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Abstract
Traffic flow prediction is both one of the important components of intelligent transport systems 
(ITS) and a challenging task at the same time. Although the existing traffic flow prediction has 
achieved  good  results,  the  existing  traffic  flow prediction  models  only  model  dynamic  spatio-
temporal correlations on a single time or spatial scale, and have poor performance on long-distance 
prediction. Aiming at the above problems, this paper proposes a traffic flow prediction model based 
on multi-scale pyramid spatio-temporal network. Specifically, firstly, a local spatio-temporal grid is 
generated  by  combining  traffic  data  features  and  adjacency  matrix.  Secondly,  multiple 
convolutional layers are used to aggregate sequences with multiple resolutions, and at the same 
time, the spatio-temporal grids are merged into traffic event sequences based on the temporal and 
spatial  dimensions.  Next,  the  adaptive  combination  of  pyramidal  attention  and  multi-channel 
spatio-temporal convolution module is used to capture the spatio-temporal dependence of sequence 
dynamics  and  the  global  spatio-temporal  features  are  obtained  by  optimal  fusion  using  fully 
connected layers. Finally, the corresponding predicted values are output based on the global spatio-
temporal features.  Experimental results on two publicly available datasets show that the model 
largely improves the detection.1

Keywords 
Grid, Spatio-temporal,Attention, Channel

1. Introduction

In recent years, the sensor technology is developing rapidly, and the travel modes are rich and 
diverse, and the intelligent transportation system has become the key development object in 
many countries. In response to the problem of huge urban traffic flow and high speed area, 
traffic prediction has become a key research in intelligent transportation system, and traffic 
flow prediction methods are used to learn the highly nonlinear characteristics of traffic flow 
data in order to accurately predict the traffic flow of complex urban roads in the coming 
period. Stable and reliable traffic flow prediction algorithms can effectively alleviate traffic 
congestion and improve people's quality of life.
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Traffic data contains important transportation system features, such as traffic flow, speed, 
and time information recorded by road network sensors. Traditional statistical and machine 
learning methods [1,2] are used to analyze the complex spatio-temporal properties of these 
traffic data and thus predict traffic flow. However, these methods perform poorly in capturing 
high-dimensional  spatio-temporal  features.  In  recent  years,  researchers  in  the  field  of 
transportation  have  turned  their  attention  to  deep  neural  networks.  Researchers  have 
employed CNNs to capture spatial features of target nodes and nearby regional nodes [3].Li et 
al [4] modeled the diffusion process of directed graphs and combined diffusion convolution 
and GRU recurrent neural networks to fuse the temporal and spatial correlations of the traffic 
flow. Tang et al [5] proposed the spatio-temporal latent graph structure learning network 
STLGSL, which employs a multilayer perceptron and k-nearest neighbors to generate graph 
structure, and utilizes diffusion graph convolution and dilation causal convolution as well as 
gating mechanism to mine the spatio-temporal features of the generated graphs. Li et al [6] 
proposed Transformer-enhanced DetectorNet, which utilizes a multi-view temporal attention 
module  to  capture  temporal  correlation  of  distance  and  proximity,  and  combines  graph 
convolution and a dynamic attention module to aggregate the spatial features of the generated 
dynamic graphs.

The aforementioned studies on traffic flow prediction have achieved impressive results. 
However,  existing work prefers  to capture the pairwise impacts  of  spatio-temporal  traffic 
events and the spatio-temporal  features of  traffic data from a single temporal  and spatial 
scope. However, this approach makes it difficult to learn the dependencies of distant locations 
in time and space, and does not comprehensively capture spatio-temporal dependencies at 
different scales.

