
Relational Cloud: A Database-as-a-Service for the Cloud

Carlo Curino
curino@mit.edu

Evan P. C. Jones
evanj@mit.edu

Raluca Ada Popa
ralucap@mit.edu

Nirmesh Malviya
nirmesh@csail.mit.edu

Eugene Wu
eugenewu@mit.edu

Sam Madden
madden@csail.mit.edu

Hari Balakrishnan
hari@csail.mit.edu

Nickolai Zeldovich
nickolai@csail.mit.edu

ABSTRACT
This paper introduces a new transactional “database-as-a-service”
(DBaaS) called Relational Cloud. A DBaaS promises to move
much of the operational burden of provisioning, configuration, scal-
ing, performance tuning, backup, privacy, and access control from
the database users to the service operator, offering lower overall
costs to users. Early DBaaS efforts include Amazon RDS and
Microsoft SQL Azure, which are promising in terms of establish-
ing the market need for such a service, but which do not address
three important challenges: efficient multi-tenancy, elastic scala-
bility, and database privacy. We argue that these three challenges
must be overcome before outsourcing database software and man-
agement becomes attractive to many users, and cost-effective for
service providers. The key technical features of Relational Cloud
include: (1) a workload-aware approach to multi-tenancy that iden-
tifies the workloads that can be co-located on a database server,
achieving higher consolidation and better performance than existing
approaches; (2) the use of a graph-based data partitioning algorithm
to achieve near-linear elastic scale-out even for complex transac-
tional workloads; and (3) an adjustable security scheme that enables
SQL queries to run over encrypted data, including ordering oper-
ations, aggregates, and joins. An underlying theme in the design
of the components of Relational Cloud is the notion of workload
awareness: by monitoring query patterns and data accesses, the sys-
tem obtains information useful for various optimization and security
functions, reducing the configuration effort for users and operators.

1. INTRODUCTION
Relational database management systems (DBMSs) are an inte-

gral and indispensable component in most computing environments
today, and their importance is unlikely to diminish. With the advent
of hosted cloud computing and storage, the opportunity to offer a
DBMS as an outsourced service is gaining momentum, as witnessed
by Amazon’s RDS and Microsoft’s SQL Azure (see §7). Such a
database-as-a-service (DBaaS) is attractive for two reasons. First,
due to economies of scale, the hardware and energy costs incurred
by users are likely to be much lower when they are paying for a share
of a service rather than running everything themselves. Second, the
costs incurred in a well-designed DBaaS will be proportional to ac-
tual usage (“pay-per-use”)—this applies to both software licensing
and administrative costs. The latter are often a significant expense
because of the specialized expertise required to extract good perfor-
mance from commodity DBMSs. By centralizing and automating
many database management tasks, a DBaaS can substantially reduce
operational costs and perform well.

From the viewpoint of the operator of a DBaaS, by taking ad-
vantage of the lack of correlation between workloads of different
applications, the service can be run using far fewer machines than if

each workload was independently provisioned for its peak.
This paper describes the challenges and requirements of a large-

scale, multi-node DBaaS, and presents the design principles and
implementation status of Relational Cloud, a DBaaS we are build-
ing at MIT (see http://relationalcloud.com). Relational
Cloud is appropriate for a single organization with many individual
databases deployed in a “private” cloud, or as a service offered via
“public” cloud infrastructure to multiple organizations. In both cases,
our vision is that users should have access to all the features of a SQL
relational DBMS, without worrying about provisioning the hard-
ware resources, configuring software, achieving desired security,
providing access control and data privacy, and tuning performance.
All these functions are outsourced to the DBaaS.

There are three challenges that drive the design of Relational
Cloud: efficient multi-tenancy to minimize the hardware footprint
required for a given (or predicted) workload, elastic scale-out to
handle growing workloads, and database privacy.
Efficient multi-tenancy. Given a set of databases and workloads,
what is the best way to serve them from a given set of machines?
The goal is to minimize the number of machines required, while
meeting application-level query performance goals. To achieve this,
our system must understand the resource requirements of individual
workloads, how they combine when co-located on one machine, and
how to take advantage of the temporal variations of each workload
to maximize hardware utilization while avoiding overcommitment.

