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Abstract 
This paper presents a novel framework for real-time dynamic hand gesture recognition designed to enhance 
interaction with smart devices and touchless interfaces. The proposed system integrates Google Mediapipe 
for hand pose detection with a modified version of the DD-Net architecture, optimized for online classifi-
cation of gestures using 2D and 3D data. Key innovations include introducing an auxiliary classification 
head to address the class imbalance and an attention mechanism to improve the recognition of partially 
observed gestures. The system is evaluated on the NVGesture and SHREC22 datasets, achieving an accuracy 
of 0.784 and 0.924, respectively, surpassing previous benchmarks. 
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1. Introduction 

Human-computer interaction (HCI) has evolved significantly over the years, moving from traditional 
input methods such as keyboards and mice to more intuitive and natural modes of interaction. Hand 
gesture recognition is prominent among these due to its close alignment with human communication 
habits. Hand gestures, being an integral part of non-verbal communication, provide a seamless and 
intuitive way for humans to convey commands and intentions. This makes them ideal for controlling 
machines, particularly when hands-free, touchless interaction is required. 

The relevance of real-time dynamic hand gesture recognition lies in its broad applicability across 
several emerging fields, including augmented reality (AR), virtual reality (VR), robotics, and smart 
environments. In AR and VR systems, where users are immersed in virtual spaces, traditional input 
devices can be cumbersome and break immersion. Gesture control offers a more natural alternative, 
enabling users to interact directly with virtual objects. Similarly, gesture recognition can facilitate 
smoother interaction between humans and machines in robotics, enabling more intuitive control in 
industrial or assistive contexts. 

One of the most pressing applications of this technology is in the development of touchless inter-
faces, which have gained significant importance due to public health concerns, particularly following 
the COVID-19 pandemic. In public spaces like elevators, ATMs, and kiosks, touchless interaction can 
help reduce the spread of infectious diseases by minimizing physical contact with shared surfaces. 
Gesture recognition provides an ideal solution for these scenarios by allowing users to interact with-
out direct contact, ensuring convenience and hygiene. 

Despite these benefits, real-time dynamic hand gesture recognition remains a challenging task. 
The primary obstacles include the high computational cost of processing continuous streams of data 
and the need for low-latency, high-accuracy systems that can function effectively on devices with 
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limited processing power, such as those equipped with CPUs only. While accurate, traditional offline 
gesture recognition methods are not designed to handle real-time data processing, traditional offline 
gesture recognition methods typically require pre-segmented sequences of hand poses for analysis. 
This presents a significant gap in real-time applications, which require systems to make instantane-
ous decisions based on continuously incoming data. 

This research aims to develop a real-time 3D hand pose recognition framework that balances high 
accuracy with computational efficiency, making it suitable for smart devices and touchless interfaces. 
To achieve this, the following tasks were undertaken: 

 Adapting the DD-Net architecture for efficient online inference. 
 Designing a dual-head prediction system to enhance the detection of gestures and non-ges-

tures. 
 Evaluating the system on the NVGesture dataset [11] and real-time input to validate its per-

formance. 

This framework advances the field of gesture recognition by offering a practical solution for real-
time, low-latency applications with wide-reaching implications for smart environments and public 
interfaces. 

2. Related works 

Dynamic hand gesture recognition has seen significant advancements, with various models address-
ing offline and online recognition tasks using skeletal, depth, and motion data. However, real-time 
gesture recognition, particularly in streaming video, presents unique challenges due to the need for 
low-latency processing and robustness to environmental variations. 

One of the prominent approaches in hand gesture recognition is the STA-GCN model [1], which 
employs a two-stream graph convolutional network with spatial-temporal attention for skeleton-
based hand gesture recognition. The two-stream architecture processes pose and motion streams 
separately, using spatial-temporal graph convolutional layers to capture hand gestures over time. 
This method incorporates temporal pyramid pooling to extract features across multiple time scales, 
enhancing the model's ability to recognize gestures. The approach was evaluated on the DHG14/28 
and SHREC2017 [5] datasets, demonstrating high accuracy. Still, the complexity introduced by spa-
tial-temporal attention can increase computational overhead, making it less suitable for real-time 
applications where efficiency is vital. 

