
The SZS Ontologies for Automated Reasoning Software
Geoff Sutcliffe

University of Miami

Abstract

This paper describes the SZS ontologies that provide status values for precisely describing what
is known or has been established about logical data. The ontology values are useful for describ-
ing existing logical data, and for automated reasoning software to describe their input and output.
Standards for presenting the ontology values are also provided.

1 Introduction

The real use of automated reasoning software - automated theorem proving (ATP) systems and other
tools - is not as standalone software that a user invokes directly, but rather as embedded components
of more complex reasoning systems. For one example, NASA’s certifiable program synthesis system
[6] embeds the SSCPA ATP system harness [20], the ATP systems E [13], SPASS [24], Vampire [12],
and the GDV derivation verifier [17]. For another example, SRI’s BioDeducta system [14] embeds the
ATP system SNARK [15], and the BioBike integrated knowledge base and biocomputing platform [10].
In this embedded context automated reasoning software is typically treated as a black box with known
processing capabilities. In order to use the software, the host system must know how to invoke the
software, how to pass data into the software, and how to accept data produced by the software.

The data passed in to and out from automated reasoning software typically consists of logical data,
e.g., formulae, derivations, interpretations, etc., and status values that describe what is known or has been
established about the logical data, e.g., the nature of the formulae, their theoremhood or satisfiability, a
reason why the software could not process the data, etc. For software that works with first-order logic,
the de facto standard for expressing logical data is the TPTP language [19] (and it is expected that this
will soon extend to higher-order logic [4]). The SZS ontologies that are linked to the TPTP are used by
some automated reasoning software to express the status values. This paper describes the SZS ontologies
and their use by automated reasoning software.

The status information output by current automated reasoning software varies widely in quantity,
quality, and meaning. At the low end of the scale, for example, an ATP system might report only an
assurance that the input problem’s conjecture is a theorem of the axioms (the wonderful “yes” output).
In some cases the claimed status is misleading, e.g., when a clause normal form refutation based ATP
system claims that a first-order input problem consisting of axioms and a conjecture is “unsatisfiable”,
it typically means that the conjecture is a theorem of the axioms. At the high end of the scale, for
example, a tool such as Infinox might report that a set of formulae does not have a finite model, or, for
another example, a set of formulae might be tagged as representing a Herbrand interpretation. In order to
seamlessly embed automated reasoning software in more complex reasoning systems, it is necessary to
correctly and precisely specify status values for the input and output data. The SZS ontologies provide
fine grained ontologies of status values that are suitable for this task.

The SZS success ontology provides status values to describe what is known or has been successfully
established about the relationship between the axioms and conjecture in logical data. It is described in
Section 2. The SZS no-success ontology provides status values to describe why a success ontology value
has not been established. It is described in Section 3. The SZS dataform ontology provides status values
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to describe the nature of logical data. It is described in Section 4. All status values are expressed as
“OneWord”, and also have a three letter mnemonic. In addition to the ontologies themselves, standards
for presenting status values have been specified. These are described in Section 5.

2 The SZS Success Ontology

The SZS success ontology was inspired by work done to establish communication protocols for systems
on the MathWeb Software Bus [2, 25]. The ontology assumes that the logical data is a 2-tuple of the
form 〈Ax,C〉, where Ax is a set (conjunction) of axioms and C is a conjecture formula. This is a common
standard usage of ATP systems. If the input is not of the form 〈Ax,C〉, it is treated as a conjecture
formula (even if it is a “set of axioms” from the user view point, e.g., a set of formulae all with the
TPTP role axiom), and the 2-tuple is 〈T RUE,C〉. The success ontology values are based on the possible
relationships between the sets of models of Ax and C. The ontology values can also be interpreted in
terms of the formula F ≡ Ax⇒C. For example, the status Theorem means that the set of models of Ax
is a (not necessarily strict) subset of the set of models of C, i.e., every model of Ax is a model of C. In
this case F is valid.