In order to solve the above two problems, this paper proposes a new traffic flow prediction 
model based on multi-scale pyramidal hybrid spatio-temporal network, called MSLST. First, 
the original traffic data features (time and speed) and sensor distances are preprocessed, and a 
local spatio-temporal grid is constructed by selecting other nodes that are spatially correlated 
with the target node based on the generated adjacency matrices. Second, the temporal and 
spatial dimensions of the spatio-temporal grid are combined into a sequence of traffic events, 
and the sequence is processed using multiple convolutional layers with different Stride to 
obtain the feature information of the sequence at different resolutions. And stacking multiple 
pyramid attention is used to simulate the pairwise effects of traffic events under different 
spatio-temporal  scales  to  obtain  coarse  and  fine  scale  based  spatio-temporal  correlation 
features. Next, the spatio-temporal features at different scales are transformed into different 
channels using linear layers, and spatio-temporal convolution blocks are used for each layer 
separately to capture the spatio-temporal information of other nodes in the region near the 
target node in the local spatio-temporal space. Finally, the spatio-temporal features of each 
layer are merged into one channel, and the fully connected layer is used to transform the 
merged  features  to  obtain  the  global  spatio-temporal  features.  And  finally,  traffic  flow 
prediction is performed based on the above output global spatio-temporal features.

To summarize the main contributions:

1. In this paper, the temporal and spatial dimensions of traffic data are merged into a 
single  fluid,  and pyramid attention is  used  to  directly  model  the  dynamic  spatio-
temporal associations between a target node in local spatio-temporal space and other 



nodes at different moments,  and to convey the spatio-temporal information of the 
nodes  in  different  spatio-temporal  ranges,  which  improves  the  model's  ability  to 
capture the highly nonlinear spatio-temporal features of the traffic flow.

2. In  this  paper,  a  multi-channel  spatio-temporal  convolutional  block  is  proposed to 
perform gated aggregation of  spatio-temporal  information at  various scales  of  the 
pyramid,  flexibly  mining  the  compact  spatio-temporal  feature  representations  of 
proximity and remoteness in the local spatio-temporal context, establishing one-to-
many relationships between the target node and the other nodes in both time and 
space, and greatly improving the performance of long-distance multistep prediction.

3. MSLST is evaluated on two real-world public datasets to validate the effectiveness and 
sophistication of the model.

2. Model

This  section  describes  a  multi-scale  local  spatio-temporal  network  (MSLST)  for  modeling 
spatial and temporal information of traffic flow. As shown in Fig. 1, the MSLST is composed of 
three parts,  which are local  spatio-temporal  grid construction,  multi-scale  spatio-temporal 
attention  block,  and  multi-channel  spatio-temporal  convolution  block.  The  local  spatio-
temporal mesh construction is responsible for stitching the spatio-temporal intervals between 
traffic events from target sensors and other sensors into a 3D mesh, the multi-scale spatio-
temporal attention block is responsible for capturing the spatio-temporal correlation of traffic 
events  of  a  single  flow shape under multiple  ranges of  spatio-temporal  contexts,  and the 
multi-channel spatio-temporal convolution block is responsible for aggregating temporal and 
spatial information under multiple channels to obtain global spatio-temporal features. Finally, 
a dense fully connected layer is used to predict future traffic flow.

Figure 1: MSLST architecture diagram.

2.1. Local spatio-temporal grid construction

Inspired by the local spatio-temporal structure[7], we utilize a Gaussian kernel to transform 
the distance matrix of the sensors into a weight matrix to represent the connectivity of the 
sensors, where a larger weight represents a smaller distance of the sensors, and the formula is 
defined as follows:

                                                                                                         （1）



where  is the weight matrix at time step ,  is the distance matrix,  

and   denote two nodes of the weight matrix  ,   is some time step, and   is a 

hyperparameter, which is usually set to the standard deviation of all . 

According to the weight size of  to extract a portion of nodes that are close to the 
target node, and combined into a node set , the relevant definition is as follows:

                                      
（2）

where since the traffic graph is a bidirectional graph, the values of  and  

are different unless  ;  is a weight threshold set in advance, which requires that the 

degree of connectivity of other nodes connected to the target node  is greater than ; in 

addition to this, fix the size of the node set  to be , and for the node set with the number 

of nodes less than , the remaining nodes need to be filled with the features of 0 and have no 

connectivity to the target node . And for the node number is greater than , the  nodes 

with the closest distance to the target node  are selected. Finally, the nodes of node set  
are arranged according to their weights from largest to smallest.

