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Abstract
Deep active learning (DAL) provides a promising framework for reducing labeling costs for data-hungry deep
neural networks. In DAL research, experiments are evaluated based on the performance of the model that is
responsible for querying data, which can be interpreted as a model-centric evaluation. However, the data queried
by DAL should be model agnostic so that new models can be effectively trained on it. An example can be derived
from the rapid progress in deep learning, where new architectures are proposed in quick succession. Naturally,
we want to employ these new and more effective models while still using the queried data from DAL. This results
in the need to ensure high performance for both current and future models, which we refer to as reusability.
In line with this topic, we propose general reusability, a novel, data-centric evaluation metric that measures
the long-term value of queried data. Our experiments demonstrate that the current evaluation protocol in DAL
research does not assess the reusability of data and that GR can fill this gap.
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1. Introduction

Deep neural networks (DNNs) are state-of-the-art for solving various tasks, such as image classification,
object detection, or speech recognition, when trained on large datasets of labeled samples [1, 2, 3, 4].
However, obtaining labels remains expensive and time-consuming, requiring human experts [5]. Active
learning offers a solution based on the idea that not all samples are equally valuable for maximizing model
performance. Therefore, the cost of labeling can be reduced by intelligently labeling the most valuable
samples. In an iterative process, a model is trained on available labeled samples and, subsequently,
queries new samples to be labeled based on a query strategy [6]. Together, DNNs and active learning
form the popular research field of deep active learning (DAL) [7, 8, 9, 10, 11, 12], which our study is
centered around. Furthermore, we focus on image classification, a prominent task for DAL research.

In a typical DAL setting, the query model and query strategy are key components. While the
query model provides information about the samples (e.g., feature representations), the query strategy
determines which samples to query based on the information provided [6]. Investigating their influence
is a major part of current DAL research [7, 8, 9, 10, 11, 12]. Considering recent advancements, this
especially includes how the query model is trained [13, 14, 15, 16, 17], e.g., by using semi-supervised
learning (Semi-SL) and self-supervised learning (Self-SL) techniques.

The standard evaluation protocol for DAL experiments measures the querying model’s performance
(QMP), e.g., its classification accuracy. Therefore, almost all studies compare different configurations of
DAL components (e.g., Margin vs. BADGE as query strategy) based on the resulting QMPs [7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17]. We consider using the QMP a model-centric evaluation because it heavily centers
around the querying model. However, in recent years, DNN architectures have made frequent advances
in which their size and structure have changed, e.g., AlexNet [18], ResNet [19], EfficientNet [20], and
ViT [21]. With this progress, replacing DNNs will be unavoidable, while the queried data (i.e., queried
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samples and their respective labels) will continue to be used. Consequently, the reusability of the
queried data to future models must be guaranteed to ensure high model performances in the long term.
However, we question whether the QMP is a fitting indicator for this.

Query Model
Other Models

Figure 1: Different models trained on data
queried by one of them.

Figure 1 illustrates an example on a 2D toy dataset
two-moons [22]. We refer to Appendix A for details on
the experimental setting. After conducting a DAL ex-
periment, we present the decision boundaries of several
models trained on the queried data. In addition to the
query model, we use other models that slightly differ in
their architecture (hidden layer size) and training hyper-
parameters (learning rate and weight decay). All samples
are colored in their respective class color (red/blue), and
labeled samples are enlarged. The query model reaches
an almost perfect separation of both classes. In contrast,
the other models perform significantly worse despite be-
ing able to perform well when querying their own data.
This suggests that a high QMP does not ensure the high performance of other models, as the data queried
may only meet the specific requirements of the query model to achieve high performance.

To tackle this issue, we propose an alternative evaluation metric with a generalized version of
reusability. Queried data is reusable for a model if it enables higher performance than training on
randomly queried data. The work that is most similar to ours is by Tomanek and Morik [23], which
only considers reusability between pairs of models apart from DNNs. We aim to extend their work
towards DAL and generalize their notion of reusability to ensure high performance for future models.
Hence, in this article, we define general reusability (GR) as the average reusability of queried data for
a diverse set of models. While models can differ in many ways, we focus on different architectures
and training methods as these have played a central role in recent DAL research [14, 15, 16, 17, 24].
Unlike the standard DAL evaluation protocol, using GR can be considered a data-centric evaluation as
it marginalizes the role of a single model. Extensive experiments show that, in contrast to model-centric
evaluation, our data-centric evaluation promotes DAL experiments that exhibit high reusability for
future models. Furthermore, this new perspective reveals that the recent suggestions from research
promoting Semi- and Self-SL [13, 14, 15, 16, 17] can negatively impact querying reusable data.