One approach to this problem would be to use virtual machines
(VMs); a typical design would pack each individual DB instance into
a VM and multiple VMs on a single physical machine. However,
our experiments show that such a “DB-in-VM” approach requires
2× to 3× more machines to consolidate the same number of work-
loads and that for a fixed level of consolidation delivers 6× to 12×
less performance than the approach we advocate. The reason is
that each VM contains a separate copy of the OS and database,
and each database has its own buffer pool, forces its own log to
disk, etc. Instead, our approach uses a single database server on
each machine, which hosts multiple logical databases. Relational
Cloud periodically determines which databases should be placed on
which machines using a novel non-linear optimization formulation,
combined with a cost model that estimates the combined resource
utilization of multiple databases running on a machine. The de-
sign of Relational Cloud also includes a lightweight mechanism to
perform live migration of databases between machines.
Elastic scalability. A good DBaaS must support database and work-
loads of different sizes. The challenge arise when a database work-
load exceeds the capacity of a single machine. A DBaaS must
therefore support scale-out, where the responsibility for query pro-
cessing (and the corresponding data) is partitioned amongst multi-
ple nodes to achieve higher throughput. But what is the best way
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to partition databases for scale-out? The answer depends on the
way in which transactions and data items relate to one another. In
Relational Cloud, we use a recently developed workload-aware par-
titioner [5], which uses graph partitioning to automatically analyze
complex query workloads and map data items to nodes to minimize
the number of multi-node transactions/statements. Statements and
transactions spanning multiple nodes incur significant overhead, and
are the main limiting factor to linear scalability in practice. Our
approach makes few assumptions on the data or queries, and works
well even for skewed workloads or when the data exhibits complex
many-to-many relationships.
Privacy. A significant barrier to deploying databases in the cloud
is the perceived lack of privacy, which in turn reduces the degree
of trust users are willing to place in the system. If clients were
to encrypt all the data stored in the DBaaS, then the privacy con-
cerns would largely be eliminated. The question then is, how can the
DBaaS execute queries over the encrypted data? In Relational Cloud,
we have developed CryptDB, a set of techniques designed to provide
privacy (e.g., to prevent administrators from seeing a user’s data)
with an acceptable impact on performance (only a 22.5% reduction
in throughput on TPC-C in our preliminary experiments). Database
administrators can continue to manage and tune the databases, and
users are guaranteed data privacy. The key notion is that of ad-
justable security: CryptDB employs different encryption levels for
different types of data, based on the types of queries that users run.
Queries are evaluated on the encrypted data, and sent back to the
client for final decryption; no query processing runs on the client.

A unifying theme in our approach to these three big challenges is
workload-awareness. Our main design principle is to monitor the
actual query patterns and data accesses, and then employ mecha-
nisms that use these observations to perform various optimization
and security functions.

2. SYSTEM DESIGN
Relational Cloud uses existing unmodified DBMS engines as the

back-end query processing and storage nodes. Each back-end node
runs a single database server. The set of back-end machines can
change dynamically in response to load. Each tenant of the system—
which we define as a billable entity (a distinct user with a set of
applications, a business unit, or a company)—can load one or more
databases. A database has one or more tables, and an associated
workload, defined as the set of queries and transactions issued to it
(the set may not be known until run-time). Relational Cloud does
not mix the data of two different tenants into a common database or
table (unlike [1]), but databases belonging to different tenants will
usually run within the same database server.

Applications communicate with Relational Cloud using a standard
connectivity layer such as JDBC. They communicate with the Rela-
tional Cloud front-end using a special driver that ensures their data
is kept private (e.g., cannot be read by the database administrator)
—this is described in more detail below. When the front-end receives
SQL statements from clients, it consults the router, which analyzes
each SQL statement and uses its metadata to determine the execution
nodes and plan. The front-end coordinates multi-node transactions,
produces a distributed execution plan, and handles fail-over. It also
provides a degree of performance isolation by controlling the rate at
which queries from different tenants are dispatched.

