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Abstract Anaerobic digestion (AD) is a complex biological system which can be 
affected by several operational problems. Among them, biological foaming is one 
of the most difficult to deal with. It has many effects, such as causing gas pipe 
clogging and probe failures, and it can affect mixing devices, etc. Since the me-
chanisms involved in biological foaming development are not fully understood, it 
is not included in standard anaerobic digestion models. For this reason, a know-
ledge-based risk model to determine the suitable conditions for the development 
of biological foaming during AD simulation was developed. The resulting know-
ledge-based system, based on organic loading rate and its daily variation, was ex-
perimentally validated using real data from a fully instrumented pilot plant (1 m3 
upflow fixed bed digester). Results show a good correlation between the know-
ledge-based risk model and the estimated biological foaming risk from real data. 
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1. INTRODUCTION 

Activated sludge processes are complex biological systems in which organic mat-
ter and nutrients (nitrogen and phosphorous) are removed from wastewater. The sys-
tem consists of an aeration tank where oxygen is selectively supplied and it is used by 
the microbial consortia (i.e. biomass and/or sludge) to grow and reproduce by con-
suming the substrate (i.e. pollutants) present in the wastewater. 

The system also includes a secondary settler in which the treated water is separated 
from the biomass. From the bottom of the clarifier a fraction of the activated sludge is 
returned to the reactor in order to maintain the biomass constant in the reactor. To 
prevent overgrowth of the biomass in the system, a small fraction of the sludge is 
wasted from the system. This fraction represents a significant cost for the activated 
sludge process, since further treatment is required. 

The most common alternative for sludge treatment is AD, as well as for wastewa-
ter with high contents of organic matter. In this process (Figure 2), the organic matter 
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(e.g. sludge coming from activated sludge treatment) is biologically degraded in a di-
gester in absence of oxygen. AD advantages are numerous since they provide a treat-
ment for highly loaded wastewater, low sludge production and production of energy 
in form of methane. AD processes are, like in the activated sludge, very complex bio-
logical systems since a huge amount of microbial species are involved in the process. 
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Figure 1. Activated Sludge System. 
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Figure 2. Anaerobic digestion System 

 
Within this complexity some bacteria can have its own growth promoted by certain 

conditions which can cause imbalances in the digester in the form of a thick foam 
blanket.  According to Pagilla et al. (1997), consequences of biological foaming are 
numerous:  

 
 Blockage of gas mixing devices. 
 Inversion of digester solids profiles. 
 Foam binding of recirculation pumps. 
 Fouling of gas collection pipes (due to entrapped foam solids). 
 Foam penetration between floating covers and digester walls. 
 Decrease of the digestion efficiency. 

 
There is not yet a complete agreement on the parameters that favours conditions 

for foaming forming bacteria. Some authors state that a proper control of the feeding 
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will prevent excessive foaming to appear (Massart et al., 2006; Schaffer et al., 2006). 
Others state that pre-treatment of the feeding is necessary to avoid foaming appearing 
(Barjenbruch and Kopplow 2003; Elliott and Mahmoot 2007). Besides, some claim 
that the presences of some filamentous bacteria (e.g. M. Parvicella, Nocardia amarae 
…) in the activated sludge system are the cause for foaming problems in the anaerob-
ic digester (Pagilla et al., 1997; Westlund et al., 1998). Precisely all these uncertainty 
about the causes of biological foaming hinders the development of a mechanistic 
model to assess the biological foaming appearance. 

Knowledge-based systems have proven to be appropriate tools to deal with com-
plex processes like those involving microbiology-related problems in activated sludge 
systems (Comas et al., 2003; Poch et al., 2004). Specifically fuzzy logic has been 
successfully applied to a variety of systems. For instance, in Lardon et al. (2005) is 
applied to several AD operational imbalances and, in Carrasco et al. (2004) it is 
shown how a fuzzy system is able to control and diagnose acidification states in an 
anaerobic digester. 