Contributions

• We propose general reusability, a novel, data-centric evaluation metric for DAL that
measures the reusability of queried data for a diverse set of models.

• We perform an extensive set of DAL experiments by varying components, e.g., query
strategies, model architectures, and training methods, and compare QMP and GR based
on their evaluation.

• We discuss GR and QMP and their ability to indicate high reusability of queried data for
future model performances.

• We provide the code of the conducted experiments for reproducibility at https://github.
com/nhaH-luaP/general-reusability.
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2. Related Work

Query strategies can mainly be divided into uncertainty-based and diversity-based strategies. While
uncertainty-based strategies focus on samples the model considers “hard“ to classify, diversity-based
strategies aim to find samples representative of the underlying data distribution. Margin [10] is a
popular uncertainty-based query strategy [25] that queries the samples with the largest difference
between the two highest probable class probabilities. In contrast, CoreSets [7] is a diversity-based
query strategy that works in the feature representation space. There, it queries the samples with the
maximum distance to their closest labeled sample. In recent years, various works have tried to combine
the strengths of different types of strategies [8, 9]. BADGE [8] combines uncertainty and diversity by
using predicted labels to calculate gradient embeddings for each unlabeled sample. In this gradient
embedding space, they use the k-means++ initialization scheme to query a diverse batch of samples
that significantly changes the model’s weights. While also focusing on diversity, TypiClust [9] replaces
the notion of uncertainty with typicality. It queries samples from different clusters (diversity) in the
feature representation space with high density (typicality). Lastly, as a baseline, we consider randomly
querying samples without a strategy and refer to it as Random.
Criticism of DAL research was expressed in several papers throughout recent years. The uprise

of Semi- and Self-SL methods lead to large-scale comparative studies investigating their use for DAL.
Siméoni et al. [17] find that using Semi- and Self-SL in DAL experiments to train the query model
significantly boosts the performance of any strategy, ranking it above all strategies in the supervised
setting. Mittal et al. [15] confirm these results and come to similar conclusions when applying state-of-
the-art data augmentation for query model training. Furthermore, they find that while the absolute
performance of each strategy increases, the performance differences between strategies diminish,
making it difficult to identify a clear winner. Munjal et al. [13] investigate the importance of correctly
tuned hyperparameters and how optimal hyperparameter choices may change from cycle to cycle.
Specifically, they optimize each model’s learning rate and weight decay in each cycle based on an
external validation set. In addition to findings similar to Siméoni et al. [17] and Mittal et al. [15], they
find that the performance of the random baseline is commonly under-reported and becomes competitive
with other strategies when evaluated in equal settings. Li et al. [14] conducted the largest comparative
study covering 19 different query strategies and the impact of Semi-SL. In addition to previous findings,
they propose one should perform Semi-SL as early as possible and seek more unlabeled data whenever
possible as it benefits Semi-SL. Finally, Lüth et al. [16] present five key pitfalls commonly performed in
the DAL literature and propose a more extensive evaluation protocol focusing on real-world conditions.
The proposals are to conduct experiments with varying data distributions, starting budgets, and query
sizes while optimizing model hyperparameters and using Semi- and Self-SL.

Reusability has not been discussed for DAL and only scarcely for active learning. Lewis and Catlett
[26], motivated by the need to reduce computational complexity, used logistic regression to query
samples later used for a decision tree classifier. They report high reusability of the data queried in the
context of text classification. In contrast, Baldridge and Osborne [27] find that data queried from an
active learning experiment using an uncertainty-based strategy can result in performance degradation
when reused for training a different classifier. Tomanek et al. [28] query samples using query-by-
committee with a committee consisting of maximum entropy classifiers. They report a high reusability
for a subsequently trained conditional random field. In another work, Tomanek and Morik [23] examine
the pairwise reusability of queried data between two models. They find that most pairs of models query
reusable data for each other, i.e., they achieved better performance on the queried data by their opposite
than on randomly queried data. Finally, Hu et al. [29] build on the work of Tomanek and Morik [23] and
investigate reusability in the text classification setting. They find that SVMs query the most reusable
data, while naive Bayes classifiers generally work best on data queried by other models. However,
both Tomanek and Morik [23] and Hu et al. [29] report that the performance of a model trained on its
queried data is usually an upper bound for training on data queried from others. In contrast to our
work, these studies focus on models outside of deep learning (e.g., SVM, decision tree, Naive Bayes),
tabular or natural language datasets, and examination of reusability between pairs of models.
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3. General Reusability