Another relevant work focuses on robust feature extraction from skeletal and depth data. The 
Robust Hand Shape Features for Dynamic Hand Gesture Recognition study [2, 14, 15, 16] proposes a 
multi-level feature LSTM model that extracts 3D geometric transformations from skeletal data and 
segmentation-based depth shape features. This method, tested on the DHG14/28 dataset, achieved 
state-of-the-art (SOTA) results by leveraging Conv1D and Conv2D pyramid structures with LSTM 
blocks. While this approach enhances accuracy, its reliance on depth and skeletal data increases 
computational complexity. It makes it less feasible for real-time applications where only skeletal data 
might be available. 

The DD-Net architecture [3], designed for skeleton-based action recognition, takes a different 
approach by simplifying the network structure to improve efficiency. DD-Net introduces a double-
motion feature extraction method that captures joint distances and global motion variations. This 
lightweight model was tested on SHREC17 [5] and JHMDB datasets, achieving competitive results 
for offline gesture classification. However, its design could be optimized for real-time continuous 
recognition, as it assumes the gesture's start and end are predefined, making it less adaptable to 
streaming data. 

The challenge of continuous gesture recognition is addressed by methods presented in the SHREC 
2022 Track on Online Detection of Heterogeneous Gestures [4]. The contest evaluated online recog-



nition methods where gestures are embedded in continuous sequences, interspersed with non-ges-
tural motions. One such method is the Two-stage ST-GCN [4, 12, 13], which uses a sliding window 
technique to identify gesture candidates before refining them with a larger classification model. This 
two-stage approach improves the system's ability to handle continuous data and boundary detection 
between gestures and non-gestures. However, the sliding window approach can introduce latency, 
especially if the window size is large, impacting the real-time responsiveness of the system. 

Another approach, Transformer Network + Finite State Machine (TN-FSM) [4], uses temporal 
convolutional networks (TCNs) and transformers to classify gestures within continuous data 
streams. The model includes a logical state machine that helps delineate gesture boundaries. This 
method excels in handling non-gesture segments and works well for continuous streams. Still, trans-
formers and state machines introduce computational complexity, limiting their use in real-time ap-
plications unless carefully optimized. 

The DeepGRU architecture [6] also contributes to this domain by employing gated recurrent units 
(GRUs) combined with a global attention mechanism. Designed for gesture recognition, DeepGRU 
achieves SOTA results on SHREC17 [5] and SHREC19 [7] datasets, offering an end-to-end approach 
for gesture classification from raw skeletal data. While highly accurate, the attention mechanism 
increases computational demand, and like many deep learning models, its performance in real-time 
settings depends on hardware capabilities. 

Despite the advancements in accuracy and feature extraction, many of these models struggle to 
balance computational efficiency with real-time performance. Our work builds on these methods, 
particularly DD-Net and the SHREC competition models, by adapting the DD-Net architecture for 
online inference while integrating 3D and 2D hand pose data for robust recognition. By introducing 
residual connections and employing a sliding window approach optimized for low latency, our model 
aims to achieve real-time gesture recognition in CPU-constrained environments, ensuring accuracy 
and efficiency in practical applications. 

3. Methods 

3.1. Overview of the proposed approach 

This study presents a real-time hand gesture recognition system that modifies an existing offline 
classification model to function online. The core model is based on the double-feature double-motion 
network (DD-Net) architecture, a 1D convolutional neural network (CNN) optimized for sequential 
data and designed originally for offline tasks. Our modifications adapt DD-Net for real-time infer-
ence, allowing it to classify continuous hand gestures while maintaining high accuracy and compu-
tational efficiency. The method works with Google Mediapipe [8] for hand pose detection and 3D 
hand landmark acquisition, reflecting the integration of advanced technologies observed in previous 
studies [9]. Also it is compatible with other tracking devices like Intel RealSense or Hololens 2. 

The architecture captures temporal hand dynamics by buffering and preprocessing 3D landmarks 
into windows of 16 frames, making predictions continuously, and reducing spurious gestures 
through a post-processing step. Figure 1 presents a pipeline architecture overview. 

3.2. Data acquisition and preprocessing 

Data acquisition 

The system employs various hardware options, such as cameras and depth sensors, to acquire 3D 
hand landmarks: 

 Google Mediapipe provides real-time hand pose estimation, outputting 3D joint coordinates 
for each frame. 

