordings that contain pathological features, such as epileptic
spikes, periodic discharges, or other abnormal patterns. It does
not imply any value judgment or stigma but rather reflects the
quality of the EEG signal. In this paper, we adhered to the same
terminology.

steps to the EEG data, including 21 common channels,
which were selected across the datasets. We used Artifact
Subspace Reconstruction (ASR) [15] to remove artifacts
from the EEG. We z-scored the EEG signals to each chan-
nel’s statistics. We used predefined test sets to report the
accuracy of our models and 15% of the training splits for
model selection.

2.2. Model
We used ShallowNet [16] as our model for all experiments,
as it is a simple and efficient Convolutional Neural net-
work (CNN) that can perform well on various EEG tasks.
ShallowNet consists of only one convolutional layer fol-
lowed by a fully connected layer, which reduces the num-
ber of parameters and the computational cost compared
to deeper networks. We implemented ShallowNet in
BrainDecode [17] and trained it using the AdamW opti-
mizer with a learning rate of 0.000625, weight decay of
0, drop probability of 0.5, and a batch size of 64. We used
binary cross-entropy as the loss function and balanced
accuracy (BAC) as the evaluation metric.

2.3. Training and Evaluation
The training and evaluation of the model were conducted
with the primary objective of classifying sex from EEG
signals. Our focus extended beyond the training dataset
to include a comprehensive analysis of model perfor-
mance on both the test split of the training dataset and
other unseen datasets. The overarching goal was to assess
the Sex Detectability (SD) from EEG signals and evaluate
the model’s robustness to distribution shifts in unseen
data. We investigated detectability and transferability un-
der various conditions to investigate the model’s capabil-
ities. Specifically, we explored the model’s performance
when trained and tested on subsets of the data, consid-
ering scenarios where only Normal participants were
included, only Abnormal participants were included, or
when the entire dataset was utilized. This approach al-
lowed us to understand how well the model generalizes
across different participant profiles.
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Figure 1: SD from EEG in three populations: A) Normal B) Abnormal C) All participants. Error bars show the standard error
of BAC across three random seeds. It is worth noting that the TUEG dataset does not have pathology labels. Therefore, the
results for the TUEG dataset are not available in A and B, and we only visualize the results for all participants in C

Furthermore, we conducted experiments to understand
the impact of SD on pathology detection. To achieve this,
we trained the model on the NMT dataset, which features
imbalances in different aspects. Our analysis focused on
different subgroups within the dataset, including Male
Normal, Female Normal, Male Abnormal, and Female
Abnormal participants. We aimed to elucidate any poten-
tial associations between SD and pathology detection by
examining the model’s performance on these subgroups.
We ran each experiment with three random seeds. All
error bars show the standard error of the metrics of the
three seeds.

3. Results
One of the objectives of this study is to investigate if
the biological sex of the subjects is detectable from their
scalp EEG recordings. This question is relevant for un-
derstanding the sex-specific differences in brain activity
and their implications for the diagnosis and treatment of
various neurological and psychiatric disorders. Moreover,
this question is also essential for evaluating the poten-
tial biases and limitations of machine learning classifiers
trained on EEG data.

3.1. Sex Detectability (SD) from EEG
To address SD from EEG, we experimented with several
datasets of different sizes and compositions, including
the TUEG EEG dataset, the world’s most extensive open-
source corpus of EEG data. We also considered the nor-
mal and abnormal populations of the subjects. We used a
shallow and deep convolutional neural network (CNN) as
our classifier, Previous studies have shown that this CNN
can achieve competitive accuracy with larger models in
predicting pathology from EEG data [18, 19].

The results of our experiments are summarized in Fig-
ure 1 and Table 2, which show the BAC of the CNN
classifier for each dataset. The figure shows the BAC
when we train the model on a dataset and test on its own
test split, which is in distribution. It also shows the BAC
of a model trained on a dataset and tested on another

dataset, which is out of distribution performance. The
results indicate that the sex of the subjects is detectable
from their EEG recordings in all of the distribution sce-
narios, with accuracy ranging from 60% to 80%. The
results also show that the sex detection performance is
slightly higher for the normal population than for the
abnormal population. It is worth noting that the TUEG
dataset does not have pathology (Normal/Abnormal) la-
bels, therefore, we do not show the results for normal
and abnormal participants.

3.2. Performance on Unseen Data
(Zero-Shot)

To evaluate the model’s adaptability to unseen data, we
conducted zero-shot performance assessments across var-
ious datasets. Zero-shot performance means that the
model can predict the class of a sample from an unseen
dataset without having seen any examples from that
dataset during training. Notably, the highest accuracy
of 79.11% was achieved when training on TUEG and
testing on TUAB EEG datasets. Conversely, the lowest
accuracies were observed when the model was evaluated
across the TUH datasets and the NMT Scalp EEG Dataset.