Notation: The typical DAL cycle begins with a large pool of unlabeled samples 𝒰 and a pool of labeled
samples ℒ1, where typically |ℒ| ≪ |𝒰|. Then, it iteratively trains a model 𝑚 ∈ ℳ on ℒ and queries
new samples from 𝒰 based on a query strategy 𝑞 ∈ 𝒬, which are labeled and added to ℒ. This process
repeats until a stopping criterion is met, e.g., labeling budget or number of cycles 𝐾 . Due to the recent
progress of Semi- and Self-SL [30, 31] and their resulting appliance in DAL [24], 𝒰 may also be required
for model training. We introduce 𝒬 as the set of all possible query strategies, e.g., BADGE [8], and ℳ
as the set of all models. For DNNs, ℳ can further be specified by 𝒯 as the set of all possible training
methods, e.g., Semi-SL, and 𝒜 as the set of all possible model architectures, e.g., ResNet-18 [19], resulting
in ℳ = 𝒜× 𝒯 2. While DNNs can differ in many ways, we focus on model architectures and training
methods for ℳ as they play a central role in recent DAL research [14, 15, 16, 17, 24]. For the remainder
of this work, we refer to 𝒬, 𝒜, and 𝒯 as DAL components and to a specific choice of DAL components,
e.g., Margin ∈ 𝒬, ResNet-18 ∈ 𝒜, and Semi-SL ∈ 𝒯 , as a DAL configuration.

Considering this setup, the query process depends on query strategy 𝑞 and query model 𝑚. Therefore,
a labeled pool resulting from a DAL configuration with query strategy 𝑞 and model 𝑚 can be identified
with ℒ𝑞,𝑚. Concerning Random, we denote the resulting labeled pool with ℒRandom, as the model does
not influence the random selection.

In DAL, two common ways exist to measure the performance of a model 𝑚 for a given experiment [14,
15, 16, 17, 24]. The first way is to measure the model’s performance once at the end of the experiment.
Therefore, we define PERF(ℒ,𝒰 ,𝑚,𝐾) as the performance of model 𝑚 trained on the labeled pool ℒ
and potentially on the unlabeled pool 𝒰 after the final 𝐾-th DAL cycle. The second way is to measure
the model performance in each cycle, considering the whole learning process. Based on this, we define
AUC(ℒ,𝒰 ,𝑚,𝐾) as the area under the curve of the performance over 𝐾 cycles. Note that we remove
𝐾 and 𝒰 from both measure denominations for the further course of the work for ease of notation. In
addition, model performance is a placeholder for different performance metrics that depend on the task
and setting. In our case, we define model performance as the classification accuracy in percent on a
given test dataset.

Current DAL literature evaluates experiments with the QMP, i.e., PERF(ℒ,𝑚) or AUC(ℒ,𝑚),
where the query model 𝑚 ∈ ℳ is responsible for providing information for querying and ℒ the
resulting labeled pool [8, 9, 7, 24, 17, 13, 14, 16, 15]. Based on the QMP, recommendations are made,
e.g., Semi- and Self-SL benefit DAL [17, 13, 14, 16, 15]. Considering recent advancements in DNN
architectures [18, 19, 20, 21] and training methods [30, 31], a DAL experiment should query data
reusable for future DNNs. Queried data is reusable for a model if it leads to higher performance than
randomly queried data. However, the QMP does not account for reusability as it strongly centers around
the query model. Therefore, relying only on QMP could substantially decrease model performance
once the original query model is exchanged. As a result, we propose a shift from a model-centric to a
data-centric evaluation by also considering the reusability of queried data for a diverse set of models.

