
Mutating DAC And MAC Security Policies: A Generic
Metamodel Based Approach

Tejeddine Mouelhi1, Franck Fleurey3, Benoit Baudry2 and Yves Le Traon1

1 IT- Telecom Bretagne, Rennes, France.
2 INRIA/IRISA, Rennes, France.

3 SINTEF, Oslo, Norway.

Abstract. In this paper we show how DAC and MAC security policies can be
specified, implemented and validated through mutation testing using a generic
approach. This work is based on a generic security framework originally
designed to support RBAC and OrBAC security policies and their
implementation in Java applications.

Keywords: Security, Model-driven engineering, Meta-modeling.

1 Introduction

Security is becoming a critical aspect of most software systems. Modern
programming languages, coding guidelines and source code analysis techniques are
able to detect and avoid low-level vulnerabilities such as buffer overflow and code
injection. However, for higher-level vulnerabilities, related for example to access
control, because the security code is sprayed across the application, code analysis
cannot provide a complete solution. To deal with this issue, a number of security
languages (such as DAC [1], MAC [2, 3], RBAC [4] or OrBAC [5]) have been
defined. They allow the specification of security policies early in the development
cycle. These specifications are used to verify the security policies and to generate a
significant part of the security code of the final application. Systematic code
generation avoids a large range of mistakes in the implementation of the security
mechanisms. Unfortunately not all of the security code can be generated in such an
automated way. For instance, the points in the application code where the security
code has to be integrated can only be defined manually by the application developer.
The security of the application thus needs to be validated after this step in order to
check that the final implementation matches the initial security model. This is
especially critical since when dealing with security, any minor defect is likely to
compromise the security of the whole application.

In previous work [6], we propose a generic approach for modeling security policies
and using mutation analysis in order to validate that the final implementation of a
system conforms its security model. Mutation analysis consists of creating faulty
versions of the reference application (called mutants). The efficiency of the security
test cases is estimated with the percentage of seeded security faults they are able to
detect. The security fault model is defined in terms of mutation operators, each of
them specifying how to modify a security mechanism (access control rights for

example). The approach is based on a generic security meta-model and on mutation
operators defined for this meta-model. The meta-model is generic in the sense that it
allows dealing with security policies expressed in different languages. The originality
of a meta-modeling based approach is to have the same principles (captured by the
meta-model and the associated fault model) to test security mechanisms, whatever the
access control model is. Initially the approach was validated using RBAC and OrBAC
security policies.

This paper shows how the approach can be extended to security policies expressed
using DAC and MAC formalisms. The contribution of the paper is twofold. First it
defines how DAC and MAC policies can be mapped to the generic security meta-
model. And second it discusses which of the generic mutation operator have to be
used in order to properly validate the final implementation of the security policies.

The paper is organized as follows. Section 2 summarizes the motivations and the
approach presented in [6]. Section 3 presents the generic security meta-model. Section
4 details how MAC security policies can be represented and mutated. Section 5
details how DAC security policies can be represented and mutated.. Finally, section 7
discusses some related work and conclusion.

2 Context and Motivations

Figure 1 summarizes the approach presented in [6]. The two goals of this approach
are to ensure quality by construction whenever possible and to provide systematic
testing techniques for the rest. To ensure quality by construction the idea is to use a
security modeling language in order to formalize security policies early in the
development cycle and model-driven techniques to check the security policy and
generate security code. For testing the final security code and its integration with the
application code the idea is to use a security specific test criterion based on the
mutation of the security model.

The first step of the approach (1) is to build the security model for the application.
The security model is a platform independent model which captures the access control
policies defined in the requirements of the system. This model is based on a generic
meta-model which allows expressing any type of rule-based access-control policy. In
practice, the meta-model allows modeling the type of rules to be used as well as the
rules themselves. In previous work [6], we have shown how the generic meta-model
can be used with RBAC and OrBAC policies and in this paper we detail how it can
also support DAC and MAC security policies.

After the platform independent security model has been validated, automated
transformations are used to produce platform specific security code such as the PDP –
Policy Decision Point (2). A critical remaining step for implementing the security of
the application is to connect the platform specific security code with the functional
code of the application (3). To reduce the risk of mistake, we use AOP to make the
security PEP introduction systematic (4).