 Other supported sensors include Intel RealSense or Hololens 2, which provide hand pose data 
in formats compatible with the model. 



Each captured frame consists of the 3D positions of multiple hand joints. The system buffers these 
into windows of 16 frames to match the training configuration of the network. 

 

Figure 1: Overview of the pipeline architecture based on the Mediapipe hand pose estimator. 

Preprocessing 

To ensure robustness and compatibility across various frame rates, preprocessing steps are applied: 

 Standardization: the 3D joint coordinates are standardized using the mean and standard de-
viation of the joint positions in the training dataset. 

 Frame Rate Adjustment: an interpolation-based resampling is performed if the input frame 
rate differs from the training data frame rate. The system collects the required number of 
frames and then interpolates to ensure exactly 16 frames are used in each window. Without 
this, temporal inconsistencies would degrade the network's performance by introducing non-
matching motion sequences. 

The preprocessing step thus ensures the model receives data with consistent temporal properties, 
preserving gesture dynamics. 

3.3. Model input representation 

The input representation of hand gestures is crafted to capture both static and dynamic aspects of 
the movement. Each 16-frame observation window W is processed into three distinct views: 

 Geometric Layout (Joint Collection Distances, JCD): This view represents the spatial relation-
ship between hand joints by calculating the Euclidean distances between every pair of joints. 
The JCD features are location and viewpoint invariant, ensuring the model can recognize 
gestures regardless of hand orientation. The resulting tensor is of size (J -1) * J / 2 × W, where 
J is the number of joints and W is the window size (16). 

 Short-term Slow Motion (Mslow): This view captures short-term motion dynamics by compu-
ting the linear velocity of each joint between consecutive frames. This view reflects slow, 
continuous movements and is represented as a tensor of size J×(W−1) 

 Short-term Fast Motion (Mfast): Similar to Mslow, this view computes linear velocity but skips 
every other frame, focusing on faster motions. This results in a tensor of size J×(W/2−1). Mfast 
helps the model differentiate between quick, subtle movements and slower motions. 



These three views are fed into separate embedding branches, creating a comprehensive multi-
view description of the hand gesture. 

3.4. Model architecture 

As it was mentioned before the core model is based on the double-feature double-motion network 
(DD-Net) architecture. We adapt DD-Net for real-time inference, allowing it to classify continuous 
hand gestures while maintaining high accuracy and computational efficiency. The modified DD-Net 
model architecture is presented in Figure 2. 

 

Figure 2: Overview of the modified DD-Net model architecture.  

Embedding branches 

Each input view (JCD, Mslow, Mfast) passes through its own embedding branch composed of several 
Convolutional Blocks, each containing: 

 Conv1D Layers: These layers extract temporal features from the sequential data, learning to 
recognize patterns in hand movement over time. 

 Batch Normalization: Applied to ensure stability during training by normalizing activations, 
reducing internal covariate shifts. 

 Leaky ReLU Activation: Introduces non-linearity while avoiding the vanishing gradient prob-
lem, allowing for better gradient flow in deeper layers. 

An important enhancement over the original DD-Net is the introduction of residual connections 
in the convolutional blocks. See Figure 2. These connections, inspired by the ResNet architecture 
[10], allow the network to bypass layers when beneficial, facilitating better learning and addressing 
the vanishing gradient problem that can occur in deep networks. 



Feature concatenation and classification 

After each embedding branch processes its respective input, the features are concatenated to form a 
unified representation of the hand gesture. This concatenated representation flows into two classifi-
cation heads: 

Primary Classification Head: This head performs fine-grained gesture classification, predicting 
specific gesture classes. It consists of several convolutional blocks followed by max-pooling 
layers for feature extraction and translation invariance. Afterwards, a global max-pooling 
layer is applied, followed by two fully connected layers and a Softmax activation to output 
the final gesture class. 

Auxiliary Classification Head: Designed to handle the major class imbalance in online scenarios 
where the majority of frames contain no gestures. This head classifies gestures into three 
categories: static gestures, dynamic gestures, and no-gesture frames. A small attention unit 
enhances this branch, helping the model ignore irrelevant background movements and focus 
on meaningful hand gestures. This is particularly useful for frames at the start and end of 
gestures, where only part of the gesture is in the window. The attention unit uses pointwise 
convolution to generate a soft attention mask multiplied by the concatenated embeddings to 
focus on relevant features selectively. 