To formalize the idea of reusability for a diverse set of models, we build on the concept of reusability
introduced by Tomanek and Morik [23]. For a pair of models (𝑚, 𝑚), they define the reusability of a
labeled pool ℒ𝑞,𝑚 for 𝑚 as

REU(ℒ𝑞,𝑚,𝑚) =
AUC(ℒ𝑞,𝑚,𝑚)− AUC(ℒRandom,𝑚)

AUC(ℒ𝑞,𝑚,𝑚)− AUC(ℒRandom,𝑚)
− 1. (1)

Intuitively, REU can be seen as the performance gain of a model 𝑚 when trained on data queried by
another model 𝑚 relative to being trained on its own queried data. For example, a REU < 0 indicates
that 𝑚 performs better on its queried data, while a REU > 0 indicates that 𝑚 performs better on
data queried by 𝑚. Tomanek and Morik [23] investigate reusability between pairs of machine learning
1Throughout this work, we use “queried data”, “pool of labeled samples”, and “labeled pool” synonymous. “Labeled pool” is a
well-known formal concept in pool-based active learning while “queried data” aids conceptual explanations.

2This serves as a simplified representation. Note that in practice there are pairs of models and training methods that cannot
be combined.
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models outside DAL, such as decision trees or SVMs. In contrast, we focus on DNNs and examine a
more general notion of reusability concerning various other DNNs. Therefore, we propose to apply
three major changes to the reusability defined in Eq. (1).

At first, we propose to remove the denominator. In our setting, as future models should reuse the
queried data, we are not concerned with the performance they could have achieved when querying their
own data but only with their performance gain on currently queried data over randomly queried data.
This broadens the choice of models for the evaluation, as it allows using a model that has not performed
a DAL experiment. Otherwise, this would require considerable computational effort, especially for
DNNs, where training a model is expensive. Additionally, when using the denominator, it is not clear
for a REU < −1 whether the performance on the self-queried data is worse than on the randomly
queried data or on the data queried by the other model, which hinders interpretation.

Second, we exchange the AUC for PERF to focus our investigation on the queried data resulting
from a DAL experiment, which reduces the computational complexity by a factor of 𝐾 . However,
whether the AUC may provide additional information that could benefit GR is unclear, so we consider
it an option for future work. As a result, our version of reusability can then be defined as

REU*(ℒ𝑞,𝑚,𝑚) = PERF(ℒ𝑞,𝑚,𝑚)− PERF(ℒRandom,𝑚).

Note that we removed the −1 as it was used to center the original metric around 0. Intuitively, we
simplified the original reusability to the performance that a model gains when trained on a queried
pool ℒ𝑞,𝑚 compared to randomly queried data.

As a third and final step, we extend the metric to multiple models to get a more general view of
reusability. Recall that our goal is to ensure the reusability of queried data for future models. However,
we cannot measure reusability for future models as they are unknown. Therefore, we propose to
approximate the reusability of queried data for future models by its average reusability for the set of all
known models ℳ. We provide empirical evidence for this claim in Section 4.3. In other words, the key
idea is that queried data, which is reusable for various known models, should also be reusable for any
potential future model. In a theoretical sense, we define the general reusability (GR) of a queried
pool ℒ𝑞,𝑚 as

GR(ℒ𝑞,𝑚) =

∫︁
𝑚∈ℳ

REU*(ℒ𝑞,𝑚,𝑚) · 𝑝(𝑚)d𝑚,

where 𝑝(𝑚) is an unknown distribution weighing each model’s reusability. The key idea behind 𝑝 is
that, depending on the application, the reusability of some models may be more meaningful in terms of
general reusability than others. By marginalizing the role of a single model, we arrive at a measure that
evaluates the general reusability of queried data. However, as the integral is infeasible to compute, we
approximate it by using Monte Carlo integration over a finite number of models ℳ ⊂ ℳ. By choosing
ℳ to include frequently used models with equal weighting (i.e., 𝑝(𝑚) = 1/|ℳ|), we approximate general
reusability with

GR(ℒ𝑞,𝑚) ≈ 1

|ℳ|

∑︁
𝑚∈ℳ

REU*(ℒ𝑞,𝑚,𝑚). (2)

Intuitively, a GR > 0 indicates that the queried data is reusable for other models. In contrast, a GR < 0
suggests that, on average, models perform better on randomly queried data than on ℒ𝑞,𝑚.
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4. Experiments

In this section, we compare GR to QMP in terms of how they evaluate DAL experiments and their
ability to indicate the reusability of queried data for future models. Therefore, we begin by conducting
extensive DAL experiments, in which we vary DAL components such as model architecture, training
method, and query strategy and evaluate them according to the literature with the QMP. The goal is to
reproduce some of the findings of recent DAL criticism, indicating the superiority of Semi- and Self-SL
in DAL. Next, we compare GR and QMP from two different perspectives to assess their differences in
evaluating the conducted DAL experiments. Finally, we train various models on the highest-ranking
settings of each metric that have neither been used for querying nor evaluation (simulated future
models). The goal is to investigate our metrics’ ability to promote settings that query data reusable for
future models.