Figure 1 shows the success ontology (many of the “OneWord” status values are abbreviated in the
figure - see the list below for the official full “OneWord”s). The lines in the ontology can be followed
up the hierarchy as isa links, e.g., an ETH isa EQV isa (SAT and a THM). Figure 2 shows the relation-
ships between the model sets for some of the success ontology values. The outer grey ring contains all
interpretations, the long dashed black ring contains the models of Ax, and the short dashed black ring
contains the models of C.
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Figure 1: SZS Success Ontology

The meanings of the success ontology values are as follows. Associated with each status value are
some possible dataforms that might be provided to justify the ontology value for given logical data - see
Section 4.
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Figure 2: SZS Success Ontology Models

• Success (SUC): The logical data has been processed successfully.
• UnsatisfiabilityPreserving (UNP): If there does not exist a model of Ax then there does not exist a

model of C, i.e., if Ax is unsatisfiable then C is unsatisfiable.
• SatisfiabilityPreserving (SAP): If there exists a model of Ax then there exists a model of C, i.e., if

Ax is satisfiable then C is satisfiable. F is satisfiable.
• EquiSatisfiable (ESA): There exists a model of Ax iff there exists a model of C, i.e., Ax is (un)satisfiable

iff C is (un)satisfiable.
• Satisfiable (SAT): Some interpretations are models of Ax, and some models of Ax are models of C.

F is satisfiable, and ¬F is not valid. Possible dataforms are Models of Ax∧C.
• FinitelySatisfiable (FSA): Some finite interpretations are finite models of Ax, and some finite mod-

els of Ax are finite models of C. F is satisfiable, and ¬F is not valid. Possible dataforms are
FiniteModels of Ax∧C.
• Theorem (THM): All models of Ax are models of C. F is valid, and C is a theorem of Ax. Possible

dataforms are Proofs of C from Ax.
• Equivalent (EQV): Some interpretations are models of Ax, all models of Ax are models of C, and

all models of C are models of Ax. F is valid, C is a theorem of Ax, and Ax is a theorem of C.
Possible dataforms are Proofs of C from Ax and of Ax from C.
• TautologousConclusion (TAC): Some interpretations are models of Ax, and all interpretations are

models of C. F is valid, and C is a tautology. Possible dataforms are Proofs of C.
• WeakerConclusion (WEC): Some interpretations are models of Ax, all models of Ax are models of

C, and some models of C are not models of Ax. See Theorem and Satisfiable.
• EquivalentTheorem (ETH): Some, but not all, interpretations are models of Ax, all models of Ax

are models of C, and all models of C are models of Ax. See Equivalent.
• Tautology (TAU): All interpretations are models of Ax, and all interpretations are models of C. F

is valid, ¬F is unsatisfiable, and C is a tautology. Possible dataforms are Proofs of Ax and of C.
• WeakerTautologousConclusion (WTC): Some, but not all, interpretations are models of Ax, and

all interpretations are models of C. F is valid, and C is a tautology. See TautologousConclusion
and WeakerConclusion.
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• WeakerTheorem (WTH): Some interpretations are models of Ax, all models of Ax are models of
C, some models of C are not models of Ax, and some interpretations are not models of C. See
Theorem and Satisfiable.
• ContradictoryAxioms (CAX): No interpretations are models of Ax. F is valid, and anything is a

theorem of Ax. Possible dataforms are Refutations of Ax.
• SatisfiableConclusionContradictoryAxioms (SCA): No interpretations are models of Ax, and some

interpretations are models of C. See ContradictoryAxioms.
• TautologousConclusionContradictoryAxioms (TCA): No interpretations are models of Ax, and all

interpretations are models of C. See TautologousConclusion and SatisfiableConclusionContradic-
toryAxioms.
• WeakerConclusionContradictoryAxioms (WCA): No interpretations are models of Ax, and some,

but not all, interpretations are models of C. See SatisfiableConclusionContradictoryAxioms and
SatisfiableCounterConclusionContradictoryAxioms.
• CounterUnsatisfiabilityPreserving (CUP): If there does not exist a model of Ax then there does not

exist a model of ¬C, i.e., if Ax is unsatisfiable then ¬C is unsatisfiable.
• CounterSatisfiabilityPreserving (CSP): If there exists a model of Ax then there exists a model of
¬C, i.e., if Ax is satisfiable then ¬C is satisfiable.
• EquiCounterSatisfiable (ECS): There exists a model of Ax iff there exists a model of ¬C, i.e., Ax