3.5. Model training 

The dataset used for training is adapted to the sliding window format required by the network. For 
each frame t, the system collects joint data from frames t−W + 1 to t, creating a 16-frame observation 
window. The corresponding label is the gesture class at frame t. 

The primary classification head is trained to predict the fine-grained gesture class using a cross-
entropy loss. Using a separate cross-entropy loss, the auxiliary classification head is trained on the 
simplified three-class task (static, dynamic, no-gesture). 

Both classification heads are optimized simultaneously, with cross-entropy loss applied to each. 
The model is trained using the Adam optimizer with a learning rate schedule that decays over time 
to ensure convergence. 

3.6. Model inference 

During inference, the system processes each frame in real time, updating its prediction every 16 
frames using the following steps: 

1. Observation Window Sampling: For each frame t, a 16-frame observation window W is cre-
ated. The 3D joint data is preprocessed, and the multi-view description (JCD, Mslow, Mfast) is 
extracted. 

2. Preliminary Classification: The multi-view embeddings are fed into both classification heads, 
producing a preliminary gesture class prediction for the current window. 

3. Post-processing: A post-processing step is applied to reduce false positives and spurious ges-
ture classifications. The last k preliminary predictions are stored in a buffer, and a majority 
voting mechanism is used to determine the final class. This helps smooth out predictions over 
time and eliminates noise from accidental or incomplete gestures. 

4. Experiments 

4.1. Datasets 

The proposed hand gesture recognition system was evaluated using two datasets: an adapted version 
of the NVGesture dataset [11] and the SHREC’22 benchmark [4]. These datasets cover various ges-
tures, comprehensively analyzing the model's performance on static and dynamic hand gestures. 



NVGesture dataset 

The NVGesture dataset consists of over 1,500 video sequences depicting 25 unique hand gestures 
performed by 20 different participants. The dataset includes a variety of gestures, with both static 
gestures (e.g., "thumb up," "ok") and dynamic gestures (e.g., "stop," "right"). Originally, this dataset 
was designed as an image-based gesture dataset [Figure 3], and thus, a significant amount of prepro-
cessing was required to adapt it for 3D hand pose recognition using the proposed model. 

 

Figure 3: NVGesture data collection setup and a sample of multimodal data.  

A custom annotation procedure was developed to prepare the dataset for model training. This 
procedure utilized Google's Mediapipe framework to automatically extract 2D and 3D joint positions 
for each gesture sequence. Given that some sequences contained background participants, which 
resulted in multiple hand detections, a size-based filter was applied. This filter ensured that only the 
largest detected hand, assumed to belong to the main performer closest to the camera, was retained 
for the training process. 

Another preprocessing step involved resolving issues caused by motion blur, which led to missed 
detections in certain frames. A windowed interpolation method was applied to address this. In cases 
where the first and last frames of a 5-frame window were recognized, but intermediate frames were 
missing, linear interpolation was used to estimate the joint trajectories within the window. This 
process effectively filled in gaps in the data, ensuring more complete gesture annotations. 

SHREC'22 benchmark 

The SHREC'22 benchmark features continuous recordings of 3D hand poses captured in simulated 
Mixed Reality interactions using a Hololens 2 device. The dataset is structured with training and 
testing sets comprising 144 sequences. Each sequence contains 16 gesture classes interleaved with 
non-significant hand movements (referred to as "non-gestures"). The dataset includes gestures cate-
gorized into four types: static gestures, dynamic coarse gestures, dynamic fine gestures, and periodic 
gestures. 

Each sequence is annotated with start frames, end frames, and gesture labels, making it well-
suited for gesture segmentation and classification tasks. Notably, the subjects in the training and 
testing sequences are different, which ensures a challenging cross-subject evaluation. 

4.2. Evaluation metrics 

For the quantitative evaluation of the model's performance, the following standard metrics were 
employed: 

Accuracy: Measures the percentage of correctly classified gestures. 



Precision: Indicates the proportion of true positive predictions among all positive predictions, 
capturing the model's ability to avoid false positives. 

