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Abstract. The Family History Knowledge Base (FHKB) was presented
at OWLED in 2008. The FHKB uses a rich object property hierarchy,
including many OWL 2 features, to derive many entailments on some
450 individuals representing the Stevens family. In the ABox, only par-
ent relationships and some sibling relationships (either isSisterOf or
isBrotherOf) are asserted. Using a sparse assertion of brother or sis-
ter relationships, together with information about gender, other sibling
relationships should be able to be inferred. The inability to do this in
OWL has been described as the ‘Man-Man’ problem, and various work-
arounds have been discussed. We describe a new solution to this issue,
implemented in the reasoner FaCT++. This solution allows to capture
axioms such as ‘My male siblings are my brothers’, and we have added
them to the FHKB. The number of entailments about, for instance, sib-
ling relationships increases significantly without increasing the number
of asserted facts about members of the Stevens family.

1 Introduction

In this paper we discuss our latest insights gained while using OWL 2 to model a
Family History Knowledge Base (FHKB) [8]. We use FHKB to illustrate a new
extension and the inferences that can be drawn in the FHKB example.

The FHKB uses automated reasoning over facts asserted about relationships
in a family to form a genealogy. Family history is an attractive example as it
applies to each and every person and all family relationships can be determined
from only information about parentage. The addition of information about mar-
riage means that both blood- and relationships by marriage can be drawn. A
rich property hierarchy, property characteristics and sub-property chains is used
in order to maximise the number of entailments on an individual from the fewest
possible assertions of facts on those individuals. The class and property hierar-
chies can be seen in Figure 1.

The FHKB has some 450 individuals describing the Stevens family history.
Only assertions are made about motherhood and fatherhood, together with
sparse assertion on brother- and sisterhood. Other relations can be entailed
from these ones by the reasoner using the given property axioms. For example,
by transitivity of the isBrotherOf property it is possible to ensure more siblings
of a given person as having brothers. More complex relations (like isUncleOf)
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Fig. 1. Class and Property Hierarchies of FHKB

are also entailed from such a hierarchy using sub-property chains, that allows one
to declare classes like Uncle and finding all uncles in the ontology. The FHKB
makes much use of many OWL 2 features and the latest version may be found
at http://www.cs.man.ac.uk/~stevensr/ontology/family.rdf.owl.

The use of sparse property assertions in the ontology together with rich
property hierarchy have several benefits. Firstly, they can keep the ontology
small with respect to facts about individuals, while retaining all the necessary
entailments. Secondly, while building an ontology using non-sparse facts it is
easy to forget some relations, so the knowledge will be incomplete. Thirdly, with
many entailments arising from few facts, the ramifications of incorrect facts can
be extreme; this may make errors easier to spot and fewer asserted facts make
maintenance less onerous. Finally, it is less work for the modeller.



There are, however, some problems in using sparse relations. One of them
is that in OWL (2) the ability of reasoning over the properties is much weaker
than the ones to reason over classes. Moreover, there are restrictions on how one
can use the property axiom in order to obtain a syntactically correct ontology.1
These issues make it difficult to express some useful facts in OWL 2.

For example, let the ontology O contain the classes Person, Man, Woman,
etc. and the properties isSiblingOf, hasBrother and so on. Man and Woman are
disjoint subclasses of Person, and hasBrother is a sub-property of isSiblingOf.
isSiblingOf is both symmetric and transitive. Assume that someone needs to
express in O the fact that every person that has a male sibling has that sibling
as a brother. This example, besides the obvious correspondence to the family
ontology, was motivated by a discussion in the OWL Working Group mailing
list2 in 2007. This issue arises regularly when modelling and can, as we will
show, enable many entailments.

In the following, we discuss various solutions to the problem and present a
new one.

2 Solutions to the Man-Man Problem

A naive approach is to add a GCI that says that every person that has a male
sibling necessarily has a brother. In Manchester OWL syntax [3] this would look
like:

SubClassOf(hasSibling some Man, hasBrother some Person).

It is easy to see, however, that this solution is unsatisfactory: in this case,
the hasBrother property will connect the chosen individual to some arbitrary
Person. I.e., the axiom above together with axioms

ObjectPropertyAssertion(John, hasSibling, Peter),

ClassAssertion(Man, Peter)

will not entail axiom

ObjectPropertyAssertion(John, hasBrother, Peter).

Another approach is to use rules and write a rule:

hasSibling(x, y), Man(y) → hasBrother(x, y).

OWL 2, however, has no support for rules; furthermore, in order to keep decid-
ability only DL-safe rules [7] can be used, which allows one to make inferences
over individuals, but not over classes. Thus, the axiom

SubClassOf(isSiblingOf some Father, hasBrother some Person)
1 These restrictions were loosened in [5]; we discuss this later.
2
http://lists.w3.org/Archives/Public/public-owl-dev/2007JulSep/0177.html



can not be inferred in the DL-safe rule system.