4.1. Setting

All experiments are conducted on CIFAR-10 [32], a classic benchmark in DAL literature [8, 24, 7, 9, 11, 12].
It consists of 60,000 32x32 color images with 10 different classes. A split of 10,000 images serves as a
test dataset to measure PERF, i.e., the classification accuracy in percent.

As our general query model architecture, we use residual neural networks (ResNets) [19]. We use vary-
ing depths to provide models of different complexity, namely 𝒜 := {ResNet-6, ResNet-10, ResNet-18}.
As simulated future models, we use wide ResNets (WideResNets) [33], namely the WideResNet-28-2 and
the WideResNet-28-10. WideResNets were proposed after ResNets and, therefore, represent a realistic
future model architecture in relation to ResNets.

For training methods, we use 𝒯 := {Base, Semi-SL, Self-SL, 3SL}. While these terms are general
descriptions for training types, they are represented by a unique procedure within our experiments.
Base describes standard supervised training using stochastic gradient descent and a cosine annealing
learning rate scheduler. We train each model 𝑚 ∈ ℳ for 200 epochs with a learning rate of 0.01, a
weight decay of 0.0005, a batch size of 64, a momentum of 0.9 and nesterov set to true. For the two
smaller architectures ResNet-6 and ResNet-10, we reduce the weight decay to 0.00001. Semi-SL extends
Base with a Semi-SL method. We use MixMatch [30], which applies MixUp [34] to both pairs of labeled
and pairs of labeled and pseudo-labeled images. Pseudo-labels are based on the model’s prediction
rather than a ground truth label. Self-SL performs an auxiliary task and uses the resulting weights as
initial values for the subsequent supervised training according to Base. We use SimCLR [31] as the
auxiliary task, where a model learns matching differently augmented instances of the same image.
In particular, the model’s task is minimizing a contrastive loss function (i.e., maximizing similarity)
between the resulting feature representations of the same original image while penalizing similarity to
any other feature representation of a different image. Finally, 3SL describes the combination of Semi-
and Self-SL. We refer to our implementation for more details on the method-specific hyperparameters.

For each DAL experiment, we start with an initial labeled pool of 300 samples and query
an additional 300 for 9 cycles for a total of 3000 labeled samples. We perform a cold start in
each cycle by retraining the model and examine five different query strategies, namely 𝒬 :=
{Random, Margin, CoreSets, Badge, TypiClust}, which have been described in more detail in Section 2.
For QMP, we measure PERF(ℒ,𝑚) of the respective querying model 𝑚 on the final labeled pool ℒ.
For GR, we apply Eq. 2 with ℳ = 𝒜× 𝒯 as defined above. Simply put, we average the reusability of
the queried data of an experiment over each model 𝑚 ∈ ℳ. In summary, we perform the described
DAL procedure for each configuration in 𝒬×𝒜× 𝒯 for three different seeds and average the results
to reduce the impact of randomness.

4.2. DAL Experiments

Figure 2 shows the QMP per cycle for a ResNet-18 with varying query strategies and training methods.
It demonstrates a significant improvement in QMP when using Semi-SL, Self-SL, or 3SL compared to
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Figure 2: The effects of different training methods (dashed lines), i.e., Semi-SL, Self-SL and 3SL, on the QMP
(ResNet-18) over multiple cycles in DAL experiments compared to Base (solid lines).

Base. Although Semi-SL achieves a higher QMP than Self-SL, it has a higher standard deviation in earlier
cycles, suggesting that it may not achieve good convergence with only a few labeled samples. 3SL
not only surpasses both Semi-SL and Self-SL, but shows higher QMP on the initial labeled pool than
Base reaches on its final labeled pool. In addition, applying Semi-SL or 3SL diminishes any differences
in query strategies observed for Base. The remaining learning curves in Appendix B show that the
best-performing model architecture is ResNet-18, although ResNet-10 is competitive in combination with
3SL. Evaluation of the conducted DAL experiments with QMP (i.e., a model-centric view) reproduces the
findings of the literature [17, 14, 15, 13, 16] and strongly promotes the use of larger model architectures
and 3SL for any DAL experiment while differences between query strategies diminish.