Recall: Represents the proportion of true positive predictions among all actual positives, reflecting 
the model's capacity to identify all relevant gestures. 

F1 Score: The harmonic mean of precision and recall provides a balanced metric for false positives 
and false negatives. 

4.3. Evaluation process 

The evaluation was conducted in two phases: offline evaluation on benchmark datasets and real-time 
evaluation using live input from a webcam. 

Phase 1: offline dataset evaluation 

The first phase involved testing the model's performance on the NVGesture dataset and SHREC'22 
benchmark. For the NVGesture dataset, the model was trained on the 3D joint data extracted from 
Mediapipe's world coordinate estimates. To ensure robustness, the evaluation was performed on two 
types of keypoint representations: 

3D keypoints: Using the world-coordinate hand pose estimates provided by Mediapipe. 
2D keypoints: Normalized 2D joint coordinates projected from the camera view. 

After preprocessing and annotating the NVGesture dataset, the modified model was trained and 
evaluated on the test partition. The dataset includes a balanced mix of static and dynamic gestures, 
which allowed for a comprehensive evaluation of the model's ability to recognize various hand mo-
tions. 

Key challenges included the handling of motion blur and occasional multiple detections in the 
background, which were mitigated through the custom preprocessing steps described earlier. The 
results of this evaluation provided insight into the model’s robustness in recognizing static and dy-
namic gestures under various conditions. 

The SHREC'22 benchmark posed additional challenges due to the continuous nature of the re-
cordings, where gestures were interleaved with non-significant movements. The model was trained 
to distinguish between gesture and non-gesture frames, focusing on identifying each gesture's pre-
cise start and end. 

Due to the variability in subjects and the mix of gesture types (static, dynamic coarse, dynamic 
fine, and periodic), the SHREC'22 dataset served as a valuable test of the model's generalization ca-
pabilities across different individuals and gesture styles. 

The evaluation results on both datasets, including accuracy, precision, recall, and F1 score, pro-
vided quantitative measures of the model’s performance and demonstrated its effectiveness in rec-
ognizing static and dynamic gestures. 

Phase 2: real-time evaluation 

The model was tested in a real-time environment in the second evaluation phase to simulate practical 
application scenarios. The system was connected to a webcam, and the trained model was deployed 
to classify gestures as performed live. This evaluation was designed to mimic real-world usage, where 
the model must operate continuously and make online predictions. 

Each gesture type (static, dynamic coarse, dynamic fine, periodic) was attempted three times, and 
the system's performance was recorded based on the number of successful attempts. A gesture was 
successful if the model correctly classified it during the real-time session without significant delay 
or misclassification. 

Both 2D and 3D keypoint representations were used during the real-time tests to compare per-
formance. The success rate for each gesture type provided a practical assessment of the model’s 
usability in real-time applications, offering valuable insights into its responsiveness and robustness. 



5. Results 

5.1. NVGesture dataset evaluation 

The evaluation of the model on the NVGesture dataset was conducted using both 2D and 3D hand 
pose data. Performance metrics such as accuracy, recall, precision, and F1 score were used to assess 
the model's effectiveness in gesture recognition. The results are presented in Table 1. 

Table 1 
NVGesture Dataset Evaluation Results 

Data Type Accuracy Recall Precision F1 Score 
2D 0.794 0.794 0.763 0.768 
3D 0.784 0.758 0.784 0.751 

 
The analysis of the results shows that the model trained on 2D data slightly outperforms the one 

trained on 3D data in terms of accuracy and F1 score. The 2D model achieved an accuracy of 0.794, 
compared to 0.784 for the 3D model. However, the 3D data model showed higher precision (0.784 vs. 
0.763), suggesting it might be better at minimizing false positives. Overall, the 3D data approach 
outperformed the original results from the NVGesture dataset, which reported an accuracy of 0.74 
using colour data only. This demonstrates the improved performance of our model and its potential 
for more accurate real-time hand gesture recognition using 3D landmarks. 

5.2. Manual evaluation 

A manual real-time evaluation was conducted using a webcam to assess the model's ability to gen-
eralize beyond the NVGesture dataset. This test involved classifying static gestures, dynamic ges-
tures, and non-gesture frames. The results are summarized in Table 2. 

