
Soware modelling for sustainable soware
engineering
Kevin Lano1, Lyan Alwakeel1 and Zishan Rahman1

1King’s College London, Strand, London, UK

Abstract
Sustainable Software Engineering (SSE) is concerned with the development of sustainable software,
software which minimises negative impacts on the environment and maximises positive impacts. In
this paper we examine how model-driven engineering (MDE) can contribute to software sustainability,
by assisting developers to identify energy use aws at the software modelling level, and by providing
guidance and transformations to achieve more sustainable designs.
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1. Introduction

According to some estimates, information technology is one of the largest single global producers
of greenhouse gas (GHG) emissions, and is predicted to consume over 20% of global energy by
2030 [1]. While it is hardware which consumes energy, the software running on that hardware
has major impact on the energy consumption, and hence there has been increased interest in
software sustainability as a means to reduce the environmental impact of the digital sector.
In this paper we investigate how model-driven engineering (MDE), and specically Agile

MDE [2], can contribute to sustainable software engineering. We dene sustainability analysis
and improvement techniques, and implement these as extensions of the AgileUML toolset [3]
for MDE, which is a lightweight tool for software specication, design and code generation,
using UML class diagrams, together with a procedural extension of OCL [4] to dene system
data and behaviour. The proposed approach ts into an agile process, whereby refactoring to
reduce or remove sustainability debt [5, 6] in software artefacts would be used, instead of the
more usual agile methods refactoring to reduce technical debt.

2. MDE in soware sustainability research

There has been considerable software sustainability research in the elds of programming
languages and program design, whereby the energy use of dierent software design and imple-
mentation options are considered, including design patterns [7], refactorings [8], programming
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language choices [9] and data structure choices [10, 11]. In contrast, only a few research works
have considered the estimation and analysis of energy use based on software models such as
class diagrams or state machines [12].

Addressing energy-use issues at the model level could reduce the development eort expended
upon implementing sustainable software design at the code level, and could help to bridge
the gap between sustainability requirements and implementation. However, sustainability has
also been a neglected topic within MDE, with only a few papers considering this topic (e.g.,
[13, 14]). MDE toolsets do not provide the necessary tools to support sustainability analysis
and improvement, and MDE specication and design languages such as UML and OCL do not
provide any means to specify or constrain energy use.
In order to address these deciencies, we have extended the AgileUML toolset to provide

analysis to detect and remedy design elements that have potentially high energy use (Section
3). We have also extended the OCL specication language used in AgileUML with additional
datatypes such as SortedSet and SortedMap, to enable more sustainable designs to be expressed
in software models (Section 3.1), and we revised the core OCL libraries of AgileUML to improve
their sustainability.

3. Sustainability flaws

A sustainability aw in a software application is a software design or coding element which
can lead to negative impact on the environment through unnecessarily high energy use by the
application, and hence excessive GHG emissions. An example would be the repeated evaluation
of a complex expression whose value will be the same at the dierent evaluation points.

The concept of sustainability debt [5, 6] due to sustainability aws, is analogous to the concept
of technical debt due to code quality aws. However, unlike technical debt, the existence of
sustainability debt causes an ongoing cost (to the environment) due to the use of the software
containing the debt, instead of additional costs during maintenance.
Measurement or estimation of the energy use of a system is a key initial step to enable

developers to detect energy use aws in their code and to improve the sustainability of their
software [15]. The more specic and localised this analysis is, the more eective the remedial
actions can be. Energy measurement techniques include external power meters, internal (on-
chip) power sensors, or energy predictive models based on performance monitoring counters
[16]. Tools such as Green Algorithms [17], mlco2 [18], Codecarbon1 and Carbontracker [19]
provide estimates of software carbon footprint based on the use of computational resources and
the location of such resources.
Since we are concerned with identifying the potential energy use ‘hotspots’ in a design,

and with the relative energy use of dierent designs, which may be implemented using many
dierent programming languages and platforms, exact energy measurements are not possible
and are not needed, instead a generalised energy use estimation approach will be used. This
involves estimating the computational cost or eort involved in performing an operation or
statement at the design level, by breaking down any computational task into a series of basic
actions. The computational cost of an execution of an operation or statement is then the sum

1https://codecarbon.io



of the cost of each basic action which may be executed as part of the operation/statement
execution.