In the proposed approach, the validation is done by testing the final running code
with security specific test cases. To properly validate the security of the application,
these test cases have to cover all security features of the application. The test criteria

we use are based on the mutation of the security model. Mutation testing is a test
qualification techniques introduced in [7] which has been recently adapted to security
testing [8, 9].

Figure 1 - Overview of the approach

The intuition behind mutation testing applied to security is that the security tests
are qualified if there are able to detect any elementary modification in the security
policy of the application (mutants). The originality of the proposed approach is to
perform mutations on the platform independent security model using generic mutation
operators. Since the transformation and weaving of the security policy in the
application are fully automated, the tests can be automatically executed on the
mutants of the application. If the tests are not able to catch a mutant then new test
cases should be added to exercise the part of the security policy which has been
modified to create this mutant. In practice the undetected mutants provide valuable
information to create new tests and cover all the security policies.

In [6], a set of generic mutation operator are described and applied to RBAC and
OrBAC security policies. In this paper we show how the same operators can be used
to test security code based on DAC or MAC policies.

Overall, the main benefit of the approach is to allow validating the security policy
using verification on the security model and testing that the policy implemented in the
application conforms to the security model. Because the testing is performed on the
final running code it allows validation both that the PDP is according to the model but
also that the PEP, i.e. the integration with the rest of the application, is correct. The
following sections detail the main steps of the approach.

Requirements

Functional
code

Platform independent
Security Model

Operational
Mapping (PEP)

Platform specific
Security code (PDP)

Running Code

Weaving

Produced using
regular Software

Engineering
techniques

• Using a P.I. security DSL
• Manageable by domain experts
• Separated from other requirements
• Supports consistency checks
• Supports security policy mutation

• Specified by a developer
• Validated using mutation testing

Reusable
transformations

And code
generators

Automated
Weaving using

AOP techniques

Ex. XACML

Security Tests

• Produced from the requirements
and security model

• Improved and validated trough
security mutation

(1)

(2) (3)

(4)
(5)

3 A generic framework for security policies

The metamodel in Figure 2, displays the generic concepts for the definition of a
security formalism and a security policy according to this formalism.
• The POLICYTYPE, ELEMENTTYPE and RULETYPE classes are used to define a

formalism. A POLICYTYPE defines a set of element types (ELEMENTTYPE) and a
set of rule types (RULETYPE).

• Based on a security formalism, it is possible to define a policy using the classes
POLICY, RULE and PARAMETER. A POLICY is typed by a POLICYTYPE. The type of
a policy constrains the types of parameters and rules it can contain. If the
hierarchy property of the parameter type is true, then the parameter can contain
children of the same type as itself. Each rule has a type that belongs to the policy
type and a set of parameters.

These two parts of the metamodel have to be instantiated sequentially: first define
a formalism, then define a policies according to this formalism.

n am e: S trin g

P olicy Type

n am e:S trin g

R uleType

1 ..*ru leTyp es

na m e: S tring
h ie ra rch y: bo o lea n

E le m e n tTy p e

1 ..*e le m e ntType s

n am e: S trin g

P olic y

n am e: S trin g

P a ram eter

para m e te rs1 ..*

N a m e : S tring

R ule

1 ..*ru les

pa ram ete rs

1 ..*

* ch ild ren
1 typ e

1 typ e

type

1

1 ..*

p a ra m e te rs

Figure 2 - The meta-model for rule-based security formalisms

3.1 Instantiating the metamodel

The two parts of the metamodel are instantiated at different moments. The classes
that capture the concepts for a security formalism have to be instantiated first and
define a modeling language that can be used to model a security policy for a particular
system. The classes that capture the concepts to define a policy can only be
instantiated if a formalism has been modeled.

3.2 Mutation testing for security

This section presents the fault models that we have defined at the meta-level and
that can be executed to inject errors into security policies.

Mutation analysis involves qualifying a set of test cases for a program under test
(PUT) according to the rate of injected errors they can detect. The assumption is that
if test cases can detect errors that have been injected on purpose, they will be able to
detect actual errors in the PUT. The validity of mutation analysis greatly depends on
the relevance of faults that are injected. Faults are modeled as mutation operators that
reflect typical faults that developers make in a particular language or domain. Several
works (Xie et al. [8], Le Traon et al. [9]) have proposed mutation operators to validate
test cases for security policy.

