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Abstract

One-factorizations of the complete graph K,, have wide applications, as an example they are often used for scheduling
round-robin tournaments with n teams. In this note, we characterize parabolic and linear one-factorizations of complete
graphs K, 1, when p is an odd prime. This class of one-factorizations arises from the geometry of conics and lines in the
affine plane AG(2, p). We also include Magma computations for the cases p < 19.
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1. Introduction

Some of the most important sport competitions have a fi-
nal classification which depends on a round-robin phase.
In such tournaments, each participant plays at least once
against any other team, and the final classification consid-
ers all results. Then tournaments as Serie A or NBA need
efficient algorithms to compute all the possible match
schedules, see [1, 2]. For example, some tournament uses
Berger’s algorithm [3] (developed by the chess player Jo-
hann Berger) which divides the n players into two equal
n

sides, from 1 to % and from % + 1 to n; starts from

the first pairing {1,n}, {2,n—1},..., {%, % + 1};and
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ends by giving some combinatorial argument to obtain
all the other pairings. In our approach, we use one-
factorizations of complete graphs. More precisely, a one-
factorization of the complete graph K, corresponds to a
pairing in a round-robin tournament with n teams play-
ing. In this note, we characterize parabolic and linear
one-factorizations of complete graphs K1, with p an
odd prime number. In Section 2, we give preliminaries
on graph theory and one-factorizations. In Sections 3
and 4, we give characterization results for parabolic and
linear one-factorizations, where a one-factor is said to be
parabolic or linear if it is represented by a parabola or a
line, respectively. This note concludes with an Appendix
containing computational results for the parabolic one-
factorizations of K11, p = 13,17, 19, and the Magma
code used by the authors.

2. Preliminaries

A graph G = (V, E) is an incidence structure consisting
of a set V' of objects called vertices and a set E' of object
called edges. An edge e € FE is denoted in the form
e = {z, y}, where the vertices z,y € V. Two vertices
z and y connected by the edge e = {z,y}, are said
to be adjacent. In what follows, neither multiple edges
between the same pair of vertices nor loops, i.e. edges
of the form {x, x}, are admitted. When every vertex has
an equal number of edges incident to it, the graph is said
to be regular. In particular, we will deal with a special
class of regular graphs, in which each pair of vertices is
connected by an edge. They are called complete graphs
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and are usually denoted by K,, where n is the number
of vertices. Let K, be the complete graph with an even
number n of vertices. A one-factor is a partition of its
vertex set into 5 disjoint edges. A one-factorization of K,
is a partition of its edge set into n — 1 disjoint one-factors.
For other notation or definitions on graphs not stated
here, we refer the reader to [4]. Our approach to the
problem of constructing one-factorizations of complete
graphs is geometric, as in [5, 6, 7, 8, 9], and is based on
techniques that have also been used for multigraphs, see
[10, 11, 12, 13].

3. Parabolic one-factorizations

We adopt the same notation and terminology introduced
in a paper by Korchmaros, Pace and Sonnino [5], and
then used in subsequent paper by Kiss, Pace and Sonnino
[6]. The reader may refer to [14] for notation and termi-
nology on finite geometry not explicitly stated here. Let
p be an odd prime. Fix a projective frame in PG(2, p)
with homogeneous coordinates (Xo : X1 : X2), and con-
sider PG(2,p) as AG(2, p) Ulo where £ has equation
Xo = 0. As usual, the points of AG(2,p) are written
as (X,Y) with X = % andY = % In AG(2,p), let
‘P be the parabola with affine equation Y = X 2 +a,
where a varies in Zj, and Voo = (0 : 0 : 1) the point
at infinity of the line X; = 0. We remark that, in the
projective closure of AG(2,p), any two parabolas P,
and Py, with a # b, meet only at the point V. Let Pik
denote the affine point (i 4+ %,i” + ik) and Py be the
point (0 : 1 : 2¢) on the line at infinity £~ . The following
result is easy to check:

Lemma 3.1. For a fixed k, the points Py PE, ..
are on the parabola P2 .
4

k
-aPp—l

Definition 3.2. Let R = (u,v) be a point. The symp-
tome of R is defined as g = u® — v.