The solution proposed in the OWL mailing list was to introduce a new prop-
erty, ManMan, and connect every Man to itself by this property:

SubClassOf(Man, ManMan some Self).

Then add the axiom that the property isSiblingOf, when composed with the
ManMan property, implies hasBrother:

SubObjectPropertyOf(isSiblingOf o ManMan, hasBrother).

In this case, if two individuals are connected via the isSiblingOf property, and
one of them is a Man, then that one has a ManMan loop, so the SubObjectPropertyOf

axiom will then imply that these two individuals are connected via hasBrother

property. The correctness of this solution was ensured in the independent pub-
lications [1, 6], which propose a rolling-up technique to transform rules into the
OWL 2 axioms.

While this approach looks workable, it does have a flaw. The problem is, that
after the addition of the SubObjectPropertyOf the axiom, we will introduce
an irregularity in the property hierarchy. Indeed, according to [4] the property
hierarchy is regular if the ordering ≺ induced by the property inclusion axioms is
acyclic. From the axiom above one can deduce that isSiblingOf ≺ hasBrother

and ManMan ≺ hasBrother. As hasBrother is a subproperty of isSiblingOf,
the relation hasBrother ≺ isSiblingOf holds. These implies isSiblingOf ≺

hasBrother ≺ isSiblingOf. So there is a cycle in the ≺ relation, thus the
property hierarchy is irregular and the usual reasoning procedures are not then
applicable.

Recent research in the area [5] shows that it is possible to reason over some
ontologies even if their property hierarchy is irregular—namely if it is “strat-
ified”. We have good reasons to believe that this approach would allow us to
keep our property inclusions, and we would only have to add some additional
(possibly even useful) inclusions. To the best of our knowledge, however, none of
the OWL 2 reasoners can currently handle stratified property inclusions. Since
the modifications to a tableaux reasoner would be non-trivial,3 we have chosen
to pursue an approach that is more direct.

We propose another solution to this problem that also requires a change
to current OWL 2 inference engines. Our approach is to introduce a special
OWL constructor Spec(R, C) for a property R and a class C, and two tableaux
rules that deal with this new constructor. Such a change naturally falls into the
tableaux reasoning structure and appears to be straight-forward to implement
without affecting the rest of the algorithm. Note that the features of the tableaux
algorithm—termination, soundness and completeness— are all preserved in the
updated one.

3 It would involve a novel check for stratified property hierarchies and a different way
of constructing certain finite automata used in the tableaux rules



This approach was implemented in the FaCT++ reasoner [9] and evaluated
on the FHKB ontology with new axioms.

A new Property Specialisation construction Spec is introduced to capture
the intended expression. This construction comes in two forms, SpecFrom and
SpecInto, and can be used where the property chain can be used. These two
constructions have the following rule semantics:

Syntax Semantics
SubObjectPropertyOf(SpecFrom(R, C), S) ∀x, y. R(x, y) ∧ C(x) → S(x, y)
SubObjectPropertyOf(SpecInto(R, C), S) ∀x, y. R(x, y) ∧ C(y) → S(x, y)

Note that having both constructions is unnecessary: one can be expressed
via another using inverse properties. Indeed, the axiom

SubObjectPropertyOf(SpecInto(R, C), S)

can be expressed as

SubObjectPropertyOf(SpecFrom(( inv R), C), ( inv S))

according to the semantics. In the following we assume that ontology contains
only SpecFrom construction.

In order to reason about an ontology, a reasoner is used. Every reasoning task
can be reduced to the class satisfiability check that is performed by a reasoner.
Various reasoners that perform reasoning for very expressive description logics
(including those that underpin OWL 2) use tableaux algorithms. These algo-
rithms work by trying to construct a tree-like representation (called a completion
graph) of a model of the class, starting from an individual instance. Tableaux
expansion rules decompose class expressions, add new individuals (e.g., as re-
quired by (R some C) terms), and merge existing individuals (e.g., as required
by (R max n C) terms). Nondeterminism (e.g., resulting from the expansion of
disjunctions) is dealt with by searching various possible models. For an unsat-
isfiable class, all possible expansions will lead to the discovery of an obvious
contradiction known as a clash (e.g., an individual that must be an instance of
both A and ¬A for some class A); for a satisfiable class, a complete and clash-free
model will be constructed [4].

A completion graph is a directed graph G = (V,E,L) where each node x ∈ V

is labelled with a set L(x) of class expressions and each edge �x, y� ∈ E is labelled
with a set L(�x, y�) of property names appear in the ontology. Expansion of the
graph is performed according to the set of completion rules. Every rule has its
own requirements, and if they are satisfied, it fires and change the completion
graph. The full set of rules for the DL SROIQ can be found in [4].