The information related to the traffic map structure at each time step  and the 

node  traffic  measurements  are  fused  together  to  obtain  the  local  spatio-temporal  
of a target node  as follows:

                                              
（3）

where   is  the  traffic  measurement  value  recorded  by  node   at  time  step  ,  and 

 represents the stitching operation. The matrix  not only contains the spatial 

structure relationship between the target node  at time step  and node  in the node set 

,  but also encodes the traffic measurement information of node  .  Therefore,  the local 

spatio-temporal  is defined as

                                              
（4）

It is the necessary information used to train the traffic prediction model to predict the 
traffic data of node .



In summary, the traffic flow prediction problem in this paper is defined as:

                                         
（5）

where   is  the mapping function learned by the multi-scale spatio-temporal  attention 

block,   is  the  training  function  learned  by  the  multi-channel  spatio-temporal 

convolution block,   is the historical time step,   is the future time step, the nodes are 

, and  is the number of nodes in the traffic map.

2.2. Multi-scale spatio-temporal attention blocks

Inspired by Pyraformer [8], pyramid attention is introduced to describe the spatio-temporal 
dependencies of individual traffic events in multiple resolutions. FPN feature pyramids[66] 
utilize convolution to compute feature maps at different scales,  preserving high-resolution 
fine-grained semantic  features  while  incorporating low-resolution coarse-grained semantic 
features.

In this section, multiple convolutional layers with kernel size 4 and step size 4 are used for 

initialization in the dimension of  time and space merging.  Sequences of  length   are 
generated at scale . The dimensionality of each node is then reduced by a fully connected 
layer, followed by connecting them to the output of the original sequence 1*1 convolution.

Assuming that  and  are the input and output of a single attention, first the input data 

 is linearly transformed into three independent matrices ,  , and , where

, ,  and  .  The  original  attention  mechanism  can  be 
represented as follows:

                                                                      
（6）

where , ,  are the learnable weight matrices for transforming 

the traffic event features into the query,  key,  and value space,   denotes the ith row of 

,  denotes the jth row of , and  denotes the jth row of .

Figure 2: Pyramid diagram.



The structure of the pyramid is shown in Fig. 2, which is defined as a set of neighbor nodes 

 of the current node ,  denotes the lth node in the sth layer and  contains 

the neighbor nodes of the current node in the same layer including its own node, ,  

is the  child node of the current node in the C-fork tree and  is the parent node. They 
are specifically defined as:

                                                                        
（7）

                                               
（8）

                         
（9）

                                      
（10）

In  this  section,  the  number  of  fixed pyramid layers   is  4,  neighbor  node   is  3 

(including its own node),  and child node   is 4.  Therefore, the pyramid attention of the 

current node  can be expressed as:

                                                         
（11）

2.3. Multi-channel spatio-temporal convolution block

The  outputs  of  the  four  layers  of  the  pyramid  represent  the  spatio-temporal  feature 
representations of traffic events at different scales. In this section, the features output from 
different layers of the last pyramid are first converted to different channel spaces, and then the 
spatio-temporal convolution block is used to integrate regional spatio-temporal features of 
traffic flows at different scales with different depths, and the regional spatio-temporal features 
at various scales are spliced together, and finally the fully-connected layer converts the spliced 
multiscale spatio-temporal features into predicted values of future traffic flows.

The spatio-temporal convolution block is composed of three convolutions that capture the 
effect of local spatio-temporal on the target traffic events, the temporal dependence of traffic 
events at different moments of the same node within the local spatio-temporal, and the spatial 
dependence between the node and its neighbors at the same moments within the local spatio-



temporal,  the  three  convolution  kernels  are  the  spatio-temporal  convolution  kernel 

, the temporal convolution kernel  , and the spatial convolution kernel 

, and the output features of the sth layer of the pyramid, , serve 
as the input of the spatio-temporal convolution block, and the formula of the spatio-temporal 
convolution block is defined as follows:

  
（12）

                                                        
（13）

                                                        
（14）

                                                       
（15）

                                                       
（16）

where  represents the convolution operation,  denotes the leakage corrected 

linear unit function,  is the output of the spatio-temporal convolution block, 
the dimension of the output is the same as the dimension of the input as the convolution 

kernel   is set to  and the padding size to be 1.  is a 1*1 convolution 

kernel for the aggregation of the three features of  ,  ,  and   and a uniform 

number of channels to be .