Let ¢ be a non-vertical line with equationY = mX +b.
The symptome of £ is defined as A\¢ = m? + 4b.

We recall some basic properties of the parabolas P,.
It is straightforward to check the following lemma:

Lemma 3.3. Let R = (u,v) be a point and £: Y =
mX + b be a non-vertical line. Then

« R is an external (internal) point of Py if and only
if ur is a square (non-square) element in GF(p).

« U is a tangent (secant or external line) to P, if and
only if A\¢ — 4a is O (a square or a non-square
element in GF(p)).

« The pole of ¢ with respect to Py is the point L =
(%7 7b)'

The vertices of the complete graph K41 corre-
spond to the points of Py U Vo, while the edges of
K41 correspond to the points of type P, with k =

-1

1,2,...,25=, co. Thus the set of edges of K1 corre-

sponds to the set of points
p_1
2
£ = P U (Loo \ Vo).
UP s Ui\

These points are called external w.r.t. Po.

Definition 3.4. A one-factor represented by a parabola
Pa is a set ofz"771 points of type Pf on Pq, together with a
suitable point at infinity. A one-factor so defined is referred
to as a parabolic one-factor.

Definition 3.5. A one-factor represented by a secant
line ¢ of Py is a set consisting ofz"Q;1 points of € on £, plus
the pole of ¢ with respect to Po.

A one-factor represented by an external line £ of Py is
a set consisting of% points of € on L.

Definition 3.6. A one-factorization of K41 is called
a parabolic one-factorization if p — 1 of its one-factors
are represented by parabolas and one of its one-factors is
represented by a line.

In [6] the authors proved the existence of an infinite
family of parabolic one-factorization.

Theorem 3.7. [6, Theorem 3.4] Let p be an odd prime.
Then the complete graph Kpi11 has a parabolic one-
factorization.

Proof. The proof is constructive. The set
. -1
Iy = {Pfk : k:1,2,...,pT}U{P0°°}
2

is a one-factor represented by the line secant line of Py
of equation X = 0, and F, is the pole. Now we define
the sets

Gk—{P%_'_ij.j—O,:L...,T}U{P_%},
Hy, = { P} cj=01,.., P22l fpe
i R R A e A 5

By Lemma 3.1 G\ { P> } and Hk \ {on } are disjoint
2 2
subsets of the parabola P_,2, and both G and Hy, are

4
one-factors represented by the parabola P_ 2. O
4

Definition 3.8. A one-factorization of K41 is called an

almost parabolic one-factorization if at least one of its one-

factors is represented by P_ 2 forallk € {1,2,... %1}
4

and all other of its one-factors are represented by lines.



For p < 11 exhaustive computer search shows
that each almost parabolic one-factorization of Kp41 is
parabolic. In the rest of the paper we will assume p > 11.

Lemma 3.9. The number of one-factors represented by
lines in an almost parabolic one-factorization is either one,
or at least [2H1].

Proof. If more than one one-factors are represented by
lines, then there exist parabolas P 2 which represent

4
only one one-factor. Hence p — 251 = Z£L of its points

are covered by the lines represented the other one-factors.
Any line meets P_ 2 in at most two points, so we need
4

at least [ 241 lines to cover these points. O

The following Lemma is a straightforward corollary
of [6, Theorem 3.5].

Lemma 3.10. Let £ denote the set of points of type PF
belonging to the one-factors represented by lines in an
almost parabolic one-factorization. Suppose that a one-
factor is represented by the line X = 0. Then for each
k€ {1,2,... 21} either L C Gy or L C Hy.

Proposition 3.11. An almost parabolic one-factorization
contains at most two one-factors which are represented by
vertical lines.

Proof. Suppose to the contrary that it contains at least
three one-factors which are represented by vertical lines.
We may assume that the equations of the corresponding
linesare X = 0, X =u, X =vandu—v =k €
{1,2,... 251}

We also may assume that the line X = v intersects

Gy. Thenv = %/ + 25k’ where j = 0,1,,..,%.
Hence

/ J—
u=v+k' = %+(2j+1)k' where j =0,1,..., pTi?w

So the line X = w intersects Hys contradicting Lemma
3.10. O

Lemma 3.12. In GF(p) let T' denote the set

Then |T'| = p.

