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Abstract

Autonomous computational creativity systems must not
only have the ability to generate artifacts, but also to
select the best ones on the basis of some assessment
of quality (and novelty). Such quality functions are
typically directly encoded using domain knowledge or
learned through supervised learning algorithms using
labeled training data. Here we introduce the notion of
unsupervised computational creativity; we specifically
consider the possibility of unsupervised assessment for
a given context by generalizing artifact relationships
learned across all contexts. A particular approach that
uses a knowledge graph for generalizing rules from an
inspiration set of artifacts is demonstrated through a de-
tailed example of computational creativity for causal as-
sociations in civic life, drawing on an event dataset from
political science. Such a system may be used by ana-
lysts to help imagine future worlds.

Introduction
Computational creativity (CC) systems are intended to help
generate artifacts that are deemed to be creative by their
users or experts in the domain. Although creative value is
subjective and often difficult to pin down, there is consensus
in the literature that creative artifacts should be novel as well
as valuable or useful (Boden 1990; Mayer 1999). Since nov-
elty can be viewed as one of potentially many attributes of
creative value (Bhattacharjya 2016), we use the term quality
to refer to all non-novelty related aspects of creative arti-
facts (Ritchie 2001; Pease, Winterstein, and Colton 2001).

Clearly, a crucial requirement for any autonomous CC
system is the ability to evaluate the creative value of ar-
tifacts, particularly their quality. A popular approach to
evaluating quality is through the use of extensive domain-
specific knowledge. For instance, the IBM Chef Watson sys-
tem exploits knowledge from hedonic psychophysics around
chemical compositions and flavor profiles of individual in-
gredients (and their combining rules) to evaluate the po-
tential pleasantness of recipes (Varshney et al. 2013). An
alternate approach to evaluating quality is to learn it from
assessments of artifacts provided by other agents, typi-
cally humans. Examples include the PIERRE system for
stew recipes that uses human-specified ratings for complete
recipes (Morris et al. 2012) and the DARCI system for im-

ages that receives feedback from humans (Norton, Heath,
and Ventura 2010).

In the aforementioned systems, the mechanism for eval-
uating quality is explicitly specified; we refer to this as su-
pervised computational creativity, whether achieved by su-
pervised learning on complete artifacts or by encoding prop-
erties of components and combining rules for combinatorial
creativity. In contrast, we posit that quality can be inferred
in numerous ways without such explicit knowledge in un-
supervised computational creativity, using an inspiration set
(also known as inspiring set (Ritchie 2001)) of artifacts and
potentially additional knowledge that does not pertain di-
rectly to the quality of artifacts. In this paper, we describe a
specific data-driven framework that uses a knowledge graph
in addition to the inspiration set. We illustrate the approach
through a novel application where we first build an inspira-
tion set of cause-effect pairs from a political event dataset
and then use these to generate creative cause-effect pairs of
events occurring in a country.

The key high-level idea behind our approach is that of
generalization, i.e. when there is information about artifacts
from various contexts, one might be able to learn across all
these contexts to estimate a proxy measure for quality. In
particular, if there are patterns that seem to be widely preva-
lent, they could indicate characteristics of high-quality arti-
facts; the underlying assumption is that widespread preva-
lence hints at potential usefulness. An artifact could then
be contextually creative if it is contextually novel, i.e. orig-
inal/surprising for a particular context, but also adheres to
generally prevalent patterns. While the notion of general-
ization in computational creativity has been described previ-
ously, e.g. Ventura (2016), here we make the connection to
quality evaluation – an essential module for any CC system.

Although supervision has played a dominant role in prac-
tical CC systems and will likely continue to do so in the
future, we believe that the supervised/unsupervised distinc-
tion is useful for the field to consider. For one, unsupervised
computational creativity forges a path to pursuing abstract
conceptual work, thereby enabling ideas and formulations
that could be useful across application domains. Further, it
explicitly extends the role of machine learning in computa-
tional creativity, cf. Guzdial and Riedl (2018). In a recent
review, Toivonen and Gross (2015) discuss the role of data
mining and machine learning in computational creativity:



as far as evaluation of quality is concerned, they focus on
supervised techniques. In contrast, we consider the use of
unsupervised learning techniques. We begin by expanding
upon the distinction around supervision.

Supervision in Computational Creativity
There are two fundamental approaches to supervision in
computational creativity: 1) to use domain knowledge to
map combinations of components of artifacts to measures
of quality, and 2) to learn such quality functions from labels
such as user ratings, typically through supervised machine
learning techniques.