2.4. Prediction and Optimization

Next, prediction is performed by using two fully connected layers as prediction layers and 

using  as input to the prediction layers. The final prediction result  is obtained.

                                                                                   
（17）

In  order  to  learn  the  parameter  settings  of  the  model  accurately,  the  final  total  loss 
function is expressed as follows.

                                                 
（18）

where  denotes the predicted value of the mth sensor at time t and  denotes the true 

value  of  the  mth  sensor  at  time  .  We  optimize  the  model  parameters  using  stochastic 



gradient descent and backpropagation algorithms and further update the parameters using 
Adam optimizer.

3. Experimental comparison and analysis

3.1. Datasets

In this section, two publicly available real-world traffic prediction datasets are used to validate 
the effectiveness of the model, PeMS-Bay[9] and METR-LA dataset[9].The PeMS-Bay dataset 
contains measurements from 325 sensors for the period of January 1, 2017 to May 31, 2017 for 
the  Bay area.The METR-LA dataset  contains  measurement  data  from 207  sensors  for  the 
period March 1, 2012 to June 30, 2012 in Bay. The speeds contained in both datasets are in 
miles per hour. Table 3.1 summarizes the statistics for both datasets. 

Table 1
Statistics of the data set

3.2. Evaluation Criteria

This  section  evaluates  the  performance  of  the  model  using  three  metrics  that  are  more 
commonly used in traffic flow prediction, including MAE, RMSE, and MAPE, with the relevant 
formulas as follows:

                                                         （19）

                                                  （20）
where  ,  denotes the length of the output sequence,   denotes the length of the 

input sequence,  and  are usually 12,  denotes the true value of the output sequence of a 

node at a certain moment, and  denotes the predicted value of the input sequence of a node 
at a certain moment after the model.

3.3. Algorithm Comparison and Experimental Setup

The number of neighbor nodes constructed by the local spatio-temporal grid in the MSLST 
model architecture is 16. For the multi-scale spatio-temporal attention block, the number of 

Datasets Time Series Nodes Time 
Interval

Input 
Length

Output 
Length

META-LA 34272 207 5min 12 12

PeMS-Bay 52116 325 5min 12 12



output channels is 128, the number of convolutional layers of the initialized pyramid graph is 
4, including a 1*1 convolutional layer with stride 1 and three 4*4 convolutional layers with 
stride 4, the number of pyramidal spatio-temporal attentions of the stacked pyramids is 2, and 
the number of pyramidal layers of each pyramidal spatio-temporal The number of pyramidal 
layers  of  attention  is  4.  The  number  of  channels  of  the  four  layers  of  spatio-temporal 
convolution of the multichannel spatio-temporal convolution block is 32, 64, 128, 256, and the 
size of convolution kernel of the spatio-temporal convolution is 3, respectively.

The dataset is set in chronological order with the first 70% as the training set, the middle 
10% as the validation set, and the last 20% as the test set, and 0.2 70% is randomly selected as  
the final training set, and the length of the input sequence P and the length of the output 
sequence Q are 12. In terms of the model training, the batch size of the data is 80, and the  
number of iterations of the training is 50, and the optimizer for updating the parameters of the 
gradient descent is Adam, and the learning rate is 0.001, and the loss function is L1 loss value 
that minimizes the true and predicted values. dropout layer uses 0.3.

In order to verify the superiority of the model MSLST for the traffic prediction task, this 
section compares it with the following baseline methods:

1. ARIMA (Autoregressive Integrated Moving Average) [11], a well-known time series 
analysis method for predicting future values;

2. FC-LSTM  (Fully  Connected  Short-Term  Memory  Network)  [55],  a  sequence-to-
sequence model with fully connected LSTM layers in both encoder and decoder;

3. STGCN (Spatio-Temporal  Graph Convolutional  Network) [60],  a  multi-scale traffic 
network that combines graph convolution and regular convolution;

4. DCRNN  (Diffusion  Convolutional  Training  Neural  Network)  [45],  a  diffusion 
convolution and GRU[?] based codec structure;

5. Graph  WaveNet[46],  an  approach  that  combines  diffusion  factor  convolution  and 
graph convolution to model spatio-temporal dependencies;