Proof. First, we show that the cardinality of the set

1
U:{4j2+4j:j:0,1,...,pT}

is ZXE I 457 + 451 = 455 +452, then (1 — j2) (j1 + 2+
1) = 0. So for j1 # jo we have 457 + 471 = 455 + 472,
because the sum in the second factor is not 0.

The set U obviously contains 0. Moreover, we claim
that U contains both square and non-square elements.
Suppose to the contrary, that all of the non-zero products
j(j+1) are either squares or non-squares. If 2 is a square,
then 1-2 is a square, hence 2- 3 is also a square which im-
plies that 3 is a square. In the same way, step by step, we
get that all of the elements 4, . . ., 172;1, %1 are squares.
Hence there are at least % square elements, a contra-
diction. If 2 is a non-square, then 1 - 2 is a non-square,
hence 2 - 3 is also a non-square, so 3 is a square. But 4
is also a square, hence 3 - 4 is a square, a contradiction
again.

Now we show that the set

S:{/ﬁ:k:Lz...,%}

equals to the set of square elements of GF(p). The
cardinality of S is %, because k7 = k3 implies
(k1 — k2)(k1 + k2) = 0, and the second factor is never
0, because k1 + ko < p—1.

Choose elements w1, u2 € U such that u; is a square
and us is a non-square. Then u1U Nu2U = (), hence

p—1
=P

the statement is proved. O

-1
|{0}UU1UUuQU|:1+pT—|—

Proposition 3.13. If an almost parabolic one-
factorization contains a one-factors which is represented
by a wvertical line, then it cannot contain one-factors
represented by non-vertical lines.

Proof. We may assume that the equation of the corre-
sponding vertical line is X = 0. Suppose to the contrary
that it contains the line £: Y = ma + b. We claim that
there exists at least one k € {1,2,..., PTfl} such that
LN Gy # 0 # £N Hy. By Lemma 3.12, there exist j and
k such that A, = (452 + 45)k>. Then

Ao+ k= (457 + 4k + K = (2 + k),
so, by Lemma 3.3, £ intersects P_ ;2 and the difference of

4
the first coordinates of the two intersections is (25 +1)k.
Hence one of the two points belongs to G, and the other
one belongs to Hj,. The statement follows from Lemma
3.10. O

The main result of this section is the following theorem,
which derives from Propositions 3.9, 3.11 and 3.13.

Theorem 3.14. Let p be an odd prime. If an almost
parabolic one-factorization F of Kp41 contains a one-
factor which is represented by a vertical line, then the one-
factorization is parabolic.



Proof. For p < 11 the statement follows from an exhaus-
tive computer search, see [6].

If p > 11, then [2£1] > 3. Hence, by Lemma 3.9, F
contains either one, or at least three one-factors that are
represented by lines. In the former case, we are done.
The latter case leads to a contradiction, since, by Lemma
3.11, the number of vertical lines is at most two, and by
Lemma 3.13, there is no non-vertical line among the lines
representing the one-factors. O

4. Linear one-factorizations

In this section, we consider one-factorizations whose all
one-factors are represented by lines.

Let €2 be the set of points of an irreducible conic in
PG(2,q) with ¢ > 5 odd.

Theorem 4.1. Let Kq1 be a one-factorization on )
whose one-factors are represented by lines. Then some
of those lines are a chord of 2.