is (un)satisfiable iff ¬C is (un)satisfiable.
• CounterSatisfiable (CSA): Some interpretations are models of Ax, and some models of Ax are

models of ¬C. F is not valid, ¬F is satisfiable, and C is not a theorem of Ax. Possible dataforms
are Models of Ax∧¬C.
• CounterTheorem (CTH): All models of Ax are models of ¬C. F is not valid, and ¬C is a theorem

of Ax. Possible dataforms are Proofs of ¬C from Ax.
• CounterEquivalent (CEQ): Some interpretations are models of Ax, all models of Ax are models

of ¬C, and all models of ¬C are models of Ax. F is not valid, and ¬C is a theorem of Ax. All
interpretations are models of Ax xor of C. Possible dataforms are Proofs of ¬C from Ax and of Ax
from ¬C.
• UnsatisfiableConclusion (UNC): Some interpretations are models of Ax, and all interpretations are

models of ¬C (i.e., no interpretations are models of C). F is not valid, and ¬C is a tautology.
Possible dataforms are Proofs of ¬C.
• WeakerCounterConclusion (WCC): Some interpretations are models of Ax, and all models of Ax

are models of ¬C, and some models of ¬C are not models of Ax. See CounterTheorem and
CounterSatisfiable.
• EquivalentCounterTheorem (ECT): Some, but not all, interpretations are models of Ax, all models

of Ax are models of ¬C, and all models of ¬C are models of Ax. See CounterEquivalent.
• FinitelyUnsatisfiable (FUN): All finite interpretations are finite models of Ax, and all finite inter-

pretations are finite models of ¬C (i.e., no finite interpretations are finite models of C).
• Unsatisfiable (UNS): All interpretations are models of Ax, and all interpretations are models of ¬C.

(i.e., no interpretations are models of C). F is unsatisfiable, ¬F is valid, and ¬C is a tautology.
Possible dataforms are Proofs of Ax and of C, and Refutations of F .
• WeakerUnsatisfiableConclusion (WUC): Some, but not all, interpretations are models of Ax, and

all interpretations are models of ¬C. See Unsatisfiable and WeakerCounterConclusion.
• WeakerCounterTheorem (WCT): Some interpretations are models of Ax, all models of Ax are

models of ¬C, some models of ¬C are not models of Ax, and some interpretations are not models
of ¬C. See CounterSatisfiable.
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• SatisfiableCounterConclusionContradictoryAxioms (SCC): No interpretations are models of Ax,
and some interpretations are models of ¬C. See ContradictoryAxioms.
• UnsatisfiableConclusionContradictoryAxioms (UCA): No interpretations are models of Ax, and all

interpretations are models of ¬C (i.e., no interpretations are models of C). See UnsatisfiableCon-
clusion and SatisfiableCounterConclusionContradictoryAxioms.
• NoConsequence (NOC): Some interpretations are models of Ax, some models of Ax are models of

C, and some models of Ax are models of ¬C. F is not valid, F is satisfiable, ¬F is not valid, ¬F
is satisfiable, and C is not a theorem of Ax. Possible dataforms are pairs of models, one Model of
Ax∧C and one Model of Ax∧¬C.

The success ontology is very fine grained, and has more status values than are commonly used by
automated reasoning software, by ATP systems in particular. A suitable subset for practical uses of ATP
systems is as follows:

• FOF problems with a conjecture - report Theorem or CounterSatisfiable.
• FOF problems without a conjecture - report Satisfiable or Unsatisfiable.
• CNF problems - report Satisfiable or Unsatisfiable.

2.1 Validation of the Success Ontology

Two steps have been taken towards formal validation of the success ontology. The first step was the
enumeration of the possible relationships between the models of Ax and C (some of which are illustrated
in Figure 2). This provided a basis for the ontology values, and a basis for the isa links. The second
step1 was to axiomatize the ontology and prove relevant properties. (The axiomatization implemented
covers the “positive” part of the ontology regarding Ax and C, and just two commonly used values from
the “negative” part regarding Ax and¬C. It is expected that the results obtained will extend without
difficulty to the full ontology.) The axiomatization encodes the relationship between the models of
Ax and C for each ontology value, and, from that, relationships between the ontology values can be
proven. Additionally, a finite model of the axioms was found, demonstrating the consistency of the
axiomatization and hence the ontology.