Unlike the detection of code quality aws or ‘code smells’, the presence of energy use aws
in code cannot generally be determined without considering the scenarios of use of the code
[20, 10, 21]. For example, in scenarios where the operations applied to a string or numeric
collection are primarily membership tests together with less-frequent element additions, with
no indexing used, then representing the collection by a sorted bag would typically use less
processing resources than using a sequence. The same principle applies at the software design
model level.
There may also be conicts between traditional software aw reduction goals and sustain-

ability goals. For example, factoring out duplicated code is usually considered desirable from a
quality viewpoint, but can increase energy use [8].

We have extended the quality analysis tools of AgileUML [3] to identify sustainability aws
based on estimated computational costs. Potential sustainability aws are categorised as ‘red
ags’ for severe cases, or ‘amber ags’ for moderate cases.

The aws are detected by computational cost analysis of the design level coding of operations,
which uses the procedural OCL language of AgileUML, similar to Pascal code in syntax [22].
Along with aws, suggested refactorings or alternatives to the awed element are suggested.
Table 1 summarises the aws and recommendations.

Table 1
Energy-use flaws and recommendations

Flaw Level Recommendation
Self-recursive Red Replace tail-recursion by iteration; or
operation. make operation ≪cached≫.
Mutually-recursive Red Replace calls by definition for one
operations. operation.
Using Sequence type Red Replace by use of Set or SortedSet
together with coding to if no indexing used,
enforce unique membership. otherwise by OrderedSet.
Multiple evaluations Red Replace by new
of constant-valued local variable v and
complex expression lookups of v.
col→select(P)→any() Red Replace by col→any(P)
Use of reflection, process creation, Red Avoid unnecessary
network connection. calls.
Nested loops. Red Restrict iteration ranges.
Nested iterators Amber Replace by
col→select(P)→select(Q), etc. col→select(P&Q), etc.
col→sort() for Set col. Amber Use SortedSet for col.
while or repeat loops. Amber Replace by bounded loop.
Long chains of method Amber Replace call of chain end operation
calls. by its definition.
Floating-point operations x→pow(y), Amber Replace by int versions if all
MatrixLib.matrixMultiplication values are int.



3.1. Choice of datatypes

The basic datatypes available in OCL and in AgileUML design specications are (i) numeric
types (integers and real numbers); (ii) boolean; (iii) string; (iv) enumerated types. AgileUML
adds a reference type constructor Ref (T) for any type T . This can be considered to dene a
type of pointers to T values [22].

OCL has class types, which can be regarded as a type of references to object values consisting
of an aggregate of their data features [4]. Structured datatypes include sets, ordered sets, bags
and sequences. AgileUML adds Map and Function type constructors.
Standard OCL collections are characterised by two aspects: whether the elements in the

collection are unique (Uniqueness) and whether elements can be indexed by an integer index
(Indexing). The dierent options for these characteristics give the four OCL collection types
(Set, Sequence, OrderedSet and Bag). To support a wider choice of datatypes to enable more
sustainable designs, we add two further characteristics for collections: Sortedness and Fixed-size.
In AgileUML we provide a SortedSet collection type and SortedMap map type, with SortedBag,
SortedSequence and SortedOrderedSet types available in prototype form.
The sorted versions of OCL collection datatypes enable the optimisation of OCL search

operations such as→includes and→indexOf by using binary search instead of linear search.
They also avoid the need for expensive sorting operations (of O(n * log(n)) computational
complexity). The Ref (T) types provide xed-size sequences.
The third aw in Table 1 refers to a situation where a specier has dened additions to a