Proof. Let K411 be represented by the lines /1, ..., {q.
Assume on the contrary that each those lines is an exter-
nal line to Q. Let L1, ..., Ly be the poles of 41, ..., 44
with respect to the orthogonal polarity 7 associated with
Q.Fori=1,...,q, let ¢; be the involutory perspectiv-
ity with center L; and axis ¢; which preserves €). Let
G = PGL(2,q) be the orthogonal group of €2, i.e. the
subgroup of PGL(3, g) which commutes with 7. Then
G preserves (2 and acts on its points as PGL(2, ¢) on
the projective line over [Fy. Furthermore, p; € G. Let F
be the set consisting of ¢;, 7 = 1,. .., q together with
the identity of G. Since K41 is a one-factorization, for
any two points P, Q) € 2 there exists a unique ¢ € F
such that ¢(P) = q. Therefore, F is a sharply transitive
permutation set on {2 containing the identity. From the
classification of sharply transitive subsets of PGL(2, q)
[15], it turns out F is a subgroup of PGL(2, q) of order
q + 1. On the other hand, from Dickson’s classification
of subgroups of PGL(2, ), the subgroups of PGL(2, q)
entirely consisting of involutions together with the iden-
tity, have order either 2 or 4. But then ¢ < 3, a contra-
diction. O

We conclude by reporting a conjecture that is sup-
ported by computer-aided searches. With the aid of
Magma [16] we verified that the conjecture holds for
p < 23.

Conjecture 4.2. [6, Conjecture 3.6] Let p > 7 be an
odd prime, F be a one-factorization of the complete graph
K41 such that each one-factor of F is either represented
by a line or a parabola. Then F is either a parabolic one-
factorization or each one-factor of F is represented by a
line.
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A. Tables

Corollary 3.14 states that almost parabolic one-
factorization of K41, p odd prime, containing a vertical

Gs

H;

Ge

Hg

Pyo:(1:11:0),Ps4:(1:6:6),Ps12:(1:1:10),
Pyr:(1:9:12)}
{Pioc :(0:1:8),P59:(1:5:9),P56:(1:2:1),

Ps3:(1:12:11), P50 :
Ps7:(1:3:6)}
:{Po,cc :(0:1:5),Ps1:
Pss:(1:4:0),P55:
Ps12:(1:8:9)}
{Pro,0c 1 (0:1:7),Ps3:

(1:9:0),P5,10: (1:6:7),

(1:10:6), P51 : (1:7:7),
(1:1:11),P55:(1:11:1),

(1:6:1),Ps2:(1:5:3),

line are parabolic. In this Appendix, we report exam- A o p=17

ples of such parabolic one-factorizations of the complete
graphs K14, Kig and K»o, found by computations on

Fo

Gy

H,

Hs

Magma, [16]. K4 admits only 1 one-factorization, and
are well-known the 6 examples of 1-factorizations of K.
We refer to [6] for the cases Ks and K1o.

Al. p=13

Foy:{Po,cc:(0:1:0),P16:(1:0:3),P212:(1:0:12),
P3s5:(1:0:1),Ps11:(1:0:9),Ps54:(1:0:10),
Ps10:(1:0:4)}

G1:{Ps,0c : (0:1:12),P17:(1:1:4),P1g:(1:3:12),
Pi11:(1:5:2),Pio:(1:7:0),Pi2:(1:9:6),
Pyy:(1:11:7)}

Hy :{Prooc:(0:1:1),Pis:(1:2:7),P110:(1:4:6),
Pi12:(1:6:0),P1:(1:8:2),Py5:(1:10:12),
Pis5:(1:12:4)}

Gy :{Pi2,0c : (0:1:11),P21:(1:2:3),P25:(1:6:9),
Pyo:(1:10:8),Po0:(1:1:0),Ps4:(1:5:11),
Pyg:(1:9:2)}

Hy : {P1,oc:(0:1:2),Po3:(1:4:2),P7:(1:8:11),
Pyq1:(1:12:0),P22:(1:3:8),P6:(1:7:9),
Psio:(1:11:3)}

Gz :{Ps,00 :(0:1:10),P35:(1:3:10),P51:(1:9:4),
Py7:(1:2:5),P30:(1:8:0),P36:(1:1:2),
Psqo:(1:7:11)}

Hs :{Psoc :(0:1:3),P311:(1:6:11),P34:(1:12:2),
P310:(1:5:0),P33:(1:11:5),P59:(1:4:4),
P;5:(1:10:10)}