The axiomatization is in first-order logic. As example, the axioms that describe the ESA, THM, and
ETH values are given in Figure 3. Four relationships between pairs of ontology values were defined and
axiomatized:

• α isa β , meaning that if 〈Ax,C〉 has the status α then it also has the status β . For example, WTH
isa THM.
• α nota β , meaning that if 〈Ax,C〉 has the status α then it does not necessarily have the status β .

For example, THM nota SAT (because SAT does not hold for the case of contradictory Ax).
• α nevera β , meaning that if 〈Ax,C〉 has the status α then it cannot have the status β . For example,

SAT nevera CAX.
• α xora β , meaning that every 〈Ax,C〉 has the status α xor β . For example, THM xora CSA.

Additionally, axioms that deal with properties of formulae and models were provided. The relation-
ships and properties axioms are given in Figure 3.

The axiomatization was shown to be consistent by generating a finite model using Paradox [5]. Some
general properties of the relationships were proved using an ATP system (see below for a discussion of
the ATP system used), e.g., that isa is a transitive relation, and that if α isa β and α nota γ then β nota
γ . Next the relationships between all pairs of ontology values were investigated, using the ATP system

1Thanks to the reviewer of this paper whose comments instigated this step.
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fof(esa,axiom,( fof(thm,axiom,( fof(eth,axiom,(

! [Ax,C] : ! [Ax,C] : ! [Ax,C] :

( ( ? [I1] : model(I1,Ax) ( ! [I1] : ( ( ? [I1] : model(I1,Ax)

<=> ? [I2] : model(I2,C) ) ( model(I1,Ax) & ? [I2] : ~ model(I2,Ax)

<=> status(Ax,C,esa) ) )). => model(I1,C) ) & ! [I1] :

<=> status(Ax,C,thm) ) )). ( model(I1,Ax)

<=> model(I1,C) ) )

<=> status(Ax,C,eth) ) )).

fof(isa,axiom,( fof(nota,axiom,( fof(nevera,axiom,(

! [S1,S2] : ! [S1,S2] : ! [S1,S2] :

( ! [Ax,C] : ( ? [Ax,C] : ( ! [Ax,C] :

( status(Ax,C,S1) ( status(Ax,C,S1) ( status(Ax,C,S1)

=> status(Ax,C,S2) ) & ~ status(Ax,C,S2) ) => ~ status(Ax,C,S2) )

<=> isa(S1,S2) ) )). <=> nota(S1,S2) ) )). <=> nevera(S1,S2) ) )).

fof(xora,axiom,( fof(completeness,axiom,( fof(not,axiom,(

! [S1,S2] : ! [I,F] : ! [I,F] :

( ! [Ax,C] : ( model(I,F) ( model(I,F)

( status(Ax,C,S1) <~> model(I,not(F)) ) )). <=> ~ model(I,not(F)) ) )).

<~> status(Ax,C,S2) )

<=> xora(S1,S2) ) )).

fof(tautology,axiom,( fof(contradiction,axiom,( fof(sat_non_taut_pair,axiom,(

? [F] : ! [I] : model(I,F) )). ? [F] : ! [I] : ~ model(I,F) )). ? [Ax,C] :

( ? [I1] :

fof(satisfiable,axiom,( fof(non_thm_spt,axiom,( ( model(I1,Ax)

? [F] : ? [I1,Ax,C] : & model(I1,C) )

( ? [I1] : model(I1,F) ( model(I1,Ax) & ? [I2] :

& ? [I2] : ~ model(I2,F) ) )). & ~ model(I1,C) ( ~ model(I2,Ax)

& ? [I2] : model(I2,C) ) )). | ~ model(I2,C) ) ) )).