Sequence-typed variable or attribute col so that these additions are always guarded by a check
that the element to be added is not already in col:

post:
col =

if col@pre->includes(x)
then col@pre
else col@pre->including(x)
endif

and variations on such specications. This leads to a computational cost of the order of
col→size() basic actions for each addition to the sequence, because of the membership test,
instead of the usually log-based cost for an unguarded addition to a sequence. The specication
is a misuse of the sequence type, and the appropriate extended OCL datatypes to use in such a
situation to ensure uniqueness in a collection are either Set, SortedSet or OrderedSet.

Aggregate datatypes such as sets and sequences have dierent computational costs for various
access and update operations. Table 2 summarises the typical growth rates in computational
costs of common operations on a collection s, relative to the number n of elements in s. This
assumes a hash-based implementation for sets and bags, array-based for sequences, tree-based
for sorted sets and bags, and a combined set plus sequence implementation for ordered sets.
The cost estimate of s→including(x) for sequences and ordered sets includes the cost of resizing
actions. A common strategy is to double the size of the underlying array when more space
is needed, this results in a O(log n) cost for insertion overall. Sorted sequences consist of a
sequence maintained in sorted order: adding an element to such a sequence will insert it in



a position that ensures the sorted order, instead of inserting it at the end (as in the case of
sequences and ordered sets), thus the cost of element insertion is O(n) in general. On the other
hand, using a sorted sequence can reduce the cost of operations such as →includes, →count
and →max. The union operation for sorted sequences will be of linear complexity. Holding
bag elements in sorted order can also reduce the costs of bag equality tests (because inequality
can be detected without needing to iterate through both collections), although the worst case
behaviour will still be O(n) in the size of the longest argument. A sorted ordered set is a pair of
a set and sorted sequence.

Table 2
Computational cost complexity for collection types

Operation Sequence Set/Bag SortedSet/ OrderedSet Sorted Sorted
SortedBag Sequence OrderedSet

s→includes(x) O(n) O(1) O(log n) O(1) O(log n) O(1)
s→at(i) O(1) — — O(1) O(1) O(1)
s→including(x) O(log n) O(1) O(log n) O(log n) O(n) O(n)
s→excluding(x) O(n) O(1) (Set) O(log n) (Set) O(n) O(n) O(n)

O(n) (Bag) O(n) (Bag)
s→indexOf (x) O(n) — — O(n) O(n) O(log n)
s→lastIndexOf (x)
s→count(x) O(n) O(1) (Set) O(log n) (Set) O(1) O(n) O(1)

O(n) (Bag) O(n) (Bag)
s→max(), O(n) O(n) O(log n) O(n) O(1) O(1)
s→min()
s→sort() O(n log n) O(n log n) O(1) O(n log n) O(1) O(1)
s→asSet() O(n) O(1) (Set) O(1) (Set) O(1) O(n) O(1)

O(n) (Bag) O(n) (Bag)

The dierent datatypes also have varied memory requirements, with ordered sets and sorted
ordered sets consuming more memory than sets of the same size.

3.2. Refactorings for soware sustainability

According to [8], several refactorings which are usually considered benecial to improve the
quality of software, such as replacing a cloned segment of code by a call to an operation dened
by the segment (the ‘Extract method’ refactoring), may increase energy use. Thus careful
analysis is necessary to determine under what conditions a refactoring will benet both quality
and sustainability (i.e., reduce both technical debt and sustainability debt).
For the fourth case of Table 1, the potential energy aw is characterised by clones of an

expression e occurring in the postcondition of an operation op (or in the activity of op), and
where no variable/attribute of e is modied by op.