6. DetectorNet  (Transformer-enhanced spatio-temporal  graph neural  network)  [63],  a 
Transformer  spatio-temporal  network  combining  a  multi-view  temporal  attention 
module and a dynamic attention module;

3.4. Experimental results and analysis

1) Comparative Analysis of Mainstream Advanced Algorithms

In this section, the performance of MSLST is evaluated on two real-world traffic prediction 
datasets  and  compared  with  state-of-the-art  traffic flow prediction  methods,  as  shown in 
Tables 2 and 3, and the following conclusions can be drawn from the comparison results:

1. Deep  learning  models  have  better  prediction  ability  than  traditional  time  series 
methods and machine learning models on both datasets, which indicates that deep 
learning methods are better able to model the nonlinear relationships between traffic 
data.

2. The traffic flow prediction methods STGCN, DCRNN, Graph Wavenet, DetectorNet, 
and  MSLST  combined  with  deep  learning  and  graph  structure  generally  perform 



better than FC-LSTM, which demonstrates that information about the structure of the 
traffic road network is crucial for traffic prediction.

3. (c) DetectorNet and Graph WaveNet based on dynamic attention module have small 
detection errors at both time steps compared to STGCN and DCRNN with static road 
network structure, which reveals that the dynamic spatial correlation among modeled 
roads  better  reflects  the  dynamic  changes  of  roads,  and  the  learnable  adaptive 
adjacency matrix can adapt  to the uncertainty of  traffic maps,  both of  which can 
retain valuable potential information.

4. (d)  MSLST  has  a  great  improvement  in  prediction  performance  compared  to 
DetectorNet in the short, medium, and long term, indicating that fusing temporal and 
spatial  dimensions  into  a  single  spatio-temporal  fluid  to  capture  spatio-temporal 
features of traffic flow can directly model the dynamic spatio-temporal correlation 
among roads,  which is  a more complete characterization than that of  aggregating 
independent temporal  and spatial  feature extraction modules.  mSLST compared to 
Graph WaveNet at 60min has a decrease in MAE of 0.55, which implies that pyramidal 
attention modeling local spatio-temporal correlations at coarser scales enhances long-
distance dependence,  while  multi-channel  spatio-temporal  convolution aggregating 
spatio-temporal  features  at  each  scale  of  pyramidal  attention  provides  compact 
representations of proximity and long-distance spatio-temporal dependence.

Table 2
Comparison of overall performance in auroc, auprc, precision and recall

Table 3
Error comparison between MSLST of this paper and baseline on PeMS-Bay dataset

METR-LA                                   30min                                                    60min

MAE RMSE MAPE MAE RMSE MAPE

ARIMA 5.15 10.45 12.70% 6.90 13.23 17.40%

FC-LSTM 3.77 7.23 10.9% 4.37 8.69 13.20%

STGCN 3.47 7.24 9.57% 4.59 9.40 12.70%

DCRNN 3.15 6.45 8.80% 3.60 7.60 10.50%

GraphWavene
t

3.07 6.22 8.37% 3.53 7.37 10.01%

DetectorNet 3.06 6.08 8.12% 3.40 6.98 9.60%

MSLST 2.50 5.19 6.78% 2.98 6.19 8.43%

METR-LA                                    30min                                                   60min



Component Analysis

In this section, component analysis is performed on two datasets, METR-LA and PeMS-
Bay. Tables 4 and 5 show the statistical results of the three metrics for the component analysis 
of the two datasets, and the components are analyzed as follows:

1. w/o PM: eliminating the fusion of temporal and spatial dimensions into a single fluid, 
utilizing  two  independent  self-attention  for  the  temporal  and  spatial  dimensions 
respectively for the capture of spatio-temporal correlation of traffic data, and then 
utilizing the gating mechanism to fuse the two features.

2. w/o R-PA: Replace pyramidal attention with ordinary self-attention.
3. w/o P-FPA: retain only the first  layer output of  the pyramid and extract  regional 

spatio-temporal  features  using  only  a  single-channel  spatio-temporal  convolution 
block.