Figure 3: SZS Success Ontology Axioms

to prove the relationships from the axioms. The isa relationship was tested first, as if a pair of ontology
values has the isa relationship they cannot have any of the other three relationships. For those pairs that
were not proved to have the isa relationship, the nevera relationship was tested next. For those pairs that
were proved to have the nevera relationship the xora relationship was tested, and for the other pairs the
nota relationship was tested. Proving a nota relationship requires establishing the existence of formulae
and models that deny the relationship. In the axiomatization five examples are provided, the tautology,
satisfiable, contradiction, non thm spt and sat non taut pair axioms above.

The results of the testing are shown in Table 1, where the vertical axis value has the shown relation-
ship to the horizontal axis value. The isa relationship is denoted by⇒, nota by ¬, nevera by×, and xora
by ⊕. Sixty-eight pairs were proved to have the isa relationship, 89 to have the nota relationship, 179 to
have the nevera (and not the xora) relationship, 4 to have the xora relationship, and for the remaining two
pairs no relationship could be proved. The latter are the cases that WEC nota WTC and WEC nota TAC,
which require exhibition of an 〈Ax,C〉 pair that has the WEC property but in which C is not a tautology.
This could be done explicitly, along the lines of the sat non taut pair axiom above, but that seemed
like cheating. Some of the nota relationships may also be nevera, but could not be proved so.

As mentioned above, automated theorem proving was used to prove the relationships between the
ontology values. At first, proofs were attempted using monolithic ATP systems such as EP, SPASS, and
Vampire. The success rate was low, because the axiomatization forms a large theory - see [1]. Therefore
the SRASS system [18] was used, and it was highly successful in identifying the necessary axioms for
proving each conjecture, and subsequently obtaining either a proof using EP or an assurance of a proof
using iProver [9]. In addition to SRASS, the MANSEX [22] and IDV [23] tools were used during the
initial development of the axiomatization, to find the most obvious relationships and to analyze proofs.
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UNP SAP ESA SAT THM EQV TAC WEC ETH TAU WTC WTH CAX SCA TCA WCA CSA UNS NOC

UNP • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ⊕ × × ¬ ¬ ¬
SAP ¬ • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ × ¬
ESA ⇒ ⇒ • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ × × × ¬ × ¬
SAT ⇒ ⇒ ⇒ • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ × × × × ¬ × ¬
THM ¬ ⇒ ¬ ¬ • ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ⊕ × ×
EQV ⇒ ⇒ ⇒ ⇒ ⇒ • ¬ × ¬ ¬ × × × × × × × × ×
TAC ⇒ ⇒ ⇒ ⇒ ⇒ ¬ • ¬ × ¬ ¬ × × × × × × × ×
WEC ⇒ ⇒ ⇒ ⇒ ⇒ × ¬ • × × ¬ ¬ × × × × × × ×
ETH ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ × × • × × × × × × × × × ×
TAU ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ × × • × × × × × × × × ×
WTC ⇒ ⇒ ⇒ ⇒ ⇒ × ⇒ ⇒ × × • × × × × × × × ×
WTH ⇒ ⇒ ⇒ ⇒ ⇒ × × ⇒ × × × • × × × × × × ×
CAX ¬ ⇒ ¬ × ⇒ × × × × × × × • ¬ ¬ ¬ × × ×
SCA ⊕ ⇒ × × ⇒ × × × × × × × ⇒ • ¬ ¬ × × ×
TCA × ⇒ × × ⇒ ¬ × × × × × × ⇒ ⇒ • × × × ×
WCA × ⇒ × × ⇒ × × × × × × × ⇒ ⇒ × • × × ×
CSA ⇒ ¬ ¬ ¬ ⊕ × × × × × × × × × × × • ¬ ¬
UNS ⇒ × × × × × × × × × × × × × × × ⇒ • ×
NOC ⇒ ⇒ ⇒ ⇒ × × × × × × × × × × × × ⇒ × •

Table 1: Success Ontology Relationships

All automated reasoning and proof processing was done on a computer with a Intel Xeon 2.80GHz CPU
and 3GB memory, running the Linux 2.6 operating system, and with a 60s CPU time limit per proof
attempt (on the entire SRASS process).

The formal analysis has had beneficial effects. Three new ontology values were added, three errors in
the definitions of the ontology values were exposed and corrected, four incorrect isa links in the ontology
were found and removed, and several unnoticed isa relationships were revealed and added. The isa links
in Figure 1 correspond to those in Table 1.