Our investigation extended beyond the original train-
ing and testing datasets to explore out-of-distribution
accuracy, mainly focusing on the abnormal population.
Strikingly, the model exhibited higher accuracy in out-of-
distribution scenarios when dealing with the abnormal
population. To comprehensively gauge the generaliza-
tion of learned features, each model was tested on other
datasets to evaluate zero-shot performance. This analy-
sis provided insights into how well the model leverages
learned features when confronted with entirely new data.

In table 2, we compare our models with previous work
on sex detection on the TUAB dataset, which has a mod-
erate sample size compared to two other datasets in our
study. The results show that ShallowNet archives compa-
rable results in the distribution scenario and outperforms
by a high margin on the zero-shot scenario. The reason
for this improvement might be that the TUEG dataset
has seven times more unique participants, and the data
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Figure 2: Sex imbalances in the NMT dataset and its effect on pathology detection: A) Data distribution of the NMT dataset,
the number of male samples is two times higher than that of females. B) Accuracies of subgroups. The difference in the number
of samples does not affect the pathology detection.

Table 2
Comparison of BAC (%) between previous work on TUAB
dataset and ours

Method TUAB
Clean [9] 74.00±02.00
Clean (Ours) 72.89±01.21
Zero-Shot (Pre-trained-Ours) 79.11±01.47

distribution is close to TUAB. Therefore, it improves the
performance of the TUAB dataset by 7%.

These results demonstrate that the biological sex of
the subjects is a significant factor that machine learning
methods could capture. However, these results also may
imply that the sex of the subjects should be taken into
account when developing and evaluating machine learn-
ing classifiers for EEG pathology detection, as the sex
distribution of the training and testing data may affect
the generalization and robustness of the models.

3.3. Sex Imbalance’s Impact on EEG
Pathology Detection

As we see in the previous sections (SD and Zero-Shot),
sex is detectable from the EEG signals and is an important
biological factor that can influence human brain activity
and behaviour. Therefore, considering it in the analysis
is essential, especially when the datasets are imbalanced.
In this section, we aim to investigate the effect of sex on
pathology detection from EEG signals using the NMT
Scalp EEG Dataset. The NMT dataset has a significant
sex imbalance, as men are two times more frequent than
women in the dataset. This raises the question of whether
the sex imbalance and the SD from the EEG signals can
affect the performance of the pathology detection models.

To address this question, we conducted several exper-
iments using different deep-learning architectures. We
first verified that sex is detectable from the EEG signals
using a simple convolutional neural network (CNN) that
achieved a good accuracy on the sex classification task
on several EEG datasets with different sample sizes (see

Table 2 and Figure 1). We then evaluated the pathol-
ogy detection models on the NMT dataset for different
subgroups.

Figure 2 shows how the sex imbalance in the NMT
dataset does not affect the pathology detection perfor-
mance. Although the NMT dataset has twice as many
male samples as female samples, as shown in panel A.
However, this does not lead to a significant difference in
the accuracy of the pathology detection models for the
male and female subgroups, as shown in panel B. This
suggests that the sex imbalance in the NMT dataset does
not hurt the pathology detection quality.

One possible reason for this finding is that the NMT
dataset has a balanced ratio of normal and abnormal
samples in each sex subgroup, as shown in Figure 2A.
This means that the models can learn the features related
to the pathology, not the sex, of the subjects. Therefore,
even though the sex is detectable from the EEG signals,
it does not interfere with the pathology detection task.

4. Discussion and conclusion
Historically documented sex differences in EEG patterns
and the successful application of machine learning for
automatic sex detection suggest that sex-related patterns
can act as confounders in machine learning-based EEG
assessments [8, 9]. In our experimentation on potential
confounding factors within the NMT dataset, we explored
a scenario involving an imbalance in male and female par-
ticipants. Our findings indicate that, in this dataset, sex
does not function as a confounder due to an equal distri-
bution of abnormal participants in the male/female splits.
However, as demonstrated in the SD section, we reveal
that sex remains detectable. Consequently, acknowledg-
ing sex as a factor is essential for precision medicine in
mental health.

A key takeaway from an extensive review spanning
three decades of research on human brain sex differences
is that, despite evident behavioural distinctions between
men and women, disparities in brain structure and func-
tion are minimal and inconsistent when adjusted for in-



dividual brain size and inefficient participant numbers
[4]. In contrast, our study employs EEG, which has high
temporal but low spatial resolution, to assess functional
brain activity. Our findings reveal distinct patterns across
datasets with varying subject numbers, highlighting the
unique insights provided by EEG in uncovering differ-
ences.