In this paper, we define five mutation operators for security policy testing, shown
in Table 1. These operators are defined only in terms of the concepts present in the
security metamodel, which means that they are independent of a specific security
formalism. Thus, these operators can be applied to inject errors into any policy
expressed with any formalism defined as an instance of our metamodel. The
definition of mutation operators at this meta-level is critical for us since it allows the
qualification of test cases with the same standard, whatever the formalism used to
define the policy.

Table 1- The mutation operators

Operator Name Definition
RTT Rule type is replaced with another one
PPR Replaces one rule parameter with a different one
ANR Adds a new rule
RER Removes an existing rule
PPD Replaces a parameter with one of its descending parameters

na m e: S trin g

P o licy

m uta te()

S P M u tato r

A N R R E R P P R R T T P P D

in itia lP o licy

Figure 6. The mutation operator classes

Figure 6 shows the operator classes. The mutate() method is implemented in
Kermeta. What is important to notice in this method is that it is defined only using
concepts defined in the metamodel. Thus, this method can generate a set of mutated
policies, completely independently of the formalism they are defined with. We apply
it to MAC and DAC in the next section.

4 Applying the generic metamodel to DAC and MAC

This section is the core contribution of the paper. We present the DAC and MAC
models and study how adapted is the meta-model to specify these two access control
languages.

4.1 Generic metamodel applied to DAC

We first detail DAC (Discretional Access Control) main concepts and show how
our metamodel can be used for modeling this language. Finally we present examples
of mutants we obtain when applying our mutation operators.

a) Definition
The definition of DAC (according to [10]) :

“A means of restricting access to objects based on the identity of `subjects and/or
groups to which they belong. The controls are ’discretionary’ in the sense that a
subject with a certain access permission is capable of passing that permission
(perhaps indirectly) on `to any other subject.”

A DAC policy expresses a set of Subjects and Objects and access types. A rule is
the combination of one Subject, one object and one access type. In this paper, we
consider DAC as used for file systems. Objects include files, directories or ports (or
others) and Subjects include users or processes. The policy can be seen as a matrix
where the values are access types. Access types include three access types (r: read, w:
write and x: execute) and two special ones, which are control and control with
passing ability. The control access type enables its holder to modify the users’ access
types to that object. In addition to this, the control with passing ability enables the
user to pass this control ability to other users.

The access types of the DAC:
- r : permission to read the object
- w: permission to write
- x: permission to execute
- c: control permission, the ability to modify ’r w x’ permission for this

object.
- cp: control and the passing ability of control.

b) Modeling the DAC language

Figure 5 shows the DAC modeled using our generic metamodel of Figure 2. There

is only one type of rule. This rule contains a Subject, an access type (r,w,x,c or cp)
and a object (a file or a port etc.).

Figure 5 - The DAC formalism

c) Mutating DAC policies
To illustrate mutation results, we use a simple example of policy. The policy

defines two subjects (Tim and Admin). Tim can read or execute file1, while admin
has the right to read, write and execute the file in addition to the control and passing
ability.

 POLICY systemDAC (DAC)
 R1 -> DACRule(Tim r file1)
 R2 -> DACRule(Tim x file1)
 R3 -> DACRule(Admin cp file1)
 R4 -> DACRule(Admin r file1)
 R5 -> DACRule(Admin w file1)
 R6 -> DACRule(Admin x file1)

Some mutation operators cannot be applied to DAC policies. In fact, the RTT and

PPD operator cannot be used since there is only one type of rule, and no hierarchy.
It is interesting to study the impact of the three mutation operators. For instance the

RER operator will remove R1 resulting in a mutant policy that implies that Tim will
no longer have the right to read “file1”. RER operator will produce 5 mutant policies,
as there are 5 rules. The PPR operator will replace one of the rule parameter with a
different one. One example of its mutant policies will be the one containing R1’:

DACRule(Tim w File1)
The mutant policy enables Tim to write in “File1” but denies him reading this file.
The ANR operator will produce mutants by adding one new rule to policy. One
possible mutant is the one containing this new rule:

DACRule(Tim cp File1)
This will result in granting Tim the control and the passing ability.