Additional rules for the property specialisation support are shown at Figure 2.
The rule spec-a-rule does what the semantics of a new construction requires: it
checks whether there are two individuals that are connected with the R property
and whether the first one is a member of a class C. If so, it also connects them
via the S property.



spec-a-rule: if 1. SubObjectPropertyOf(SpecFrom(R, C), S) ∈ O,
2. x is not a blocked node, R ∈ L(�x, y�), C ∈ L(x), S /∈ L(�x, y�)

then set L(�x, y�) = L(�x, y�) ∪ {S}

spec-c-rule: if 1. SubObjectPropertyOf(SpecFrom(R, C), S) ∈ O,
2. x is not a blocked node, R ∈ L(�x, y�), {C,¬C} ∩ L(x) = ∅

then set L(x) = L(x) ∪ {D}, where D ∈ {C,¬C}

Fig. 2. Expansion rules for property specialisation

However, this rule alone is not enough for the reasons similar to the QCRs [2].
E.g., assume that class C has a complex definition. Then it might be the case
that C is not present itself in the label of node x, but its definition is present
there, so it can be inferred that C should be there.

The solution to this problem is the same as the one for the QCRs. If there
is a node where spec-a-rule can potentially be applicable, the special variant of
the choose-rule, spec-c-rule, force the system to determine, whether spec-a-rule
is applicable or not.

The addition of these rules does not change the correctness of the algorithm.
Indeed, similar to other completion rules, it is easy to show that the addition of
a new rule keeps the tableaux algorithm terminating, sound and complete.

Moreover, these rules fall nicely in a pay-as-you-go schema: if the ontology
contains no rule specialisation axioms, the behaviour of the modified algorithm
is exactly the same as the behaviour of the original one.

One thing that should be mentioned is that this new axiom can enforce new
subsumptions in the property hierarchy. Besides the trivial case

SubObjectPropertyOf(SpecFrom(R, Thing), S),

which is easily detectable, and can even be transformed into the axiom

SubObjectPropertyOf(R, S),

there can be more complex cases. It is easy to see, that the set of axioms

SubObjectPropertyOf(SpecFrom(R1, C), S)

SubObjectPropertyOf(SpecFrom(R2, not C), S)

SubObjectPropertyOf(R1, R)

SubObjectPropertyOf(R2, R)

entails
SubObjectPropertyOf(R, S).



3 Evaluation of the new feature with the FHKB

We use the new approach to reason about the FHKB. The aim was to increase the
precision of entailments such as making the general isSiblingOf more precise
to either isBrotherOf or isSisterOf. To do this we added the following axioms
to the FHKB:

SubObjectPropertyOf(SpecFrom(isSiblingOf, Man), isBrotherOf);

SubObjectPropertyOf(SpecFrom(isSiblingOf, Woman), isSisterOf);

SubObjectPropertyOf(SpecFrom(isParentOf, Man), isSonOf);

SubObjectPropertyOf(SpecFrom(isParentOf, Woman), isDaughterOf);

Note that it is possible to use more axioms, like specialisations for isFatherOf
and isMotherOf. But in the FHKB these ‘parental’ relations are used as the
initial sparse relations in the ABox, so these axioms did not give any extra infor-
mation. They would help though in the version where the basic sparse property
is isParentOf, and the gender for every individual in the ABox is given.

We did some tests with this data. All the tests were performed on the 2x
Core2Duo Intel Xeon 2.66GHz Mac Pro computer with 16Gb of memory. We
used the Protégé4 ontology editor and FaCT++ version 1.3.0 updated to support
a new functionality.4

Firstly we added these axiom to the FHKB ontology one by one and checked
the reasoning time. The results are presented in Table 1. Every value in the table
is the arithmetic mean of five runs.

Additional axioms in FHKB classification time, sec memory used, Gb
0 (original FHKB) 36.0 0.23

1 69.8 1.0
2 102.0 2.0
3 141.4 3.67
4 173.5 3.67

Table 1. Time increase for classification FHKB with property specialisation axioms

As we can see, in this particular example every addition of such an axiom
significantly increases the reasoning time and the necessary memory . One reason
for this is the amount of non-determinism that this construction introduces into
the KB. In this highly connected graph of Parents and Siblings, the new choose-
rule tries to add either Man or not Man to (roughly) every individual; as Man
and Woman itself are not primitive, but defined as

EquivalentClasses(Man, hasGender some Male),
4 Available at http://code.google.com/p/factplusplus/



EquivalentClasses(Woman, hasGender some Female).

the clash detection can be postponed in some cases. Note, however, that even as
different axioms interact with each other, there is a linear increase in time.