When building knowledge-based systems, the selection of input variables and the 
study of the data related to the problem under study is important in order to get a reli-
able system. For this reason, a previous variable selection was performed to a set of 
data from a pilot plant in order to find the most relevant input variables for the know-
ledge-based system developed. The knowledge gained with the variable selection to-
gether with the heuristic knowledge present in the literature led to the development of 
a knowledge-based AD risk model implemented in fuzzy logic to assess favorable 
conditions for biological foaming in simulation. The rationale behind this risk model 
was that the deterministic modelling of some WWTP simulation scenarios, although 
performing better regarding economic and environmental issues, can induce a higher 
risk of biological foaming. 

The aim of this paper is to test the performance of the developed AD risk model 
with real data from a pilot plant. The paper is structured as follows; first the variable 
selection method is explained together with a brief summary of the AD risk model. 
Then the validation section illustrates and discusses the performance of the AD risk 
model validation with real data and, finally, some conclusions are drawn. 

 
2. DEVELOPMENT OF THE AD RISK MODEL 

To select the most relevant variables a wrapper approach with a hill-climbing eli-
mination strategy (Kohavi and John, 1997) was used. The same methodology was 
used in Dalmau et al. (2007) in order to find the most relevant variables for acidogen-
ic states in anaerobic digestion. Afterwards in Dalmau et al. (2008), the same ap-
proach was applied to biological foaming in AD which is, as commented above, a 
more challenging issue. 

A home-made neural network toolbox for static models for use in MATLAB 5.3 or 
higher was used. Two layers were chosen in all the ANN architectures: a hidden layer 
of neurons with sigmoid transfer functions and an output layer with linear transfer 
functions for outputs. The initialization method was performed using the Nguyen-
Widrow algorithm option, which initializes the weights with random values, later se-
lecting their probability distributions to make all neurons active for the expected data 
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ranges (Nguyen and Widrow, 1990). It also provides automatic data scaling and 
weights conversion. Bayesian regularisation is used to prevent over-fitting. 

Figure 3 depicts the methodology used that starts with the ten times training of the 
reference ANN with all the variables. Its average Root Square Mean Error (RSME) is 
calculated and stored as the reference error. Next, one input variable is removed and a 
new ANN (ANN1 in figure 3) is trained ten times without it. This last step is repeated 
for each input variable ending up with n ANNs 1, one for each removed input variable 
with their related average RSME 1. Whenever a relevant variable is removed, the av-
erage RSME 1 of the related ANN 1 will increase with respect to the average refer-
ence error. On the other hand, whenever a non-relevant variable is removed the 
RSME 1 of the related ANN1 will decrease. Therefore, the variables which RSME 1 
is higher than the reference error are selected as relevant variables. 

Among relevant variables the one with the higher RSME 1 is selected first and a 
new ANN (ANN 2 this time) is trained ten times again using it as the only input. If 
the related average RSME (RSME 2) is higher than the average reference error no 
improvement is found, so the variable with the second higher average RSME 1 is se-
lected and a new ANN 2 is trained (ten times as well) with both variables, and again, 
its average RSME 2 is compared with the reference. This iterative process is repeated 
until an average RSME 2 lower than the average reference RSME is obtained. 

 

 
 

Figure 3. Methodology schema, based on Dalmau et al. (2007). 
 
Experimental data used were obtained from a pilot plant from LBE of the INRA, 

France. Overall, a set of 8133 data was used for the variable selection. Among all va-
riables a first selection was done based on the common variables which are available 
in real plants. Some others were not selected for instance, temperatures since it is 
usually constant so it will be difficult to extract information from its profile. Input va-
riables involved in this study were: inflow rate and pH in the influent flow rate; vola-
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tile fatty acids concentration, total organic carbon and pH in the digester and, carbon 
dioxide and methane percentage in the gas phase. As output, biological foaming ap-
pearance (foaming index) in the digester was used, based on the heuristic knowledge 
provided by the experts. It was noticed that when foaming appeared in the digester 
high variations of the gas flow rate and pressure coincided due to the slug release of 
gas bubbles trapped inside the foam. It is important to point that even though foaming 
can be estimated this way; this is an approach to study variables influence or relation. 
This approach it cannot be used in simulation because biological foaming is not cur-
rently modelled so the results of the simulation cannot reflect its effects on the gas 
flowrate and pressure variations. 