4.2 Generic metamodel applied to MAC

We start with presenting MAC (Mandatory Access Control) and show how it can
be modeled using our metamodel. We then study the mutants obtained based on the
mutation operators defined at meta-level.

a) Definition
In this paper, we consider MAC policies as they are used in multi-level systems
(MLS) [11]. Next the definition of MAC (Taken from Trusted computer System
Evaluation Criteria) :
“A means of restricting access to objects based on the sensitivity (as represented by
a label) of the information contained in the objects and the formal authorization
(i.e., clearance) of subjects to access information of such sensitivity”.
MAC entities are Subjects, Objects and Clearances. Subjects are usually Processes
or threads (executing user commands), and Objects can be files, ports, etc. MAC
policies express the access of subjects to objects according to their clearance and to
classification of objects. Subjects with a high clearance are able to read all kinds of
objects. but they are not allowed to write in objects that can be accessed by low
clearance subjects. A classification of clearance determines if the access is granted
or denied. For example, if Subject S1 having clearance C1 requests reading Object
O2 having clearance C2, then access if granted if C1 >= C2. Otherwise, if C2 >
C1, access is denied.

Figure 6 - The MAC formalism

b) Modeling MAC language
Figure 6 displays the MAC metamodel which is also conformant to the Figure 2.
There are two types of rules:

SubjClearance: An association between a subject and a clearance.
 ObjClearance: An association between an Object and a clearance respectively.
There is a static classification of clearance. According to this classification, access

is granted to subjects (to read or write). We consider two access types: read and write.

c) Mutating MAC

We will use the following policy to show examples of mutants produced by the

mutation operators. The policy defines two users and two objects and the rules specify
their clearances.

 POLICY systemMAC (MAC)
 R1 -> SubClearance(process1 low)
 R2 -> SubClearance (process2 high)
 R3 -> ObjClearance (report1 low)
 R4 -> ObjClearance (report2 high)

As for DAC policies, the mutation operators PPD and RTT cannot be applied in

this case. The RER operator is not relevant either because it would create undefined
policy responses. For instance, if R1 is removed, the subject ‘process1’ clearance will
be unknown, resulting in undefined policy decision.

The relevant operators are PPR and ANR. The PPR operator will for example
replace R1 second parameter with another one, which will produce this rule instead of
R1: R1’ -> SubClearance(process1 high)
This implies process1 having a high clearance. This simulates a flaw in the security
policy.
The ANR operator adds for example this new rule:

 R5 -> SubClearance(report1 high)
This new rule is with conflict with the R3. So, the result depends on the
implementation of the security mechanism, on the way it handles conflicts. If priority
is given to most restrictive rule, then this implies report1 having high clearance.

4.3 Towards a unified validation framework for security policies

With these two examples of access control languages (DAC and MAC), we have
shown that the metamodel we proposed is expressive enough to describe the most
classical access control languages (DAC, MAC, RBAC, OrBAC). The interesting
issue concerns the definition of a common validation scheme at metamodel level,
which can be systematically applied, whatever the access control language is. It is
especially useful when testing the security mechanisms in a heterogeneous
environment, in which several systems with their own access control policies
(expressed in different languages) interoperate. For example, this case occurs when
Information Systems of several organizations are merged and when an overall
security policy has to be built on the existing ones. More generally, the fact the
mutation analysis allows faults models (mutation operators) to be described
independently from the language is very promising. The intrinsic difficulty behind
these approaches is related to the distance which separates the metamodel and the
family of languages which can be modeled with it. In the case of access control

policies, the family of languages manipulates a same subset of concepts.
Metamodeling this family is thus feasible, and has been illustrated in this paper. It is
less obvious to determine whether a common core of verification and validation can
be defined at metamodel level in a relevant way. The problem is not new: you can
metamodel everything but the semantics you can attach to the resulting metamodel
may be too poor for relevant manipulations. In our case, the manipulations we attach
are related to the validation of security policies, using mutation. The study presented
in this paper shows that some mutation operators which are meaningful for RBAC
and OrBAC access control policies cannot be instantiated for DAC or for MAC. The
common definition of security faults in terms of mutation operators thus produces
concrete faults which are very different from one access control language to another.
To make the study complete, it would be necessary:

1- to model “equivalent” access control policies with OrBAC, RBAC, MAC
and DAC languages,

2- to generate all the mutants versions for each policy
3- to compare whether a same test cases set is able to kill the same amount of

mutants for each policy.
By applying such an empirical protocol, it will be possible to determine the quality of
the faults which are seeded from a metamodel definition. In [12, 13], we already
showed that the generated faults were relevant for OrBAC security policies. It has to
be proven for the other languages. This study is the next step for empirically
validating the metamodeling validation and verification environment we propose. It
corresponds to the future work we will investigate. The empirical studies should allow
concluding whether it is possible to obtain a unified validation environment for access
control policies.