Another set of tests we did is related to the data discovery. We define a few
classes using obvious definitions and count the number of individuals that are
instances of these classes. The results are presented in Table 2.

Class Instances in FHKB Instances in FHKB +4
Uncle 55 76

GreatUncle 49 67
Aunt 58 77

GreatAunt 55 71
Brother 160 160

isBrotherOf some Person 152 160
hasBrother some Person 128 257

Sister 163 163
isSisterOf some Person 153 163
hasSister some Person 115 251

BrotherInLaw 39 39
isBrotherInLawOf some Person 25 39
hasBrotherInLaw some Person 37 38

SisterInLaw 30 30
isSisterInLawOf some Person 12 30
hasSisterInLaw some Person 33 37

isSonOf some Person 7 202
isDaughterOf some Person 6 208

hasSon some Person 7 122
hasDaughter some Person 5 119

Table 2. Number of instances for some classes in FHKB

Additional tableaux rules force some siblings to specialise into brothers or
sisters, thus the increased number of instances in the appropriate classes.

We can found some interesting information out of these experiments. One
observation is that after adding the extra rules, classes represented by the class
expressions (isSonOf some Person) and (isDaughterOf some Person) became
equivalent to Man and Woman respectively. This happens as, e.g. Man is defined
as a Person (with additional restrictions), and every person have a parent, thus
(according to the new rule) they are also connected to their parents via isSonOf

property.
Another example is an increased number of siblings-in-law. This were used to

find a bug in modelling in the FHKB. At some point it appears that the number
of instances of the class (isBrotherInLawOf some Person) were larger than the
number of instances of BrotherInLaw. After the investigation we found out that
isBrotherInLawOf counts the siblings of a spouse as well as the spouses of a



sibling, while BrotherInLaw counts only the former. After that oversight was
fixed, the number of instances appears to be the same, as expected.

4 Discussion

We have proposed a new solution for the recurring ‘Man-Man’ problem. This
solution, despite it requires a syntax extension to OWL and extending tableaux
rules of the reasoning algorithms, appears to be a natural extension of OWL 2.
The extension has been implemented in the FaCT++ reasoner.

Evaluation of the new feature on the (extended) FHKB shows definite bene-
fits. The sparse assertion of, for instance, sibling relationships becomes a feasible
modelling approach. The cost of such an extension has been shown to be low.

The Man-Man issue is not the only one to arise from the FHKB. As described
in Stevens and Stevens [8], all entailments on individuals are correct, bar one
kind. This was the attempt to use sub-property chains to determine cousin rela-
tionships. The obvious sub-property chain is hasParent o isSiblingOf o isParentOf.
The property isSiblingOf is symmetric and transitive. Hence it cannot be made
irreflexive because it would make cause an inconsistency. This means that an in-
dividual is its own sibling; thus, that individual and his siblings are his or her
own cousins.

Another aspect of family relationships that cannot be determined using
OWL 2 and automated reasoning are half-siblings and step-parentage. At the
level of individuals, such relationships can be determined using DL-safe rules.
These are, however, restricted to use in the ABox.

The FHKB has been developed as a tutorial example.5 It highlights many
of OWL 2’s features, as well as emphasising individuals; entailments on indi-
viduals; property hierarchies and property characteristics. As well as exhibiting
some of the limitations of OWL 2 as outlined above, it highlights the issue of
scalability of the application of sophisticated reasoning over ABoxes. The FHKB
also highlights some traps for the unwary modeller using OWL:

– It is tempting having made sub-property chains such as isUncleOf and
isGrandparentOf, to make class definitions such as

EquivalentTo(Uncle, Man that isUncleOf some Person).

As a consequence, all known uncles are indeed inferred to be instances of
Uncle. It does not, however, have the desired effects when building a TBox.
All uncles are necessarily brothers and so the uncle class should be subsumed
by the class Brother; this is not the case, because

SubObjectPropertyOf(isBrotherOf o isParentOf, isUncleOf)

is not

EquivalentObjectProperties(isBrotherOf o isParentOf, isUncleOf),

which can not be expressed in OWL 2.
5
http://www.cs.man.ac.uk/~stevensr/menupages/fhkb.php



– We could be tempted to expect that the creation of the defined class for
the uncles of robert david bright 1965 and richard john bright 1962

should be inferred to be equivalent classes as they both contain the same
individuals. Yet this is not the case for the similar reason as the first case:
Robert could, in principle, have an uncle who is not Richard’s uncle.

The FHKB serves as a good example for OWL 2 features; both as a tutorial
example and for testing reasoners. For teaching, it touches on a majority of
the issues encountered when using OWL. It also highlights limitations in the
expressivity of OWL. As demonstrated with the projection case study presented
in this paper, it can act as a test-bed for extensions to OWL.
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