The front-end monitors the access patterns induced by the work-
loads and the load on the database servers. Relational Cloud uses
this information to periodically determine the best way to: (1) par-
tition each database into one or more pieces, producing multiple
partitions when the load on a database exceeds the capacity of a sin-
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Figure 1: Relational Cloud Architecture.

gle machine (§3), (2) place the database partitions on the back-end
machines to both minimize the number of machines and balance
load, migrate the partitions as needed without causing downtime,
and replicate the data for availability (§4), and (3) secure the data
and process the queries so that they can run on untrusted back-ends
over encrypted data (§5). The Relational Cloud system architecture
is shown in Figure 1, which depicts these functions and demarcates
the trusted and untrusted regions.

Applications communicate with the Relational Cloud front-end
using a CryptDB-enabled driver on the client, which encrypts and
decrypts user data and rewrites queries to guarantee privacy. On
the back-end nodes, CryptDB exploits a combination of server-
side cryptography and user-defined functions (UDFs) to enable
efficient SQL processing—particularly ordering, aggregates, and
joins, which are all more challenging than simple selections and
projections—over encrypted data.

Current status: We have developed the various components of Re-
lational Cloud and are in the process of integrating them into a single
coherent system, prior to offering it as a service on a public cloud.
We have implemented the distributed transaction coordinator along
with the routing, partitioning, replication, and CryptDB components.
Our transaction coordinator supports both MySQL and Postgres
back-ends, and have implemented a JDBC public interface. Given
a query trace, we can analyze and automatically generate a good
partitioning for it, and then run distributed transactions against those
partitions. The transaction coordinator supports active fail-over to
replicas in the event of a failure. We have developed a placement
and migration engine that monitors database server statistics, OS
statistics, and hardware loads, and uses historic statistics to predict
the combined load placed by multiple workloads. It uses a non-
linear, integer programming solver to optimally allocate partitions
to servers. We are currently implementing live migration.

Other papers (either published [5] or in preparation) detail the
individual components, which are of independent interest. This
paper focuses on the Relational Cloud system and on how the com-
ponents address the challenges of running a large-scale DBaaS,
rather than on the more mundane engineering details of the DBaaS
implementation or on the detailed design and performance of the
components. (That said, in later sections we present the key per-
formance results for the main components of Relational Cloud to
show that the integrated system is close to being operational.) At
the CIDR conference, we propose to demonstrate Relational Cloud.

3. DATABASE PARTITIONING
Relational Cloud uses database partitioning for two purposes: (1)

to scale a single database to multiple nodes, useful when the load
exceeds the capacity of a single machine, and (2) to enable more
granular placement and load balance on the back-end machines
compared to placing entire databases.
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The current partitioning strategy is well-suited to OLTP and Web
workloads, but the principles generalize to other workloads as well
(such as OLAP). OLTP/Web workloads are characterized by short-
lived transactions/queries with little internal parallelism. The way to
scale these workloads is to partition the data in a way that minimizes
the number of multi-node transactions (i.e., most transactions should
complete by touching data on only one node), and then place the
different partitions on different nodes. The goal is to minimize the
number of cross-node distributed transactions, which incur overhead
both because of the extra work done on each node and because of
the increase in the time spent holding locks at the back-ends.

Relational Cloud uses a workload-aware partitioning strategy.
The front-end has a component that periodically analyzes query
execution traces to identify sets of tuples that are accessed together
within individual transactions. The algorithm represents the execu-
tion trace as a graph. Each node represents a tuple (or collection
of tuples) and an edge is drawn between any two nodes whose
tuples are touched within a single transaction. The weight on an
edge reflects how often such pair-wise accesses occur in a workload.
Relational Cloud uses graph partitioning [13] to find ` balanced
logical partitions, while minimizing the total weight of the cut edges.
This minimization corresponds to find a partitioning of the database
tuples that minimizes the number of distributed transactions.