3 The SZS No-Success Ontology

While it is always hoped that automated reasoning software will successfully process the logical data, and
hence establish a success ontology value, in reality this often does not happen, for a variety of reasons. In
order to understand and make productive use of a lack of success, e.g., [11, 8], it is necessary to precisely
specify the reason for and nature of the lack of success. The SZS no-success ontology provides suitable
status values for describing the reasons. Note that no-success is not the same as failure: failure means
that the software has completed its attempt to process the logical data and could not establish a success
ontology value. In contrast, no-success might be because the software is still running, or that it has not
yet even started processing the logical data. Figure 4 shows the no-success ontology.

The meanings of the no-success ontology values are as follows:

• NoSuccess (NOS): The logical data has not been processed successfully (yet).
• Open (OPN): A success value has never been established.
• Unknown (UNK): Success value unknown, and no assumption has been made.
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Figure 4: SZS No-Success Ontology

• Assumed (ASS(U ,S)): The success ontology value S has been assumed because the actual value
is unknown for the no-success ontology reason U . U is taken from the subontology starting at
Unknown in the no-success ontology.
• Stopped (STP): Software attempted to process the data, and stopped without a success status.
• Error (ERR): Software stopped due to an error.
• OSError (OSE): Software stopped due to an operating system error.
• InputError (INE): Software stopped due to an input error.
• SyntaxError (SYE): Software stopped due to an input syntax error.
• SemanticError (SEE): Software stopped due to an input semantic error.
• TypeError (TYE): Software stopped due to an input type error (for typed logical data).
• Forced (FOR): Software was forced to stop by an external force.
• User (USR): Software was forced to stop by the user.
• ResourceOut (RSO): Software stopped because some resource ran out.
• Timeout (TMO): Software stopped because the CPU time limit ran out.
• MemoryOut (MMO): Software stopped because the memory limit ran out.
• GaveUp (GUP): Software gave up of its own accord.
• Incomplete (INC): Software gave up because it’s incomplete.
• Inappropriate (IAP): Software gave up because it cannot process this type of data.
• InProgress (INP): Software is still running.
• NotTried (NTT): Software has not tried to process the data.
• NotTriedYet (NTY): Software has not tried to process the data yet, but might in the future.

The no-success ontology is very fine grained, and has more status values than are commonly used by
automated reasoning software. A suitable subset for practical uses is as follows:

• The software stopped due to CPU limit - report Timeout.
• The software gave up due to incompleteness - report GaveUp.
• The software stopped due to an error - report Error.
• Any other cases - report Unknown.
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4 The SZS Dataform Ontology

The success status values describe what is known or has been established about the relationship between
the axioms and conjecture in logical data, but do not describe the form of logical data. The dataform
ontology provides suitable values for describing the form of logical data. The dataform ontology values
are commonly used to describe data provided to justify a success ontology value, e.g., if an ATP system
reports the success ontology value Theorem it might output a proof to justify that. Figure 5 shows the
dataform ontology.
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Figure 5: SZS Dataform Ontology

The meanings of the dataform ontology values are as follows:

• LogicalData (LDa): Logical data.
• Solution (Sln): A solution.
• Proof (Prf): A proof.
• Derivation (Der): A derivation (inference steps ending in the theorem, in the Hilbert style).
• Refutation (Ref): A refutation (starting with Ax∪¬C and ending in FALSE).
• CNFRefutation (CRf): A refutation in clause normal form, including, for FOF Ax or C, the trans-

lation from FOF to CNF (without the FOF to CNF translation it is an IncompleteRefutation).
• Interpretation (Int): An interpretation.
• Model (Mod): A model.
• DomainMap (Dom): A model expressed as a domain, a mapping for functions, and a relation for

predicates.
• FiniteModel (FMo): A domain map model with a finite domain.
• InfiniteModel (IMo): A domain map model with an infinite domain.
• HerbrandModel (HMo): A model expressed as a subset of the Herbrand base.
• SaturationModel (SMo): A model expressed as a saturating set of formulae.
• ListofFormulae (Lof): A list of formulae.
• ListofTHF (Lth): A list of THF formulae.
• ListofFOF (Lfo): A list of FOF formulae.
• ListofCNF (Lcn): A list of CNF formulae.
• IncompleteProof (IPr): A proof with part missing.
• IncompleteRefutation (IRf): A refutation with parts missing.
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• IncompleteCNFRefutation (ICf): A CNF refutation with parts missing.
• Assurance (Ass): Only an assurance of the success ontology value.
• None (Non): Nothing.