5 Conclusion

Guido Wimmel et al. proposed to use mutation to system specification in order to
generate test suite for security-critical systems [14]. Faults are injected into the
security requirement. Their approach does not handle well the scalability issue as it
was not applied to large systems. In addition, Lodderstedt et al. [15] proposed
SecureUML which provides a security modeling language to define the access control
model. The resulting security model is combined with the UML business model in
order to automatically produce the access control infrastructure.
This paper presented a step in the building of a unified framework for specifying,
generating and validating a security policy. We studied how the metamodel we
propose can be applied for the main access control languages. The metamodel has
shown its ability to represent this family of languages. In parallel, we studied how the
fault model attached to this metamodel could be used for applying mutation analysis
on DAC and MAC access control policies. The first studies suggest that there are
generic mutation operators that can apply to all security formalisms but also more
specific operators that can still be expressed generically but apply only to a sub-set of
access control formalisms.

6 References

1. B. Lampson. Protection. in 5th Princeton Symposium on Information
Sciences and Systems,. 1971.

2. K. J. Biba, Integrity consideration for secure computer systems, in Tech.
Rep. MTR-3153, The MITRE Corporation,. 1975.

3. D. E. Bell and L. J. LaPadula, Secure computer systems: Unified exposition
and multics interpretation, in Tech. Rep. ESD-TR-73-306, The MITRE
Corporation. 1976.

4. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli,
Proposed NIST standard for role-based access control. ACM Transactions
on Information and System Security, 2001. 4(3): p. 224–274.

5. A. Abou El Kalam, et al., Organization Based Access Control, in IEEE 4th
International Workshop on Policies for Distributed Systems and Networks.
2003.

6. T. Mouelhi, F. Fleurey, B. Baudry, and Y. Le Traon, A model-based
framework for security policy specification, deployment and testing, in
MODELS 2008. 2008.

7. R. DeMillo, R. Lipton, and F. Sayward, Hints on Test Data Selection : Help
For The Practicing Programmer. IEEE Computer, 1978. 11(4): p. 34 - 41.

8. E. Martin and T. Xie. A Fault Model and Mutation Testing of Access Control
Policies. in Proceedings of the 16th International Conference on World Wide
Web. 2007.

9. T. Mouelhi, Y. Le Traon, and B. Baudry, Mutation analysis for security tests
qualification, in Mutation'07 : third workshop on mutation analysis in
conjuction with TAIC-Part. 2007.

10. C.S. Jordan., A guide to understanding discretionary access control in
trusted systems. Technical Report Library No.S-228, 576, National
Computer Security Center (NCSC), Fort George G. Meade, Maryland, .
1987.

11. D.E BELL and L.J. LaPADULA,
Secure Computer Systems: Unified Exposition and Multics Interpretation. 1976, The

MITRE Corporation.
12. Y. Le Traon, T. Mouelhi, and B. Baudry, Testing security policies : going

beyond functional testing, in ISSRE'07 : The 18th IEEE International
Symposium on Software Reliability Engineering. 2007.

13. Y. Le Traon, T. Mouelhi, A. Pretschner, and B. Baudry, Test-Driven
Assessment of Access Control in Legacy Applications, in ICST 2008: First
IEEE International Conference on Software, Testing, Verification and
Validation. 2008.

14. G. Wimmel and J. Jürjens. Specification-based Test Generation for Security-
Critical Systems Using Mutations. in ICFEM 2002.

15. Torsten Lodderstedt, David Basin, and Jürgen Doser. SecureUML: A UML-
Based Modeling Language for Model-Driven Security. in Proceedings of the
5th International Conference on The Unified Modeling Language. 2002.