The output of the partitioner is an assignment of individual tuples
to logical partitions. Relational Cloud now has to come up with a
succinct representation of these partitions, because the front-end’s
router needs a compact way to determine where to dispatch a given
SQL statement. Relational Cloud solves this problem by finding a
set of predicates on the tuple attributes. It is natural to formulate
this problem as a classification problem, where we are given a set
of tuples (the tuple attributes are features), and a partition label for
each tuple (the classification attribute). The system extracts a set
of candidate attributes from the predicates used in the trace. The
attribute values are fed into a decision tree algorithm together with
the partitioning labels. If the decision tree successfully generalizes
the partitioning with few simple predicates, a good explanation for
the graph partitioning is found. If no predicate-based explanation
is found (e.g., if thousands of predicates are generated), the system
falls back to lookup tables to represent the partitioning scheme.

The strength of this approach is its independence from schema
layout and foreign key information, which allows it to discover
intrinsic correlations hidden in the data. As a consequence, this
approach is effective in partitioning databases containing multiple
many-to-many relationships—typical in social-network scenarios—
and in handling skewed workloads [5].

The main practical difficulty we encountered was in scaling the
graph representation. The naı̈ve approach leads to a graph with
N nodes and up to N2 edges for an N -tuple database, which is
untenable because existing graph partitioning implementations scale
only to a few tens of millions of nodes. For this reason, we devised
a series of heuristics that effectively limit the size of the graph. The
two most useful heuristics used in Relational Cloud are: (1) blanket
statement removal, i.e., the exclusion from the graph occasional
statements that scan large portions of the database and (2) sampling
tuples and transactions.

4. PLACEMENT AND MIGRATION
Resource allocation is a major challenge when designing a scal-

able, multi-tenant service like Relational Cloud. Problems include:
(i) monitoring the resource requirements of each workload, (ii) pre-
dicting the load multiple workloads will generate when run together
on a server, (iii) assigning workloads to physical servers, and (iv)
migrating them between physical nodes.

In Relational Cloud, a new database and workload are placed
arbitrarily on some set of nodes for applications, while at the same
time set up in a staging area where they run on dedicated hardware.
During this time, the system monitors their resource consumption
in the staging area (and for the live version). The resulting time-
dependent resource profile is used to predict how this workload
will interact with the others currently running in the service, and
whether the workload needs to be partitioned. If a workload needs
to be partitioned, it is split using the algorithms described in the
previous section. After that, an allocation algorithm is run to place
the each workload or partition onto existing servers, together with
other partitions and workloads.

We call the monitoring and consolidation engine we developed for
this purpose Kairos; a complete paper on Kairos is currently under
submission. It takes as input an existing (non-consolidated) collec-
tion of workloads, and a set of target physical machines on which
to consolidate those workload, and performs the aforementioned
analysis and placement tasks. Its key components are:

1. Resource Monitor: Through an automated statistics collection
process, the resource monitor captures a number of DBMS and OS
statistics from a running database. One monitoring challenge is
estimating the RAM required by a workload, since a standalone
DBMS will tend to fill the entire buffer pool with pages, even if
many of those pages aren’t actively in use. To precisely measure
working set size, Kairos slowly grows and repeatedly accesses a
temporary probe table, while monitoring amount of disk activity
on the system. Once the probe table begins to evict tuples in the
working set, load on the disk will increase as those pages have to be
read back into memory to answer queries. We have found that this
approach provides an accurate, low-overhead way of measuring the
true RAM requirements of a workload.

2. Combined Load Predictor: We developed a model of CPU,
RAM, and disk that allows Kairos to predict the combined resource
requirements when multiple workloads are consolidated onto a sin-
gle physical server. The many non-linearities of disk and RAM
makes this task difficult. In particular, for disk I/O, we built a tool
that creates a hardware-specific model of a given DBMS configu-
ration, allowing us to predict how arbitrary OLTP/Web workloads
will perform on that configuration. The accuracy of this model at
predicting the combined disk requirements of multiple workloads
is up to 30× better than simply assuming that disk I/O combines
additively. The reason is that two combined workloads perform
many fewer I/Os than the sum of their individual I/Os: when com-
bined, workloads share a single log, and can both benefit from group
commit. Moreover, database systems perform a substantial amount
of non-essential I/O during idle periods (e.g., flushing dirty pages
to decrease recovery times)—in a combined workload, this activity
can be curtailed without a substantial performance penalty.