Base
Semi-SL

Self-SL 3SL

Base

Semi-SL

Self-SL

3SL

(a) QMP

Base
Semi-SL

Self-SL 3SL

Base

Semi-SL

Self-SL

3SL

(b) GR

Figure 3: Pairwise penalty matrices for different training methods.

Next, we compare GR and QMP based on their evaluation of the conducted DAL experiments, focusing
on different DAL components. Figure 3 shows pairwise penalty matrices concerning different training
methods. In a pairwise penalty matrix, each cell contains the percentage of DAL experiments in which
the column instance scored higher than the row instance concerning the respective evaluation metric.
In addition, below each matrix is an average for each column instance. While each cell directly compares
two instances, the averages below serve as a general ranking. Figure 3a shows that each training method
scores higher in QMP than Base in 100% of cases, while 3SL scores the highest. This aligns with the
previous finding of using 3SL to maximize QMP. In contrast, Fig. 3b shows a less unevenly distributed
scoring, with Base scoring the highest and 3SL the lowest. This indicates that while 3SL significantly
boosts QMP, it can negatively affect querying generally reusable data, and Base would be the preferable
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Table 1
Top five DAL configurations determined by GR in red and by QMP in blue. Each configuration is listed with its
scores in QMP and GR and the performance of ResNet-18 trained on the resulting data using 3SL.

𝒜 𝒯 𝒬 QMP GR 3SL-PERF
1. ResNet-18 Base BADGE 78.39± 0.45 1.04± 1.69 91.79± 0.13
1. ResNet-18 3SL BADGE 92.78± 0.07 −3.79± 4.51 92.78± 0.07
2. ResNet-10 Base Margin 77.22± 0.42 0.95± 1.72 91.15± 0.29
2. ResNet-18 3SL CoreSets 92.78± 0.06 −6.89± 6.87 92.78± 0.06
3. ResNet-6 Self-SL BADGE 64.90± 0.17 0.69± 0.98 91.39± 0.30
3. ResNet-10 3SL CoreSets 92.32± 0.08 −5.41± 6.34 93.00± 0.05
4. ResNet-6 Base BADGE 60.46± 0.49 0.64± 0.77 91.60± 0.10
4. ResNet-18 3SL Margin 92.10± 0.41 −6.90± 5.95 92.10± 0.41
5. ResNet-18 Base Margin 77.85± 0.38 0.58± 1.45 91.06± 0.15
5. ResNet-10 3SL BADGE 91.94± 0.21 −3.51± 4.27 92.43± 0.12

choice for this.
Similarly, Fig. 4 shows pairwise penalty matrices concerning different model architectures. Figure 4a

demonstrates a clear ranking of model architectures concerning QMP according to their size. The
largest architecture, ResNet-18, scores highest, and the smallest architecture, ResNet-6, scores lowest.
This, again, indicates that to maximize QMP, one should always consider the largest model architecture.
In contrast, Fig. 4b shows similar scores for each architecture, while the medium-sized model ResNet-10
scores highest in GR. This indicates that a larger model architecture is not required to query reusable
data. Compared to the training methods in Fig. 3, the differences in average scores are considerably
less, indicating that training methods have a higher impact on GR than model architectures.

ResNet-6

ResNet-10

ResNet-18

ResNet-6

ResNet-10

ResNet-18

(a) QMP

ResNet-6

ResNet-10

ResNet-18

ResNet-6

ResNet-10

ResNet-18

(b) GR

Figure 4: Pairwise penalty matrices for different model architectures.

Concerning query strategies, the respective penalty matrices are in Appendix C. One key difference
is the assessment of Random, which scores higher for GR than for QMP, while the scores of other
strategies mostly decrease. This indicates that querying in DAL is generally model-oriented. However,
BADGE remains the highest-scoring query strategy, suggesting that it presents a good balance between
maximizing the query model performance and ensuring reusability.