The dataform ontology is very fine grained, and has more status values than are commonly used by
automated reasoning software, by ATP systems in particular. A suitable subset for practical uses of ATP
systems is as follows:

• A generic proof - report Proof.
• A refutation - report Refutation.
• A CNF refutation - report CNFRefutation.
• A generic model - report Model.
• A finite model - report FiniteModel.
• A Herbrand model - report HerbrandModel.
• A saturation model - report SaturationModel.

5 The SZS Presentation Standards

The SZS ontologies provide status values that precisely describe what is known or has been established
about logical data. In order to make the use of the values easy in more complex reasoning systems, it
is necessary to specify precisely how the values should be presented. This makes it easy for harness
software to prepare input data and examine output data that contains ontology values, e.g., in practice, to
grep the output from automated reasoning software for lines that provide status values.

Success and no-success ontology values should be presented in lines of the form
% SZS status ontology value for logical data identifier

(The leading ’%’ makes the line into a TPTP language comment.) For example
% SZS status Unsatisfiable for SYN075+1

or
% SZS status GaveUp for SYN075+1

A success or no-success ontology value should be presented as early as possible, at least before any
data output to justify the value. The justifying data should be delimited by lines of the form

% SZS output start dataform ontology value for logical data identifier
and

% SZS output end dataform ontology value for logical data identifier
For example

% SZS output start CNFRefutation for SYN075-1
output data

% SZS output end CNFRefutation for SYN075-1

All “SZS” lines can optionally have software specific information appended, separated by a :, i.e.,
% SZS status ontology value for logical data identifier : software specific information
% SZS output start dataform ontology value for logical data identifier : software specific info
% SZS output end dataform ontology value for logical data identifier : software specific info

For example
% SZS status GaveUp for SYN075+1 : Could not complete CNF conversion

or
% SZS output end CNFRefutation for SYN075-1 : Completed in CNF conversion
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6 Conclusion

This paper has presented the SZS ontologies of status values that are suitable for expressing precisely
what is known or has been established about logical data. The ontologies can be used for existing logical
data, e.g., they are used for the status of problems in the TPTP problem library [21] and solutions in the
TSTP solution library [16], and can be used by automated reasoning software to describe their input and
output. Already several ATP systems, e.g., Darwin [3], E, Metis [7], Paradox [5], use the SZS ontologies
and the presentation standards, and this contributes to simplifying their embedding into more complex
reasoning systems.

In addition to its use for reporting the overall status of a 〈Ax,C〉 2-tuple, the SZS success ontology is
used to report the status of individual inference steps in TPTP format derivations [19]. This is done in
the “useful information” field of an inference record of an inferred formula. For example, in

cnf(58,plain,
( ~ hates(agatha,esk2_1(butler)) ),
inference(spm,[status(thm)],[51,48])).

the status is Theorem (recorded as a lowercase acronym value thm), which indicates that the formulae is
a theorem of it’s two parent formulae 51 and 48. The Theorem status is most common in derivations, but
the SAP and ESA status values are also used quite often, e.g., for the formulae inferred by Skolemization
and splitting steps. These status values can be used for semantic verification of the derivations, as is done
by the GDV derivation verifier [17].

While the SZS ontologies are in use and have matured to some extent, it is not claimed that they are
comprehensive and perfect. Developers and users of automated reasoning software are invited to provide
feedback that might lead to improvements and increased usage. Already some users are working on
success ontology values for results from computer algebra and other computational reasoning systems.
In related work, SZS standards for returning answers from question-and-answer systems have been pro-
posed.2 It is hoped that over time, with increased usage, the ontologies will become battle hardened, and
will be a core standard for automated reasoning.
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