3. Consolidation Engine: Finally, Kairos uses non-linear opti-
mization techniques to place database partitions on back-end nodes
to: (1) minimize the number of machines required to support a given
workload mix, and (2) balance load across the back-end machines,
while not exceeding machine capacities.

In addition to this placement functionality, another important
feature of Relational Cloud is the capability to relocate database
partitions across physical nodes. This relocation allows for sched-
uled maintenance and administration tasks, as well as to respond
to load changes that entail the addition (or removal) of back-end
machines. Relational Cloud aims to provide live migration, where
data is moved between back-end nodes without causing downtime
or adversely reducing performance. We are currently developing
and testing a cache-like approach, where a new node becomes the
new master for a portion of the data. Data is lazily fetched from the
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old master as needed to support queries. In-flight transactions are
redirected to the new master without being quiesced or killed.

5. PRIVACY
This section outlines CryptDB, the sub-system of Relational

Cloud that guarantees the privacy of stored data by encrypting
all tuples. The key challenge is executing SQL queries over the
resulting encrypted data, and doing so efficiently. For example, a
SQL query may ask for records from an employees table with a
specific employee name; records whose salary field is greater than a
given value; records joined with another table’s rows, such as the
employee’s position; or even more complex queries, such as the
average salary of employees whose position requires travel. Simply
encrypting the entire database, or encrypting each record separately,
will not allow the back-end DBMS to answer these kinds of queries.
In addition, we would like a design that will allow DBAs (who
operate Relational Cloud) to perform tuning tasks without having
any visibility into the actual stored data.

Approach. The key idea in our approach is a notion we call ad-
justable security. We observe that there are many cryptographic
techniques that we can build on to execute SQL queries, includ-
ing randomized encryption (RND) and deterministic encryption
(DET), as well as more recently developed order-preserving encryp-
tion (OPE) and homomorphic encryption (HOM). RND provides
maximum privacy, such as indistinguishability under an adaptive
chosen-plaintext attack without access to the key. However, RND
does not allow any computation to be efficiently performed on the
plaintext. DET provides a weaker privacy guarantee, because it
allows a server to check plaintexts for equality by checking for
equality of ciphertexts. OPE is even more relaxed in that it enables
inequality checks and sorting operations, but has the nice property
that the distribution of ciphertext is independent from the encrypted
data values and also pseudorandom. Finally, HOM enables opera-
tions over encrypted data; in our case, we will mainly use additions
and multiplications, which can be done efficiently.

Design. To implement adjustable security, our idea is to encrypt
each value of each row independently into an onion: each value in
the table is dressed in layers of increasingly stronger encryption, as
shown in Figure 2. Each integer value is stored three times: twice
encrypted as an onion to allow queries and once encrypted with
homomorphic encryption for integers; each string type is stored
once, encrypted in an onion that allows equalities and word searches
and has an associated token allowing inequalities.

CryptDB starts the database out with all data encrypted with the
most private scheme, RND. The JDBC client, shown in Figure 1,
has access to the keys for all onion layers of every ciphertext stored
on the server (by computing them based on a single master key).
When the JDBC client driver receives SQL queries from the appli-
cation, it computes the onion keys needed by the server to decrypt
certain columns to the maximum privacy level that will allow the
query execute on the server (such as DET for equality predicates).
The security level dynamically adapts based on the queries that
applications make to the server. We expect the database to converge
to a certain security level when the application does not issue any
more queries with new structures (only with different constants).

