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Abstract 
This paper presents an innovative Natural Language Understanding (NLU) pipeline for human-
robot interactions (HRI), optimized for on-premises deployment in industrial settings. The 
proposed system integrates an end-to-end Automated Speech Recognition (ASR) system, a 
transformer-based model for intent and entity recognition, and a dynamic dialogue management 
system. These components operate on commodity hardware, ensuring real-time responsiveness 
without cloud dependency. The pipeline is uniquely extensible via an automated, offline training 
module that uses large language models like ChatGPT to generate datasets, reducing the need for 
specialized machine learning expertise.  
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1. Introduction 

Human-robot interaction is becoming increasingly critical in industrial settings where 

efficiency, accuracy, and adaptability are paramount [1]. As industries shift towards greater 

automation, the demand for more intuitive and natural communication methods between 

humans and robots grows. NLU serves as a vital tool in bridging this gap, allowing robots to 

interpret and respond to human language [2]. However, many existing NLU systems depend 

on cloud-based services [3], which can introduce unwanted latency and security risks—

issues particularly problematic in industrial environments. 

This paper introduces a specialized NLU pipeline designed for human-robot interaction 

within industrial settings and ASR system [4], a transformer-based model for intent and 

entity recognition, and a dynamic dialogue management system. These components are 

optimized to function on commodity hardware, forming a robust and scalable solution for 

real-time HRI. 
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2. Solution architecture 

To develop a robust and efficient NLU pipeline for human-robot interaction, we have 

employed a state-of-the-art technology stack: Python with deep learning libraries PyTorch 

and Transformers for working with BERT [5], OpenAI Whisper [6] for ASR and Mozilla TTS 

[7] for Text-to-Speech, Pydantic for data validation, FastAPI and Streamlit for creating user-

friendly interfaces. These components are used to create the training and inference 

pipelines and are detailed in Figure 1 below.  

 

 

Figure 1 – High level architecture of the proposed system. 

2.1. Inference pipeline 

The Inference Pipeline is designed for on-edge deployment, enabling real-time processing 

of vocal commands with a target maximum end-to-end delay of two seconds. Key 

components include: Audio I/O: Captures and outputs audio, serving as the interface for 

human-robot communication; Speech to Text (ASR): Converts spoken language into text, 

optimized for minimal latency; NLU: Extracts intents and entities from the transcribed text 

to understand and execute commands; Dialog Manager: Manages conversational context 

and directs the flow of interactions; Text to Speech: Converts text responses back into 

speech, allowing for seamless communication with operators; Robot Output: Executes the 

understood commands, affecting robot actions directly. This component is out-of-scope. 

2.2. Training pipeline 

The Training Pipeline effectively trains the ML models, enables new voice commands and is 

configurable to operate either via a cloud-based LLM API or via an open-source model like 

Llama-3-8b on a powerful standalone computing station. This flexibility ensures an 

optimum balance between performance, reliability and security. Main components are: 

Config Manager: Provides technical user interface for updating commands, creates data 

models with validation and LLM prompt according to the commands structure; LLM: 

Generates annotated data in the form of natural utterances expressing the commands, 



according to the prompt.; NLU Training: Trains the NLU model using the generated data. 

The hyperparameters are fixed during the research phase, so that users get a usable model 

without any ML engineer intervention. 

2.3. Speech to Text 

After studying the state-of-the art (as of 2024) in ASR models, we chose Whisper from 

OpenAI as it has very good accuracy with a real-time factor > 1 on commodity hardware. 

Additionally, it comes in multiple model sizes for an optimum compromise between 

accuracy and resource consumption depending on application.  

The fundamental limitation of Whisper is that it can only transcribe a pre-recorded audio 

clip. Because a robot needs to continuously listen for commands, we tried some 

workarounds and found Silero VAD (voice activity detection) model to be satisfactory. 

2.4. NLU  

Transformer based language models have revolutionized NLP in the last few years [8], from 

language translation, sentiment analysis, knowledge extraction to complex text generation. 

Despite being relatively old (2018), the BERT language model remains a solid workhorse 

for many NLP tasks because it has a low inference cost. One uses BERT as a pre-trained text 

encoder which captures an abstract understanding of the language in its hidden state 

vectors. Then, according to the task, one trains a relatively small neural network on top of 

the BERT encodings, requiring a similarly small amount of task-specific data. In our case of 

intent and slot recognition, we can use one sentence classifier head for the intent, and 

another token-level classifier head for the slot identification. Then for each slot that must fit 

to a pre-defined list of values we can run the extracted tokens through a zero-shot classifier 

leveraging vector similarity. 

2.5. Text to Speech 

After studying the state-of-the art (as of 2024) in TTS models, it resulted that cloud API’s 

offer more than enough speech quality, low latency and very low price for this application 

(OpenAI, Google, AWS, etc.). Since most utterances can be generated as part of the training 

flow, there is not much reliance on the internet for regular operation. However, in some 

cases such as mentioning the run-time slot options, we need on-the-fly generation therefore 

we investigated some open-source models that can run locally, of which Mozilla TTS seems 

promising. If the latency of generating locally is higher than the cloud latency, then the cloud 

API will be used primarily, with an automatic fallback (when offline) to the local model. 

2.6. Dialog Manager 

To have a coherent system, a core module is needed to stitch together the AI functionalities 

of the individual modules. A rule-based implementation is developed, covering the 

following fixed scenarios with appropriate templates applicable to any command that is 

later added: Too much audio noise: When the recognized speech is unintelligible, ask the 

operator to repeat or simply ignore and keep listening; Unclear intent: When the speech is 



recognized but cannot be classified as one of the existing intents, ask the operator to revise 

and repeat (optionally informing them about the list of intents); Missing slot: When the 

intent is clear but one of the mandatory slots for this intent is missing, ask the operator to 

say the respective slot, or repeat the entire utterance if there is more than one missing slot 

(to be able to separate which slot is which); Unclear slot option: When everything is clear 

except an invalid slot option (ex. A, B, C are the options, but they provide D), ask the operator 

to revise and say the slot (optionally informing them about the list of values). 

The dialog manager uses a local database and memory variables to keep track of the 

conversation. It also logs all successes and failures (tied to the user input and context) so 

that the system can be analyzed, improved and updated. 

3. Conclusions 

In this paper, we have presented a novel Natural Language Understanding (NLU) pipeline 

designed for human-robot interaction in industrial settings.  

Future work will focus on further enhancing the system's capabilities, including 

improving the accuracy and latency of the ASR and TTS components, expanding the range 

of supported commands, and integrating more advanced dialogue management features. 

Additionally, we aim to conduct extensive field testing in various industrial settings to refine 

the system and ensure its reliability and effectiveness in real-world applications. 
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