Quality Functions from Domain Knowledge
Computational creativity applications span diverse applica-
tion domains such as the visual and culinary arts, music,
poetry/narrative generation, and mathematical and scientific
discovery. It is not surprising that many successful CC sys-
tems rely heavily on knowledge specific to their domain of
application, pertaining to the quality of an artifact. This en-
ables the formulation of models that explicitly relate spe-
cific combinations of components of artifacts to measures of
quality that are appropriate for the application domain. We
illustrate this with a couple of examples, one from the culi-
nary arts and one from the sciences.

Chef Watson. The Chef Watson system is designed to
produce novel and flavorful culinary recipes (Varshney et al.
2013; Pinel, Varshney, and Bhattacharjya 2015). Bayesian
surprise, a domain-agnostic information-theoretic notion of
novelty, is used together with a combination of two domain-
specific measures of flavor quality. The first measure per-
tains to olfactory pleasantness, drawn from hedonic psy-
chophysics theory and computed from molecular properties
of individual flavor compounds present in individual ingre-
dients, together with a combining rule to predict the percept
of complete dishes from the individual compound proper-
ties. The second is a notion of flavor pairing, drawn from
the network science of culinary practice, and was originally
validated using positive examples of recipes from large cor-
pora. It is also computed using the flavor compound com-
position of ingredients. As can be noted, the evaluation of
quality in this system requires access to detailed hedonic
psychophysics and chemoinformatics data.

HAMB (Heuristic Autonomous Model Builder). As a
knowledge discovery system that has been deployed in bi-
ological sciences applications like protein crystallization
(Livingston 2001; Buchanan and Livingston 2004), HAMB
is different from other CC systems in that the form of the
eventual creative product is different from that of artifacts
in the inspiration set. HAMB receives an empirical dataset
as input and returns a set of discovery items. These items
are varied; the most prevalent kind is a conditional rule that
classifies features/attributes based on other features in the
dataset (ex: if f1 and f2 then f3 with p-value p). The quality
of a discovery item in HAMB is its interestingness, quanti-
fied using the system builders’ expertise around the knowl-
edge discovery process. For example, for a rule or a rule

set, it is measured through standard performance metrics
for classification such as precision and recall, p-value, etc.
HAMB is a prime example of how artifact quality in a CC
system is modeled using rich knowledge about the domain,
in this case that of rule induction for knowledge discovery.

Learning from Quality Labels
An alternate approach to supervision in computational cre-
ativity is through the availability of what we refer to as qual-
ity labels. These labels are indications from sources such
as previously acquired datasets or real-time human assess-
ments with explicit information about the quality of arti-
facts. When such labels are available, they can be used to
learn one or more quality functions, typically using super-
vised machine learning methods. Once again, we provide
specific examples, from the visual and culinary arts.

NEvAr (Neuro Evolutionary Art). In the NEvAr tool,
populations of images are generated through an interactive
evolutionary process (Machado and Cardoso 2002). Like
previous evolutionary art tools, the underlying representa-
tion of an image is a tree of mathematical functional oper-
ators applied to x-y coordinates of pixels in the image. In
NEvAr, the user guides the highly interactive process by
selecting individual images and providing a fitness score.
Images have a default fitness value of 0 but the user could
choose a small set of preferred images and provide a score
greater than 0, typically 1 to 3. This approach is typical
of CC systems involving genetic algorithms, where human-
assisted supervision is performed in real-time.

PIERRE (Pseudo-Intelligent Evolutionary Real-time
Recipe Engine). PIERRE is a recipe generation system
for crock pot recipes, i.e. soups, stews and chilis, that uses
online recipes as an inspiration set (Morris et al. 2012).
Like NEvAr, PIERRE uses a genetic algorithm for gener-
ation. Crossover is performed by splitting the two parent
recipes into two sub-lists each and merging these, and mu-
tation includes changes to ingredient amounts as well as in-
gredient replacements, additions, and deletions. Supervision
in PIERRE occurs through user ratings of recipes which are
also available in their repository. A multi-layer perceptron
is used to perform a regression that connects an input layer
of real-valued amounts of ingredient groups to a real-valued
output node of rating (between 0 and 1) through a 16-node
hidden layer. The system builders also added negative exam-
ples by assigning a 0 rating to randomly generated recipes.

We note that CC systems can be varied and complex in
their architecture as well as in the extent and timing of hu-
man involvement; this can make it difficult to strictly cat-
egorize or contain the mechanism of supervision. CC sys-
tems that use case-based reasoning, for instance, could po-
tentially rely on various forms of supervision. An example
is poetry generation using COLIBRI (Diaz-Agudo, Gervas,
and Gonzalez-Calero 2002) where supervision is achieved
by finding the nearest case but also by word substitution us-
ing domain knowledge about poetry such as part-of-speech,
rhyme, and syllable matching.