To simplify the management of onion keys, CryptDB encrypts
all data items in a column using the same set of keys. Each layer
of the onion has a different key (different from any other column),
except for the lowest layer allowing joins (to allow meaningful
comparisons of ciphertexts between two different columns as part
of a join). The encryption algorithms are symmetric; in order for
the server to remove a layer, the server must receive the symmetric

OR

value

2. DET: equality join

4. DET: equality selection

6. RND: no functionality

value

1. OPE: inequality join

3. OPE: inequality select,
min, max, sort, group-by

5. RND: no functionality
int value

HOM: addition

string value

String search

Figure 2: Onion layers of encryption.

onion key for that layer from the JDBC client. Once the server
receives the key to decrypt an onion to a lower layer, it starts writing
newly-decrypted values to disk, as different rows are accessed or
queried. Once the entire column has been decrypted, the original
onion ciphertext is discarded, since inner onion layers can support a
superset of queries compared to outer layers.

For example, performing joins between tables requires the client
to send keys to the server, which decrypts the joined columns to
a layer that allows joins. There are two layers of DET and OPE
encryption in the onion shown in Figure 2, corresponding to cipher-
texts that can be used for comparisons for a single column (e.g.,
selection on equality to a given value with DET, selection based on
comparison with OPE, etc.), and ciphertexts that can be used to join
multiple columns together (i.e., using the same key). The database
server then performs joins on the resulting ciphertexts as usual.

The key factor in the performance of CryptDB is ciphertext ex-
pansion. After the client issues a few queries, the server removes
any unneeded onion layers of encryption, and from then on, it does
not perform any more cryptographic operations. The server’s only
overhead is thus working with expanded tuples. If the ciphertext and
plaintext are of equal length, most server operations, such as index
lookups or scans, will take the same amount of time to compute. For
DET, plaintext and ciphertext are equal in length, whereas for OPE,
the ciphertext is double in length.

An example. To illustrate CryptDB’s design, consider a TPC-
C workload. Initially each column in the database is sepa-
rately encrypted in several layers of encryption, with RND be-
ing the outer layer. Suppose the application issues the query
SELECT i price, . . . FROM item WHERE i id=N . The
JDBC client will decrypt the i id column to DET level 4 (Figure 2)
by sending the appropriate decryption key to the server. Once that
column is decrypted, the client will issue a SQL query with a WHERE
clause that matches the DET-level i id field to the DET-encrypted
ciphertext of N . The query will return RND-encrypted ciphertexts
to the JDBC client, which will decrypt them for the application. If
the application’s query requires order comparisons (e.g., looking
for products with fewer than M items in stock), the JDBC client
must similarly decrypt the onion to OPE level 3, and send an OPE
ciphertext of the value M .

Suppose the application issues a join query, such as
SELECT c discount, w tax, . . . FROM customer,
warehouse WHERE w id=c w id AND c id=N . To per-
form the join on the server, the JDBC client needs to decrypt the
w id and c w id columns to DET level 2 because the encryption
should be deterministic not only within a column, but also across
columns. The server can now perform the join on the resulting
ciphertexts. Additionally, the JDBC client needs to decrypt c id
column to DET level 4, and send the DET-encrypted value N to the
server for the other part of the WHERE clause.

Finally, CryptDB uses HOM encryption for server-side aggre-
gates. For example, if a client asks SELECT SUM(ol amount)
FROM order line WHERE ol o id=N , the server would
need the keys to adjust the encryption of the ol amount field
to HOM, so that it can homomorphically sum up the encrypted
ol amount values, computing the total order amounts.
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Table 1: Consolidation ratios for real-world datasets
Dataset Input # Consolidated Consolidation

Servers # Servers Ratio
TIG-CSAIL 25 2 12.5:1
Wikia 34 2 17:1
Wikipedia 40 6 6.6:1
Second Life 98 16 6.125:1

6. EXPERIMENTS
In this section, we describe several experiments we have run to

evaluate Relational Cloud.
Consolidation/Multi-tenancy. We begin by investigating how
much opportunity there is for consolidation in real-world database
applications. We obtained the load statistics for about 200 servers
from three data centers hosting the production database servers of
Wikia.com, Wikipedia, and Second Life, and the load statistics from
a cluster of machines providing shared services at MIT CSAIL.