Eventually, as shown in figure 4, the variables with RSME higher than the refer-
ence error (i.e. relevant variables) were: total organic carbon in the digester, the car-
bon dioxide and methane percentage in the gas phase and, the inflow rate and the pH 
in the inflow rate. The relevance of gas-related variables (i.e. carbon dioxide and me-
thane percentage) can be due to the approach taken to determine foaming. According 
to Zhao and Viraraghavan (2004) high carbon dioxide production is representative of 
poor digestion that may lead to foaming, but in general is representative of general 
process imbalance but no related to a specific cause. So, taking a look to the other va-
riables, precisely total organic carbon in the digester and inflow rate, the results can 
be related to some statements present in the literature. In Massart et al. (2006) it is 
stated that inconsistent feeding in the digester is one of the causes for foaming. Feed-
ing is related to Organic Loading Rate (OLR), which is related to the inflow rate and 
the amount of sludge feed to the digester (Metcalf and Eddy, 2003) related at the 
same time to the organic matter present in the digester (total organic carbon in the di-
gester).  

 

-0,0060

-0,0040

-0,0020

0,0000

0,0020

0,0040

0,0060

0,0080

0,0100

0,0120

qIn vfaDig tocsDig phIn phDig co2Gas ch4Gas

 
Figure 4. Difference between the RMSE and Reference error for each variable. From Dal-

mau et al. (2008). 
 

3. AD RISK MODEL 
To develop the risk model the relevant variables selected previously from real data 

were compared with the knowledge present in the experiences from the bibliography. 
As seen in the previous section, some coincidences were found. Finally, the combina-
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tion of OLR and its variation were selected as inputs of the model. As a problem of 
biological origin, the presence of some filamentous bacteria (mainly M. Parvicella) in 
the anaerobic digester’s inflow rate is also relevant regarding biological foaming so it 
was also taken into account in the AD Risk Model. This input is obtained from the 
risk model developed by Comas et al. (2008). This model used heuristic knowledge to 
evaluate simulation results and look for suitable conditions for the development of 
microbiology-related settling problems (i.e. bulking, foaming and rising sludge) in the 
AS system. More specifically, the AD risk model uses as input the risk of foaming re-
lated to M. parvicella which cause foaming in the AS (FAS risk) system as well. The 
basic knowledge base is presented in table 3.1. For a low FAS risk, as OLR and its 
variation (OLRvar) increase, the risk of foaming increases as well. Since the pilot 
plant treated diluted industrial distillery wastewater and was not sludge from an acti-
vated sludge system, the FAS risk was considered to be low in the validation step. 
Thus, the knowledge base for higher FAS risks is not presented here. However, fur-
ther details on the AD Risk Model will appear in Dalmau et al. (2009).  

 
Table 3.1. Knowledge base of the AD Risk Model for low FAS risk. 

  OLR (kg VS·m-3·d-1) 

  Very Low Low Medium High Very High 

O
L

R
 v

ar
  

(%
) 

Low Low Low Medium Medium High 

Medium Low Medium Medium High High 

High Medium Medium High High High 

 
The AD risk model is used to assess the risk of biological foaming in AD simula-

tion.  As an example of the AD risk model performance, figure 5 shows a profile of 
the risk of biological foaming within the benchmark simulation model Nº2 (BSM2; 
Jeppsson et al., 2007), however, it is out of the scope of this paper to discuss its per-
formance. FAD risk stands for risk of biological foaming in AD. The x-axis contains 
one-year simulation time from July 1st. The seasonal effect of FAS (according to Hug 
et al., 2006) can be noticed in the profile influencing the FAD risk. Although OLR is 
oscillating it remains in a constant range, however when OLRvar decreases (end of 
first summer period and middle winter) it is reflected in the FAD risk. Despite the AD 
risk model was developed and it can represent the dynamics of biological foaming in 
a simulated anaerobic digester, it was not validated yet with real data.  
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Figure 5.  Simulated results of the FAD risk model for the open loop case for a one-year si-

mulation (from July 1st). OLR (solid line); OLRvar (grey line); FAS risk (dotted black line); 
FAD risk (dashed line). 