Brain connectivity and topography research has
yielded diverse perspectives, providing a rich field for
future investigations. For instance, Ingalhalikar et al.
[20] found that male brains exhibit enhanced connectiv-
ity between perception and coordinated action, while
female brains are structured to facilitate communication
between analytical and intuitive processing modes. Their
study, involving 949 youths, demonstrated distinct pat-
terns in supratentorial connections, with stronger intra-
hemispheric connections in males and stronger inter-
hemispheric connections in females. Jochmann et al. [9]
highlighted the significance of EEG topographies in sex
detection, revealing that even with disrupted waveforms,
the sex could be accurately identified. On the other hand,
Bučková et al. [8] observed that the incorporation of
multivariate classification models did not consistently
improve performance. Also, Eliot et al. [4] argues that de-
spite decades of examining sex effects on lateralized brain
function, there is no substantial evidence supporting the
widely held belief that male brains are significantly more
lateralized than female brains. The diversity of findings
in the literature underscores the complexity of brain con-
nectivity and topography, making it an intriguing and
promising avenue for future research. One could examine
where the trained neural network looks when classifying
brain signals.

Frequency bands are widely recognized as critical fea-
tures in quantitative EEG analysis. Despite their promi-
nence, the significance of these features in sex detection
remains unclear. Some studies assert that brain rhythms
exhibit sex-specific patterns [21, 10], while others argue
that none of the traditional frequency bands play a partic-
ularly crucial role in sex detection [9]. A potential avenue
for future research would be to explore and substantiate
these claims using an extensive dataset, such as TUEG.

In summary, our training and evaluation process thor-
oughly explored the model’s performance in classifying
sex from EEG signals. We systematically assessed its abil-
ity to generalize to unseen data, examined detectability
and generalization under varying conditions, and inves-
tigated potential implications for pathology detection
using a diverse and imbalanced dataset. The results of
these analyses contribute to a nuanced understanding
of the model’s capabilities and potential applications in
clinical settings.

5. Acknowledgements
We extend our sincere appreciation to Mathilde Besson
for their valuable comments, which greatly contributed
to the refinement of this paper. This work was funded
by Canada CIFAR AI Chair Program and from the
Canada Excellence Research Chairs (CERC) program,
National Research Council Canada, Natural Sciences
and Engineering Research Council (NSERC-CAE-CRIAC-
CARIQ, NSERC discovery grant RGPIN-2022-05122), Doc-
toral Research Microsoft Diversity Award (Microsoft-
Mila), Faculty of medicine-UdeM, and Faculté des études
supérieures et postdoctorales. We thank Compute
Canada for providing computational resources.

References
[1] S. K. Lee, Sex as an important biological variable

in biomedical research, BMB reports 51 (2018) 167.
[2] D. M. Christiansen, M. M. McCarthy, M. V. Seeman,

Understanding the influences of sex and gender
differences in mental disorders, Frontiers in Psychi-
atry 13 (2022) 984195.

[3] T. J. Sejnowski, P. S. Churchland, J. A. Movshon,
Putting big data to good use in neuroscience, Nature
neuroscience 17 (2014) 1440–1441.

[4] L. Eliot, A. Ahmed, H. Khan, J. Patel, Dump the
“dimorphism”: Comprehensive synthesis of human
brain studies reveals few male-female differences
beyond size, Neuroscience & Biobehavioral Re-
views 125 (2021) 667–697.

[5] A. M. Chekroud, E. J. Ward, M. D. Rosenberg, A. J.
Holmes, Patterns in the human brain mosaic dis-
criminate males from females, Proceedings of the
National Academy of Sciences 113 (2016) E1968–
E1968.

[6] F. Sepehrband, K. M. Lynch, R. P. Cabeen,
C. Gonzalez-Zacarias, L. Zhao, M. D’Arcy, C. Kessel-
man, M. M. Herting, I. D. Dinov, A. W. Toga, et al.,
Neuroanatomical morphometric characterization
of sex differences in youth using statistical learning,
Neuroimage 172 (2018) 217–227.

[7] C. Sanchis-Segura, M. V. Ibañez-Gual, N. Aguirre,
Á. J. Cruz-Gómez, C. Forn, Effects of different in-
tracranial volume correction methods on univariate
sex differences in grey matter volume and multi-
variate sex prediction, Scientific Reports 10 (2020)
12953.

[8] B. Bučková, M. Brunovskỳ, M. Bareš, J. Hlinka, Pre-
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