Table 2 
Manual Evaluation Results 

Gesture Type 2D Data 3D Data 
Static 0.345 0.893 

Dynamic 0.567 0.712 
Non-gesture 0.790 0.921 

 
The manual evaluation highlights a significant performance gap between the 2D and 3D models 

in real-world applications. The model trained on 3D data demonstrated superior performance across 
all gesture types, especially notable improvements in static gesture recognition (0.893 accuracy in 
3D vs. 0.345 in 2D). This suggests that the 2D model generalizes poorly to real-world data, whereas 
the 3D model performs well outside controlled dataset conditions. The 3D model's high accuracy for 
non-gesture frames (0.921) also reflects its ability to distinguish between gesture and non-gesture 
movements in live input effectively. 

5.3. SHREC'22 dataset evaluation 

The model's performance was also evaluated on the SHREC'22 dataset, which consists of continuous 
3D hand pose recordings captured with a Hololens 2 device. The dataset only contains 3D data, so a 
direct comparison with 2D data was impossible. The results are provided in Table 3. 

The model achieved high accuracy (0.9243) and F1 score (0.9241) on the SHREC'22 dataset, demon-
strating its robustness in recognizing gestures in continuous, real-world recordings. The Static-Dy-
namic-Non-gesture (SDN) accuracy was particularly strong at 0.9497, highlighting the model's ability 
to accurately distinguish between different gesture types and non-gesture movements in mixed re-
ality environments. 



Table 3 
SHREC'22 Dataset Evaluation Results 

Metric Value 
Accuracy 0.924 
Precision 0.926 

Recall 0.924 
F1 Score 0.924 

SDN Accuracy 0.950 

 

6. Discussions 

This research demonstrates that using 3D hand pose data significantly improves real-time gesture 
recognition compared to previous approaches relying on 2D data or colour information. On the 
NVGesture dataset, our method achieved 0.784 accuracy, outperforming the original paper's 0.74 
accuracy, which only utilized color data. The improvement can be attributed to the detailed spatial 
information captured by 3D hand pose data, allowing for a better understanding of hand movements. 
Furthermore, our modifications to the DD-Net architecture, including residual connections and an 
auxiliary classification head to handle class imbalance, proved effective in refining gesture classifi-
cation. 

A key finding is that models trained on 2D data generalized poorly in real-world scenarios, as 
evidenced by our manual evaluation, where the 2D model struggled with static gestures (0.345 accu-
racy), while the 3D model performed significantly better (0.893 accuracy). This highlights the robust-
ness of 3D data in handling varying environments, lighting conditions, and background noise, mak-
ing it more suitable for real-world applications like smart devices and touchless interfaces. 

Our evaluation of the SHREC’22 dataset, which captures continuous gestures in mixed-reality 
environments using Hololens 2, further validated the approach. The model achieved a strong 0.924 
accuracy and distinguished static, dynamic, and non-gestures, with 0.949 SDN accuracy. These re-
sults suggest that the method can be effectively integrated into augmented reality (AR) [17] and 
virtual reality (VR) applications, where continuous gesture recognition is critical. 

7. Conclusions 

This research has significantly advanced dynamic hand gesture recognition, presenting a robust real-
time system that effectively utilizes 3D and 2D data for gesture classification. By adopting the DD-
Net architecture and introducing modifications such as an auxiliary classification head and attention 
mechanisms, the system demonstrated improved accuracy, particularly when working with 3D data, 
achieving 0.784 accuracies on the NVGesture dataset—outperforming prior benchmarks based solely 
on 2D colour data. The automatic annotation procedure using Google Mediapipe allowed for efficient 
data preprocessing, further enhancing the system’s performance.  

The evaluation of the system was comprehensive, including tests on benchmark datasets like 
NVGesture and SHREC22, as well as real-time manual evaluations using a webcam. The results 
showed that the system, particularly when trained on 3D data, generalizes well to real-world envi-
ronments, achieving superior performance in dynamic and static gestures and non-gesture catego-
ries. 

The system remains within acceptable limits for real-time applications with an average inference 
time of 5 msec (combined with 22 msec per inference from Google Mediapipe). This low-latency 
performance makes it particularly valuable for practical use cases, such as controlling smart devices 
or providing touchless interfaces in public spaces, where health concerns and convenience are of 
growing importance. 
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