Table 1 reports the consolidation levels we were able to achieve
using the workload analysis and placement algorithms presented
in Section 4. Here we used traces gathered over a 3-week dura-
tion, and found an allocation of databases to servers that Relational
Cloud predicts will cause no server to experience more than 90%
of peak load. The resulting ratios range from between 6:1 to 17:1
consolidation, demonstrating the significant reductions in capital
and administrative expenses by adopting these techniques. One
reason we are able to achieve such good consolidation is that our
methods exploit the statistical independence and uncorrelated load
spikes in the workloads.

In our second experiment, we compared the Relational Cloud
approach of running multiple databases inside one DBMS to running
each database in its own DBMS instance. Figure 3 (left) compares
the performance of multiple databases consolidated inside a single
DBMS that uses the entire machine, to the same server running one
DBMS per database, in this case all in a single OS. We measure the
maximum number of TPC-C instances than can run concurrently
while providing a certain level of transaction throughput. Running a
single DBMS allows 1.9–3.3× more database instances at a given
throughput level. In Figure 3 (right) we compare the same single
DBMS to multiple DBMSs, each running in a separate VM with
its own OS. We measure the TPC-C throughput when there are
20 database instances on the physical machine—overall, a single
DBMS instance achieves approximately 6× greater throughput for
a uniform load and 12× when we skew the load (i.e., 50% of the
requests are directed to one of the 20 databases).

The key reason for these results is that a single DBMS is much
better at coordinating the access to resources than the OS or the
VM hypervisor, enabling higher consolidation ratios on the same
hardware. In particular, multiple databases in one DBMS share a
single log and can more easily adjust their use of the shared buffer
pool than in the multiple DBMS case where there are harder resource
boundaries.
Scalability. We now measure how well the partitioning algorithm
divides a database into independent partitions and how throughput
scales as the database is spread across machines.

In this experiment we run TPC-C with a variable number of ware-
houses (from 16 to 128) and show what happens when database is
partitioned and placed by Relational Cloud on 1 to 8 servers. The
partitioner automatically splits the database by warehouse, placing
16 warehouses per server, and replicates the item table (which is
never updated). We have manually verified that this partitioning is
optimal. We measure the maximum sustained transaction through-
put, which ranges from 131 transactions per second (TPS) with 16
warehouses on 1 machine up to 1007 TPS with 128 warehouses
spread across 8 machines, representing a 7.7× speedup.
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Figure 5: Impact of privacy on latency and throughput

We also measured the latency impact of our transaction coordina-
tor on TPC-C, issuing queries to a single database with and without
our system in place. On average, the Relational Cloud front-end
adds 0.5 ms of additional latency per SQL statement (which for
TPC-C adds up to 15 ms per transaction), resulting in a drop in
throughput of about 12% from 149 TPS to 131 TPS.
The cost of privacy.

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

number of servers
th

ro
ug

hp
ut

 (t
ps

)
Figure 4: Scaling TPC-C.

CryptDB introduces ad-
ditional latency on both
the clients (for rewriting
queries and encrypting and
decrypting payloads), and on
the server (due to the enlarge-
ment of values as a result of
encryption.) We measured
the time to process 100,000
statements (selects/updates)
from a trace of TPC-C and recorded an average per statement
overhead of 25.6 ms on the client side. We measure the effect
that this additional latency is likely to cause in the next section.
The server-side overhead is shown in Figure 5; the dashed line
represents performance (latency–left, throughput–right) without
CryptDB, and the solid line shows performance with CryptDB.
Overall throughput drops by an average of 22.5%, which we believe
will be an acceptable and tolerable performance degradation given
the powerful privacy guarantees that are being provided.
The impact of latency.