In addition to DAL components, we compare QMP and GR by investigating their highest-ranking
DAL configurations. Table 1 displays the top five highest-ranking DAL configurations for both QMP
and GR. For QMP, this follows our previous observations, choosing 3SL in all cases and primarily
larger model architectures. In contrast, GR promotes Base in 4 out of 5 cases and chooses smaller and
larger model architectures equally. This reinforces our finding that training methods impact GR more
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Table 2
Performance of potential future models when trained on the data resulting from the top five highest-ranking
DAL configurations for both GR (red) and QMP (blue). We refer to Tab. 1 with the respective colors for the
specific DAL configurations.

(a) WideResNet-28-2.
Base Semi-SL Self-SL 3SL

1. 79.05 87.44 80.09 88.51
1. 69.77 85.88 74.23 88.86
2. 79.17 87.46 80.96 87.84
2. 62.78 83.98 72.34 89.12
3. 77.15 87.11 79.79 87.79
3. 67.15 89.12 75.05 90.29
4. 77.48 87.84 79.22 88.52
4. 63.46 84.67 71.77 86.91
5. 79.27 86.69 80.35 87.71
5. 70.67 87.10 74.12 88.47

(b) WideResNet-28-10.
Base Semi-SL Self-SL 3SL

1. 77.19 86.89 81.20 89.58
1. 67.09 84.33 75.22 90.18
2. 77.50 86.29 82.10 88.99
2. 61.94 84.75 68.16 90.85
3. 76.39 85.92 80.97 89.70
3. 65.44 88.15 75.41 91.33
4. 75.74 87.33 80.38 90.57
4. 63.69 79.02 74.47 87.45
5. 78.16 85.25 82.21 88.86
5. 67.80 86.29 77.89 90.29

(c) WideResNet-28-2 + Random.
Base Semi-SL Self-SL 3SL

1. 75.95 87.21 77.3 88.07

(d) WideResNet-28-10 + Random.
Base Semi-SL Self-SL 3SL

1. 74.74 86.6 79.84 89.82

than model architectures. Concerning query strategies, BADGE is the most common in both metrics’
highest-scoring configuration, indicating its superiority. Another observation is a negative correlation
between QMP and GR. While the highest-ranking configurations for QMP score a QMP above 90%,
the highest-ranking configurations for GR score a QMP below 80%. Similarly, the highest-ranking
configurations for GR reach a positive value for GR while the highest-ranking configurations for QMP
score a GR below −3.5. This indicates that a trade-off must be found between maximizing QMP and GR.
To investigate whether the highest-ranking settings for GR and QMP can reach a similar performance
when trained with the best-performing architecture and training method, we additionally measure the
performance of a ResNet-18 trained on each resulting queried data with 3SL. Column 3SL-PERF in Tab. 1
shows comparatively small differences in performance between high-ranking QMP and high-ranking
GR configurations. This indicates that maximizing GR does not result in a significant loss of QMP.

Summarized, QMP and GR paint completely different pictures when evaluating DAL experiments.
While QMP favors maximizing performance through larger model architectures and complex training
methods, GR prefers simpler models and standard training. Furthermore, we showed that optimizing
for GR does not result in low QMP when training a larger architecture with 3SL on the queried data
resulting from a DAL experiment.

4.3. Future Model Performance Prediction

So far, we established that QMP and GR differ significantly in their evaluation of DAL experiments.
Now, we look at the potential benefits GR can bring when faced with an exchange of models. Thus, we
investigate the research question: How well do potential future models perform on data queried by the
highest-ranking configurations in DAL components concerning each QMP and GR? To investigate this,
we train two larger model architectures, WideResNet-28-2 and WideResNet-28-10, with each training
method in 𝒯 on the resulting data from the configurations listed in Tab. 1 and list their performance in
Tab.2. In addition, we provide their performance when trained on randomly queried data below each
table.

Concerning Base, Semi-SL, and Self-SL, most future models perform significantly better on the highest-
ranking configurations of GR than on those of QMP. In addition, all GR configurations perform similarly
or better to the random baselines provided in Tab. 2c and Tab. 2d while most QMP configurations
perform similarly or worse. Concerning 3SL, both metrics promote configurations that lead to high
future model performance. This could result from the fact that the future and query models in the highest
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ranking QMP configurations were trained with the same method (3SL), which may favor the reusability
of the queried data. However, query and future models may differ significantly in their architecture
and training method, which could lead to worse future model performances on high-ranking QMP
configurations even in the 3SL setting. In addition, future models do not always have to be larger and
more powerful than the query model, e.g., if a large model queries data in development for a smaller
model operating on an end device.