Table 4
Component analysis of this paper's MSLST on the METR-LA dataset

MAE RMSE MAPE MAE RMSE MAPE

ARIMA 2.33 4.76 5.40% 3.38 6.50 8.30%

FC-LSTM 2.20 4.55 5.20% 2.37 4.96 5.70%

STGCN 1.81 4.27 4.17% 2.49 5.69 5.79%

DCRNN 1.74 3.97 3.90% 2.07 4.74 4.90%

GraphWavene
t

1.63 3.70 3.67% 1.95 4.52 4.63%

DetectorNet 1.57 3.54 3.56% 1.80 4.26 4.19%

MSLST 1.47 3.22 3.29% 1.82 4.19 4.26%

METR-LA 30min 60min

MAE RMSE MAPE MAE RMSE MAPE

MSLST 2.50 5.19 6.78% 2.98 6.19 8.43%

w/o PM 3.00 6.01 8.09% 3.38 6.90 9.50%

w/o R-PA 2.67 5.58 7.13% 3.21 6.53 9.12%



Table 5
Component analysis of MSLST in this paper on PeMS-Bay dataset

The following 

conclusions can be drawn from the results in Table 4 and Table 4:

1. For both datasets, MSLST is much more effective than w/o PM, indicating that fusing the 
temporal and spatial dimensions of traffic flow data into a single fluid is more capable of 
modeling the spatio-temporal dynamics of traffic flow by using the attention mechanism 
that can unambiguously capture the spatio-temporal dependence of the target sensors at 
different moments.

2. The larger error of w/o R-PA than MSLST on both datasets, especially 60min, proves that 
the ability of ordinary self-attention in modeling a single spatio-temporal fluid with long-
distance multi-step prediction is weaker compared to pyramidal attention, whose multi-
resolution  model  effectively  constructs  the  sensor's  information  transfer  over  long 
distances in time and space.

3. For METR-LA and PeMS-Bay, w/o R-PA works slightly better than w/o P-FPA, reflecting 
the  multi-channel  spatio-temporal  convolutional  block  aggregation pyramid attention 
coarse and fine scale spatio-temporal features of the traffic flow are an integral part of the 
MSLST, and the finest scale spatio-temporal features are not able to simulate the long 
term dependence of traffic events.

3) Parametric Analysis

In order to verify how much the number of stacked pyramid spatio-temporal attention 
affects the model MSLST, 1~4 pyramid spatio-temporal attentions are stacked in this section, 
respectively. Figure 4.4 shows the results of the comparison of the average MAE for 12 time 
steps.

w/o P-FPA 2.69 5.86 7.26% 3.32 6.84 9.26%

PeMS-Bay 30min 60min

MAE RMSE MAPE MAE RMSE MAPE

MSLST 1.47 3.22 3.29% 1.82 4.19 4.26%

w/o PM 1.76 4.01 3.94% 1.99 4.74 4.71%

w/o R-PA 1.57 3.48 3.48% 1.94 4.67 4.63%

w/o P-FPA 1.61 3.51 3.53% 1.95 4.70 4.67%



Table 4
Component analysis of this paper's MSLST on the METR-LA datase

From the 

experimental table, it can be seen that stacking 2 pyramids spatio-temporal attention is the 
best performance case for both METR-LA and PeMS-Bay datasets. As the number of stacked 
pyramids increases, the prediction error of the model does not decrease, but rather increases, 
the possible reason being that the model structure is too complex and there is overfitting. 
Apparently, 2 pyramids spatio-temporal attention is sufficient to deeply explore the complex 
spatio-temporal dependence of traffic events, which maintains the adequacy of the nonlinear 
structure of the model and does not lead to redundancy in the model structure.

4. Conclusion

In this chapter, a traffic flow prediction model based on a multi-scale local spatio-temporal 
network is proposed. First, the temporal and spatial dimensions are fused into a single fluid, 
the 3D local spatio-temporal grid is generated by combining the adjacency matrix and traffic 
flow features, multiple convolutional layers and pyramidal attention are introduced to learn 
the  dynamic  spatio-temporal  dependence  of  the  local  spatio-temporal  traffic  events  in 
different  resolutions,  and  then  the  multi-channel  spatio-temporal  convolutional  block  is 
combined to merge and optimize spatial and temporal features among local spatio-temporal 
nodes, so as to get the global spatio-temporal features. Experiments on the traffic flow datasets 
PeMS and METR-LA show that the proposed model outperforms state-of-the-art methods.
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