Gy :{Pi1,00 :(0:1:9),Pyo:(1:4:12),Py10:(1:12: IOS;,5
Pys5:(1:7:6),Ps0:(1:2:0),Ps5:(1:10:5),
Pys5:(1:5:8)}

Hy :{P200:(0:1:4),P16:(1:8:8),Ps71:(1:3:5),

Psr:(1:4:7),Ps0:(1:3:0),Ps,12:(1:2:8),
Psi1:(1:1:5)}

{P300:(0:1:6),Ps9:(1:12:5),FPs5:(1:11:8),
Ps7:(1:10:0),P56:(1:9:7),Ps5:(1:8:3),
Psy:(1:7:1)}

{Po,0c :(0:1:0),P15:(1:0:4),Ps16:(1:0:16),
Py7:(1:0:2),Py15:(1:0:13),P56:(1:0:15),
Ps14:(1:0:8),Pr5:(1:0:9),Ps15:(1:0:1)}

{Ps0c :(0:1:16),P1g:(1:1:5),Py 47 :(1:3:13),
Pi13:(1:5:12),P115:(1:7:2),P10:(1:9:0),
Pio:(1:11:6),P14:(1:13:3),P16:(1:15:8)}

t{Po,cc :(0:1:1),P110:(1:2:8),P1,12:(1:4:3),
Pi14:(1:6:6),P116:(1:8:0),P11:(1:10:2),
Py5:(1:12:12),P5:(1:14:13),P, 7 :(1:16:5)}

{Pi6,00 : (0:1:15), P17 :(1:2:3),Pa5:(1:6:1),
Pro:(1:10:14),P515:(1:14:8),Ps0:(1:1:0),
Poy:(1:5:7),Pog:(1:9:12),P545:(1:13:15)}

{Proc:(0:1:2),Py3:(1:4:15),Ps7:(1:8:12),
Pyq1:(1:12:7),P215:(1:16:0),P22:(1:3:8),
Pyg:(1:7:14),Pr10:(1:11:1),Py14:(1:15:3)}

{Proc:(0:1:14),P310:(1:3:11),P316: (1:9:15),
P3s5:(1:15:6),P311:(1:4:1),P;0:(1:10:0),
P36:(1:16:3),P312:(1:5:10), P57 :(1:11:4)}

:{Pio,00 1 (0:1:3),P313:(1:6:4),P5:(1:12:10),
Pyg:(1:1:3),P314:(1:7:0),P53:(1:13:1),
P3o:(1:2:6),P315:(1:8:15),P54:(1:14:11)}

:{Pis,00 : (0:1:13),Py2:(1:4:12),Py10:(1:12:4),
Py1:(1:3:5),Ps9:(1:11:15),Ps0:(1:2:0),
Pyg:(1:10:11),Ps16:(1:1:14),Py7:(1:9:9)}

{P2oc :(0:1:4),Psg:(1:8:9),Ps14:(1:16:14),
Pys:(1:7:11),Ps13:(1:15:0),Ps4:(1:6:15),
Pii2:(1:14:5),Py3:(1:5:4),Ps11:(1:13:12)}

{Ps,00 :(0:1:12),P511:(1:5:6),Ps54:(1:15:2),
Ps14:(1:8:11),P57:(1:1:16),P50:(1:11:0),
Ps19:(1:4:14),P53:(1:14:7),Ps15:(1:7:13)}

{Pi1,00c :(0:1:5),Ps516:(1:10:13),P5,9:(1:3:7),
Pso:(1:13:14),P512:(1:6:0),Ps5:(1:16:16),
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Ps15:(1:9:11),Ps5:(1:2:2),P51:(1:12:6)} P;s5:(1:16:2)}
Go: {Pia,0c :(0:1:11),Ps3:(1:6:10),Ps15:(1:1:9)Ga: {Pi7,00 : (0:1:15),Pso:(1:4:12),Py10:(1:12:7),