The proposed refactoring is to introduce a new local variable v of e’s type, initialised to e:

var v : T := e;

and then to replace the clones of e within op by v. According to [8] this refactoring (Extract
local variable) never increases energy use, and may decrease it. We can justify this refactoring



as follows.
Denote by E the computational cost of evaluating e. Let D be the cost of the declaration of v,

and L the cost of a lookup of v’s value.
The cost prior to the refactoring of N evaluations of e is: N * E. The cost of the refactored

evaluations is: D + E + N * L.
In the base case N = 2, the refactored version has lower cost if E > D + 2 * L. If this is

the case, and if E ≥ L, then the refactored version also has lower cost than the original for any
N ≥ 2. Generally then, the more complex e is, the more likely it is that this refactoring reduces
computational cost and therefore energy use. A minimum bound on syntactic complexity
can be set by the AgileUML user when clone detection and removal is applied. A similar
argument applies to show that caching operation results can reduce computation costs by
avoiding repeated evaluation of the same expressions.

4. Optimising design patterns for soware sustainability

An initial investigation into design pattern energy use showed that introducing a pattern may
either reduce or increase program energy use [7]. The analysis results showed that energy use
tends to be increased by introducing patterns which involve additional object creation actions
and/or additional method calls compared to the original version of a system.

Patterns which substantially reduced the number of objects (without adding extra calls), such
as the Flyweight pattern, tended to reduce energy use. Related to Flyweight is the pattern
Object Indexing used by AgileUML code generators to implement an≪identity≫ stereotype on
an attribute – the pattern enforces that objects of a class are uniquely identied by the values
of the ≪identity≫ attribute [23]. Using this pattern avoids redundant object creations, and
reduces the computational cost of accessing an object by means of an identity attribute value.

The Observer, Iterator and Adapter patterns are particularly important to examine from the
viewpoint of software sustainability because of their extensive use in software applications and
programming languages. Each of these patterns introduces new objects, and each can involve
signicant numbers of operation calls:

• Changes to a Subject in the Observer pattern are notied to each observing client
View/Observer .

• Updates and queries on an iterator for an underlying collection may also involve delegated
calls to that collection.

• Calls to the Adapter object are delegated to the Adaptee.

Observer was found to be one of the most energy-expensive patterns in [7]. In order to reduce
the communication and processing costs of this pattern, a potential optimisation is to replace
notications from the subject to the views by explicit requests from each view to the subject
when the view is initialised or refreshed (Figure 1). This is particularly applicable in situations
such as mobile or tablet devices where only one view will be visible at a time. Such views would
be refreshed when they become visible. If there are V views, each event that changes the subject
data leads to a computational cost in the original version of

V * (C + U )



where C is the cost of an update call from the subject to a view, and U the local view update
cost. The optimised version instead has a cost

C + U

for each view initialisation/refresh. Thus there is a potential for reducing computational costs
if there are several V > 1 views and view refreshes occur less frequently than subject update
events. If there are N update events andM refreshes over a given time period, then the optimised
version reduces computational cost if: M < V * N . However this approach means that views
may be out-of-date wrt subject data for various periods of time.

Figure 1: Optimised Observer design pattern structure

Object Indexing and the optimised version of Observer are provided as design pattern choices
in AgileUML.

5. Optimising architectural patterns for soware sustainability

There has been much work in the software architecture eld on architectural sustainability in
the sense of ensuring that an architectural design choice can support a system over the long
term, including supporting system evolution. However there have been few works specically
addressing the energy-use or (environmental) sustainability implications of architecture choices
[24]. This is a signicant area of research because architectural choices may have substantial
eects on the energy usage of software applications [25]. As with the detailed analysis of
designs and evaluation of design alternatives, the scenarios of use of a system are signicant
when evaluating the sustainability implications of particular architecture choices, and there
may be tradeos between other software quality goals and sustainability.
The Blackboard and MVC architectural patterns can be optimised using the demand-based

approach adopted for Observer in Section 4. In the optimised versions, views update the model
either directly (Blackboard) or via a Controller (MVC), but model changes are not propagated to
views, instead views can query the model when they need up-to-date model information. These
optimised pattern versions are provided as design choices in the AgileUML toolset.