In summary, the results show that data scoring high in GR consistently enables high performance for
future models, but this is not guaranteed when only QMP is considered. In contrast, the QMP seems
insufficient in tracing the reusability of data and should primarily be used to make statements about
the query model.

4.4. Takeaways

Our experiments compared QMP and GR on a large set of DAL experiments. We found that they
substantially differ in their preferences for training methods and model architectures. While QMP
prefers larger model architectures and more advanced training methods, GR ranks different model
architectures similarly but prefers the baseline training method. This means that contrary to current
literature, evaluation with GR does not indicate that using Semi- and Self-SL benefits the querying
process. Considering the performance of potential future models, QMP fails to consistently promote
configurations that are reusable for future models, resulting in performances worse than on randomly
queried data. In contrast, future models perform similarly or often better when using data queried by
configurations with a high GR than on randomly queried data. This shows that the GR of queried data
should be evaluated to ensure consistently high-performing models in a setup where DAL is applied.

5. Conclusion and Future Work

In this work, we motivated the perspective of reusability for DAL in the face of recent progress and
probable upcoming model exchanges. Furthermore, we proposed a novel evaluation metric, GR, that
indicates the reusability of queried data for future models by measuring their reusability for a diverse set
of known models. Our experiments show that the QMP, commonly used by the literature, is insufficient
in measuring the reusability of queried data and that GR can fill this gap. We believe that the inclusion
of GR in the DAL evaluation is required to ensure high model performance in the long term.

As this work pioneers the adaptation of reusability to DAL, some challenges remain to overcome.
First, it is unclear which and how many models to consider for ℳ and how to weigh each model’s
reusability. Depending on the application, the selection of models and their weights may differ. Another
point is that similar experiments should be conducted with various datasets and settings to investigate
the impact of different DAL components on GR on a more general level. Furthermore, investigations
concerning ensembles or query-by-committee seem promising, as multiple models determine the
querying process and may, therefore, query more generally reusable data. Finally, combining GR with a
hyperparameter-optimized evaluation [35] could further improve data-centricity, as both the model and
its hyperparameters are marginalized. However, optimizing the hyperparameters of multiple models
for each evaluation increases the computational complexity by a large margin.
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A. 2D Toy Example

This section details the DAL settings for the graphical abstract in Fig. 1. We used various multi-layered
perceptrons with one hidden layer that varied in the learning rate, weight decay, and hidden layer
dimension. The query model used a learning rate of 0.1, while the other models used a learning rate of
0.01. For the query model, we chose a weight decay of 0.0005 and a hidden layer size of 256 while we
randomly sampled the weight decay from [0.00001, 0.01] and the hidden dimension from [1, 512] for
the other models. We randomly queried 4 labels for the initial labeled pool and queried another sample
for 4 cycles using Margin [10]. For each cycle, we trained the query model from scratch using SGD as
the optimizer with momentum set to 0.9 for 40 epochs and reduced the learning rate using a cosine
annealing learning rate scheduler. Similarly, we trained the other models on the resulting labeled data
using the same setting as the querying model.

B. DAL Learning Curves
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Figure 5: The effects of different training methods, i.e. Semi-SL, Self-SL and 3SL, on model performance (ResNet-
6) in DAL experiments compared to Base training.
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Figure 6: The effects of different training methods, i.e. Semi-SL, Self-SL and 3SL, on model performance (ResNet-
10) in DAL experiments compared to Base training.

In this section, we display all learning curves concerning ResNet-6 (Fig. 5) and ResNet-10 (Fig. 6)
similar to Fig. 2. While there are, again, performance improvements when using Semi-SL, Self-SL, and
3SL, the absolute performances are lower than for ResNet-18.

C. Pairwise Penalty Matrices for Query Strategies

Figure 7 shows pairwise penalty matrices for query strategies according to Section 4.2. Considering
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Figure 7: Pairwise penalty matrices for different query strategies.

QMP, BADGE, followed by Margin, performs well, while other strategies perform worse. In contrast,
when evaluating with GR, differences between strategies diminish while Random scores substantially
higher. Nevertheless, BADGE remains the highest-scoring query strategy, indicating a good trade-off in
query model performance and reusability of queried data.
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