Ps10:(1:13:7),Ps5:(1:8:4),Ps,0:(1:3:0), Py1g:(1:1:16),Ps7:(1:9:1),Ps15:(1:17:0),
Ps12:(1:15:12),Ps7:(1:10:6),Ps2:(1:5:16)} Pyy:(1:6:13),Ps12:(1:14:2),P;;:(1:3:5),
Hg : {P3,00: (0:1:6),Ps,9:(1:12:16),Ps,4:(1:7:6), Pyo:(1:11:3)}

Psji:(1:2:12),Ps 11 :(1:14:0),Ps6:(1:9:4),Hy : {P2,oc:(0:1:4),Ps6:(1:8:3),Ps14:(1:16:5),
Ps1:(1:4:7),Ps13:(1:16:9),Pss:(1:11:10)} Py5:(1:5:2),Py11:(1:13:13),Ps0:(1:2:0),

G7:{Ps,00 : (0:1:1PZ0),P712:(1:7:7),Pr9:(1:4:8), Pys:(1:10:1),Ps16:(1:18:16),Ps5:(1:7:7),
Prg:(1:1:10),P73:(1:15:13),Pr:(1:12:0), Pyys3:(1:15:12)}
Prqy:(1:9:5),Prq1:(1:6:11),Pr5:(1:3:1)} G5 : {Proc:(0:1:14),P512:(1:5:14),P53:(1:15:5),

H; :{Pi2,00 : (0:1:7),P75:(1:14:1),Pr16:(1:11:11), Ps13:(1:6:6),Ps4:(1:16:17),P514:(1:7:0),
Pri3:(1:8:5),Pr10:(1:5:0),Pr7:(1:2:13), Pss:(1:17:12),P515:(1:8:15),P56:(1:18:9),
P;y:(1:16:10),Pr1:(1:13:8),Pr15:(1:10:7)} Ps16:(1:9:13)}

Gs :{Pi3,00 :(0:1:9),Ps4:(1:8:14),Ps5:(1:7:16),Hs : {P12,00 : (0:1:5),P517:(1:10:13), P55 : (1:1:9),
Pso:(1:6:3),Ps1:(1:5:9),Ps0:(1:4:0), Ps15:(1:11:15),P59:(1:2:12),P5:(1:12:0),
Psi6:(1:3:10),Ps15:(1:2:5),Ps1a:(1:1:2)} Psi10:(1:3:17),P51:(1:13:6),Ps511:(1:4:5),

Hg : {P1,00:(0:1:8),Ps12:(1:16:2),Ps11:(1:15:5), Pso:(1:14:14)}
Ps10:(1:14:10),Ps0:(1:13:0),Ps;s:(1:12:9fG6 : {Pig,00 : (0:1:13),Ps3:(1:6:8),Ps,15:(1:18:11),
Pgr7:(1:11:3),Ps6:(1:10:16),Ps5:(1:9:14)} Pgg:(1:11:17),Ps1: (1:4:7),Ps,13:(1:16:0),

Psg:(1:9:15),Ps15: (1:2:14),Ps11 : (1:14:16),
Psa:(1:7:2)}

A3. p=19 He : {P3.00:(0:1:6),Pso:(1:12:2),Pso:(1:5:16),
Ps1a:(1:17:14),Ps7:(1:10:15), P50 : (1:3:0),

Fo :{Py,0c: (0:1:0),P19:(1:0:14),P>15:(1:0:18), Psan:(1:15:7), Pss: (1:8:17), Poar: (1:1:11),
P3g:(1:0:12),Py17:(1:0:15),P57:(1:0:8), Psao: (1:13:8)}

Poao: (1:0:10), Pro: (1:0:2), Poas: (1:0:3) g {Py 0 (0:1:12), Prag: (1:7:13), Prg: (1:2:6),
Pos i (1:0:13)} Pr3:(1:16:11),Pra7:(1:11:9),Pr42:(1:6:0),

G1:{Po,0c : (0:1:18),P1,10:(1:1:15),Pi12:(1:3:4), Prr:(1:1:3),Pro:(1:15:18), Pryg: (1:10:7),
Piia:(1:5:1),Pi16:(1:7:6),P115:(1:9:0), Prai:(1:5:8)}
Pi1:(1:11:2),P3:(1:13:12),Py5:(1:15: 11}{7 {Pl3oe:(0:1:7),Pry:(1:14:8), Pras: (1:9:7),
Prr:(1:17:18)} Prio:(1:4:18),Prs:(1:18:3),Pro: (1:13:0),