In our final experiment, we measured the impact that additional
latency between database
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Figure 6: Impact of latency

clients and servers introduces
on query throughput. This met-
ric is relevant because in a Rela-
tional Cloud deployment, it may
be valuable to run the database
on a service provider like AWS
(to provide a pool of machine
for elastic scalability) with the
application running in an inter-
nal data center across a wide-
area network. Additionally, our privacy techniques depend on a
(possibly remote) trusted node to perform query encoding and result
decryption.
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We again ran TPC-C, this time with 128 warehouses and 512
client terminals (with no wait time). Figure 6 shows how aggregate
throughput varies with increasing round-trip latency between the
application and the DB server (we artificially introduced latency us-
ing a Linux kernel configuration parameter on the client machines.)
We note that with latencies up to 20 ms, the drop in throughput is
only about 12%, which is comparable to the latency of 10–20 ms
we observe between AWS’s east coast data center and MIT. The
principal cause of this latency degradation is that locks are held for
longer in the clients, increasing conflicts and decreasing throughput.
Since TPC-C is a relatively high contention workload, it is likely that
real-world workloads will experience lower throughput reductions.

Combining the results from the previous experiments, we ex-
pect an overall throughput reduction of about 40% when running
CryptDB, our transaction coordinator, and a remote application,
all at once. However, due to the linear scalability achieved via
partitioning, we can compensate for this overhead using additional
servers. As a result of the high consolidation ratios we measured on
real applications, we still expect significant reduction in the overall
hardware footprint, on the order of 3.5:1 to 10:1.

7. RELATED WORK
Scalable database services. Commercial cloud-based relational
services like Amazon RDS and Microsoft SQL Azure have begun
to appear, validating the market need. However, existing offerings
are severely limited, supporting only limited consolidation (often
simply based on VMs), lacking support for scalability beyond a
single node, and doing nothing to provide any data privacy or ability
to process queries over encrypted data. Some recent approaches [17,
18] try to leverage VM technologies, but our experiments show that
these are significantly inferior in performance and consolidation to
Relational Cloud’s DBMS-aware DBaaS design.

Multi-tenancy. There have been several efforts to provide extreme
levels of multi-tenancy [1, 12], aiming to consolidate tens of thou-
sands of nearly inactive databases onto a single server, especially
when those databases have identical or similar schemas. The key
challenge of this prior work has been on overcoming DBMSs’ lim-
itations at dealing with extremely large numbers of tables and/or
columns. These efforts are complementary to our work; we target
heterogeneous workloads that do not share any data or schemas, and
which impose significant load to the underlying DBMS in aggregate
or even on their own—hence our focus on profiling and placement.

Scalability. Scalable database systems are a popular area for re-
search and commercial activity. Approaches include NoSQL sys-
tems [3, 4, 2, 14], which sacrifice a fair amount of expressive power
and/or consistency in favor of extreme scalability, and SQL-based
systems that limit the type of transactions allowed [11, 7] or exploit
novel thread-to-transaction assignment techniques [16]. We differ
from these in that we aim to preserve consistency and expressivity,
achieving scalability via workload-aware partitioning. Our partition-
ing approach differs from prior work in that most prior work has
focused on OLAP workloads and declustering [15, 20, 8].

Untrusted Storage and Computation. Theoretical work on ho-
momorphic encryption [9] provides a solution to computing on
encrypted data, but is too expensive to be used in practice. Systems
solutions [10, 6, 19] have been proposed, but, relative to our solution,
offer much weaker (at best) and compromised security guarantees,
require significant client-side query processing and bandwidth con-
sumption, lack core functionality (e.g., joins), or require significant
changes to the DBMS.

8. CONCLUSION
We introduced Relational Cloud, a scalable relational database-

as-a-service for cloud computing environments. Relational Cloud
overcomes three significant challenges: efficient multi-tenancy, elas-
tic scalability, and database privacy. For multi-tenancy, we devel-
oped a novel resource estimation and non-linear optimization-based
consolidation technique. For scalability, we use a graph-based parti-
tioning method to spread large databases across many machines. For
privacy, we developed the notion of adjustable privacy and showed
how using different levels of encryption layered as an “onion” can
enable SQL queries to be processed over encrypted data. The key
insight here is for the client to provide only the minimum decryption
capabilities required by any given query. Based on our performance
results, we believe that the Relational Cloud vision can be made a re-
ality, and we look forward to demonstrating an integrated prototype
at CIDR 2011.
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