6. Evaluation

In this section we evaluate the eect of design model choices upon the energy use of dierent
implementations of the models, in order to show that these choices can have benecial eects



on dierent platforms. We consider (i) choices of data structures; (ii) refactorings; (iii) design
patterns, and (iv) architectural patterns. For these experiments we evaluate energy use in milli-
Watt hours (mWh) using the calculator at https://calculator.green-algorithms.org.
The varying inputs to the computation are the processing time in ms, processor utilisation
percentage and memory use in GB. We consider both Windows 10 (with Java version 8) and
Linux Mint 21.3 (with Java version 21) platforms. Python and C++ implementations were also
analysed, with similar results, but are not shown here. The average energy use value of three
separate executions for each case is taken. All data is available at zenodo.org/records/11611486.

6.1. Data structure choices: sequences versus sorted sets

We compare Sequence-based and SortedSet-based versions of a specication which adds N
distinct integers to an empty collection (scenario 1) or makes 10000 membership queries to
collections of dierent sizes (scenario 2). For scenario 2, only the energy use of the membership
checks are measured, not the total energy use.
The growth of energy use is approximately quadratic in the number of insertions for both

sequence and sorted set versions in scenario 1, which implies a linear cost of a single insertion
in terms of collection size, however the sorted set version has higher energy usage (Figure 2
(a)). In scenario 2 there is a linear growth in energy use with the size of the collection in the
sequence version, and almost constant energy use in the sorted set version (Figure 2 (b)).

Figure 2: Sequence/sorted set energy use, Java: (a) insertions; (b) tests

6.2. Refactoring: replacing duplicated expression evaluations

Figure 3 shows the comparative energy use gures for the multiplication of two 3-dimensional
matricies, using either integer-based or double-based multiplication, with 3 duplicate expression
evaluations, compared with double-based multiplication with duplicate evaluations factored
out. There is therefore some improvement gained by using the integer operation version, and
by removing duplicated evaluations, although the dierences are small.



Figure 3: Matrix multiplication energy use, Java: duplicated versus factored expression evaluations

6.3. Design patterns: Observer optimisation

Here we evaluate the optimisation of the Observer pattern described in Section 4. The standard
structure of Observer is used for the unoptimised version, with a single subject and N attached
observers. This leads to the sending of the order of N*N messages in response to N subject
update events. In contrast, in the optimised version where observers only request subject state
in response to refresh events, N subject updates and N refresh events only lead to 2*N messages.
Figure 4 shows that the growth of energy use also follows the pattern of quadratic growth for
the original version and linear growth for the optimised version, in terms of the number of
observers.

Figure 4: Observer pattern: unoptimised versus optimised versions: (a) Windows 10, Java; (b) Linux,
Java

As described in Section 5, the Blackboard architectural style can be optimised in the same



way as for Observer. Similar results to Figure 4 are obtained for this optimisation.

7. Conclusions and future work

In this paper we have investigated the possible contributions of MDE for achieving sustainable
software engineering, and we identied tools and techniques to support sustainability analysis
and improvement at the model level. We have provided extended OCL datatypes such as
SortedSet, to enable software modellers to design more sustainable software, and we have
optimised core OCL libraries. We found that it was possible to reduce software energy use by
the choice of dierent data structures, design patterns and architectural patterns, and by the use
of specic refactorings at the software model level. However in many cases these choices also
have implications for the satisfaction of other non-functional requirements such as accuracy
and availability, and hence decisions would need to be made by developers and stakeholders
about the tradeos between these requirements.
We mainly considered the sustainability of software engineered using MDE. Another im-

portant topic is the sustainability of the MDE process itself, including the energy eciency of
model processing, model transformations and code generation. These are areas we will address
in future work.
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