Hy : {Pio,oo: (0:1:1), P11 :(1:2:18), Py 15 :(1:4:11), Pria:(1:8:9),Pro:(1:3:11),Pry:(1:17:6),
Pii5:(1:6:12),Pi17:(1:8:2),Pio:(1:10:0), Pras:(1:12:13)}

Prz:(1:12:6), Pra:(1:14:1), Pro: (1:16:4), o ypy (010 11), Py (1:8:10), Psy < (1:5:9),
Prs:(1:18:15)} Poar:(1:2:7), Poqa: (1:18:4), Py : (1:15:0),

Gy :{Pig,c :(0:1:17),Po1:(1:2:3),Ps5:(1:6:16), Peg:(1:12:14),Pss:(1:9:8), Pso: (1:6: 1),
Pyo:(1:10:4),Py13:(1:14:5), P17 :(1:18:0), Psis:(1:3:12)}

Poz:(1:3:8),Pog:(1:7:10), Prao: (1:11:6), o (p, 2 (0:1:8), Psya: (1:16:12), Peg: (1:13: 1),
Poaa:(1:15:15)} Psg:(1:10:8), Pss:(1:7:14), P (1:4:0),

Hy :{P1,0c:(0:1:2),Po3:(1:4:15),P>7:(1:8:6), Psig:(1:1:4),Psas:(1:17:7), Ps1o: (1:14:9),
Pr11:(1:12:10),P15:(1:16:8),P0:(1:1:0), Ps7:(1:11:10)}

Pra:(1:5:5), Pog: (1:9:4), Ponz s (1:13:16), o Py (0:1:10), Poga: (1:9:18), Pg s (1:8: 1),
Prae i (1:17:3)} Pyi2:(1:7:5),Py11:(1:6:11),Py10:(1:5:0),

Gs:{Ps,00o : (0:1:16),P3,11:(1:3:2),P517:(1:9:17), Poo:(1:4:10),Pog:(1:3:3),Pyy:(1:2:17),
P3s:(1:15:9),P310:(1:2:16),P516:(1:8:0), Pog:(1:1:14)}

Pss:(1:14:18), Py (1:1:13), Pyas s (1: T A)gy . (pyy 2 (0:1:9), Pog s (1:18:14), Pyg : (1:17:17),
Psz:(1:13:10)} Poo:(1:16:3),Pyy: (1:15:10), Py : (1:14:0),

Hs : {Prioo : (0:1:3), Psa s (1:6:10), Py = (1:12:4), p 012181 11), Py (1:12:5), Pogg s (1:11: 1),
P37:(1:18:13),P515:(1:5:18),P3,0:(1:11:0), Pos:(1:10:18)}
P3:(1:17:16),P312:(1:4:9),P315:(1:10:17),

—

—
—



B. Magma code

Below, we report the code used to find the parabolic
one-factorizations.

p:=19;

F:=GF(p);
AG:=AffineSpace(F,3);
ri=(p-1)/2;

rr:=(p-3)/2;
FO:={AG![0,1,0]};

for k in [1..r] do

kk:=F!'!k;

1:=AG![1,0, (-kk/2)r2+(-kk/2)*kk];
FO0:=F0 join {1};

end for;

printf "F 0 : %o\n" ,FO0;
for k in [1..r] do

kk:=F!'!k;

G:={AG![0,1,-Kkk]};
H:={AG![0,1,kk]};

for j in [0..rr] do
jj:=F!j;

i:=F! (kk/2+2*jj*kKk);
ii:=F!(kk/2+(2*jj+1)*kk);
m:=AG![1,i+kk/2,iAr2+i*kk];
n:=AG![1,ii+kk/2,iir2+ii*kk];
G:=G join {m};

H:=H join {n};

end for;

printf "G %o : %o\n" ,kk,G;
printf "H %o : %o\n" ,kk,H;
end for;
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