 
4. VALIDATION OF THE AD RISK MODEL 

The AD risk model was developed to be implemented to BSM2, so previous to its 
validation with real data it was necessary to make some assumptions.  

 
OLR and its daily variation have to be calculated from the variables measured in 

the pilot plant. OLR for the AD risk model is calculated as shown in Eq. 1. 
 

HRT
VSOLR =      Eq.1 

 
where, 
VS= Volatile Solids kg·L-1 

HRT= Hydraulic Retention Time (d) 
 
HRT in days is obtained from Eq. 2 
 

24·qIn
VHRT =     Eq. 2 

 
where, 
V= pilot plant volume (1000 L.) 
qIn= inflow rate in (L·h-1) 
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Since AD risk model OLR calculation is based on VS, it was necessary to trans-
form the measured COD (tocsDig) into VS. According to Metcalf and Eddy (2003) 
for untreated wastewater the biological oxygen demand/total organic carbon ratio 
(BOD/TOC) is between 1.2 and 2.0 (1.6 was taken as the average of the rank), there is 
also a relation between BOD and chemical oxygen demand (COD) from 0.3 to 0.8 
(0.55 was taken as the average of the rank). Therefore, putting together both ratios, 
COD can be expressed as a function of TOC (tocsDig in our case; Eq. 3). 

 
tocsDig*9.2COD =      Eq. 3 

where, 
tocsDig: total organic carbon in the digester (mg·L-1) 
COD in mg COD · L-1. 
 
In Copp (2002) it is pointed that there is a relation between total suspended solids 

(TSS) and COD from particulate compounds (Eq. 4). 
 

pCOD·75.0TSS =     Eq. 4 

where, 
CODp in mg COD · L-1. 
 
A last assumption is made in order to simplify the conversion supposing that all the 

TSS can be accounted as VS. This way, we consider all the COD measured in the pi-
lot plant can be degraded as it was VS. Thus, from Eq 3. and Eq 4. we get Eq. 5. 

 

1000
tocsDig·175.2

VS =     Eq. 5 

where, 
VS in kg·L-1 
 
Data gathered during approximately almost three months was used to validate the 

AD risk model. Figure 6 shows the profile for both the simulated biological foaming 
risk (SFR) from the AD risk model and the foaming index estimated from real data 
(FR). 

From figure 6 some aspects can be pointed. First of all, reasonable good fitting is 
achieved (RMSE=0.06). Secondly, it becomes clear that there are two differentiated 
periods, approximately the first month and the last two months. The first period is 
marked for an apparent stability of the process with a good coincidence between SFR 
and FR (both showing low foaming risk), whereas the second shows much more os-
cillations and peaks revealing a probably more unstable period. In this last period, in 
some specific points (i.e. around days 33, 43 and 58) there are some divergences in 
which the model shows relatively high foaming risk when the real data show low risk 
of foaming. It is important to note that the inherent uncertainty of the mechanisms of 
foaming that hinders the development of mechanistic models cannot be included in 
the AD Risk Model. This can be the main reason behind the main differences in the 
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validation results. Nevertheless, the general trends of the instability are indeed de-
tected by the AD risk model allowing it to assess operational conditions of the anae-
robic digester that can favour biological foaming. 

 

 
 

Figure 6. SFR (black line) versus FR (grey line). 
 

5. CONCLUSIONS 
The AD risk model has been validated using real data from a pilot plant. Real data 

has been adapted to the AD risk model and the results show that quite a good fitting 
of the data can be achieved, showing that the AD risk model is able to represent the 
general conditions of an anaerobic digester regarding biological foaming. However, 
further validation with real data from an anaerobic digester treating sludge from an 
activated sludge system would be of interest since it would allow to consider the ef-
fect of filamentous bacteria in the AD feed. 
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