Another interesting supervised system is The Painting
Fool (Colton 2012) which uses a pipeline of techniques to
modify initial domain-specific quality function knowledge.
Colton (2008) describes an approach that produces scenes
similar to downtown Manhattan where the fitness of the
size, shape, color, and location of rectangle placeholders are
hand-crafted; an evolutionary model then invents new fitness
functions. A practical complication is that a system may
work in different modes, perhaps with different types of su-
pervision. NEvAr, for instance, uses quality labels when in
interactive evolutionary mode, and author-provided domain
knowledge about the aesthetic appeal of an image (based on
compression metrics) when in fully automated mode.

A fundamental issue with supervised computational cre-
ativity approaches is that it is difficult to transfer quality
evaluation modules from one application domain to another.
Another issue is that when a system is tied to pre-specified
notions of quality, it could miss out on productive regions of
the conceptual space of artifacts (Wiggins 2006). Unsuper-
vised techniques could potentially open up the playing field
around domain-agnostic quality evaluation in CC systems.

Unsupervised Computational Creativity
In unsupervised computational creativity, one must attempt
to create without the help of an explicit quality function. An
approach that is popular is to take an inspiration set of un-
labeled positive examples from the domain, learn models to
mimic the style and then make modifications of the learned
representation. A classic example is the work of David Cope
in music creativity, which models the styles of great com-
posers like Bach and Mozart, and then creates new exam-
ples of music ranging from single-instrument arrangements
to full symphonies (Cope 1996). This approach also allows
mixing of two or more different styles.

A modern reincarnation of this approach uses deep neural
networks and generative adversarial networks in creative do-
mains, building on their recent successes in machine learn-
ing. An example is the work of the Google Magenta project1
with applications in music and visual art. In certain aspects,
this approach to creativity can be limiting. When modifica-
tions to the learned representation are minor, resulting arti-
facts can be perceived to be too close to those in the inspi-
ration set; from an artistic perspective, some have therefore
criticized the results as pastiche. When modifications are
major, the resulting artifacts may be of low quality, partic-
ularly since these systems do not typically have a means to
judge their creations. To help avoid such issues, it could be
beneficial to use proxies for quality for evaluating artifacts.
As Colton and Wiggins (2012) write: “A poet with no criti-
cal ability to judge its own work ... is no poet at all”.

Unsupervised computational creativity is clearly a chal-
lenging endeavor and necessarily requires making assump-
tions. This is analogous to machine learning, where unsu-
pervised methods such as clustering implicitly assume that
objects that are similar in the feature space are more likely
to belong in similar clusters.

1https://magenta.tensorflow.org

Figure 1: Workflow in the causal association application.

One can further note that due to the absence of any sort
of evaluation, a final selection step is often carried out by
humans. This is true for Cope’s work but also for many
supervised systems, including Harold Cohen’s AARON for
visual art (McCorduck 1990).

Contextual Computational Creativity
We refer to the type of computational creativity formula-
tion underlying the application in the next section as con-
textual computational creativity, where it is assumed that
there is access to an inspiration set with artifacts pooled
together from various contexts. Formally, the dataset is
I = {(zi, ci)}Mi=1 where zi is the ith artifact and ci is the
context of the ith artifact, ci ∈ C for some context set C.
The contextual inspiration set is the subset that pertains to
a particular context c, i.e. Ic = {(zi, ci) :3 ci = c}. An
artifact in the inspiration set could in general be associated
with multiple contexts, and could involve a potentially com-
plex interplay of various constituent components. Examples
of inspiration sets of this type include recipe repositories
tagged with cuisine information, a database of songs with
their genres, etc. In the following section, we present an
application of contextual computational creativity that high-
lights the use of generalization in the unsupervised setting.

Application: Creative Causal Associations
Analysts in domains such as financial, business, or intelli-
gence analysis are often expected to use their creativity to
imagine future worlds. Computational creativity methods
could help analysts with divergent thinking, which is an im-
portant frame of mind for analyzing long-term and wide-
ranging eventualities for scenario analysis (Heuer and Pher-
son 2010, p. 133). We describe an application in creative
causal association that could spark ideas about future events.
We explain the steps of our workflow as shown in Figure 1,
where a dataset of political events is utilized for generating
creative pairs of causally associated events in a country.

Causal Discovery: Building the Inspiration Set
Event Dataset. In relational (also known as dyadic) event
datasets, events take the form ‘who does what to whom’,
i.e. an event z involves a source actor az performing an ac-
tion/verb vz on a target actor a′z , denoted z = (az, vz, a

′
z).



Figure 2: Bar chart showing the number of pairs (artifacts) in the
inspiration set for 16 out of the 17 countries in scope. (India with
over 45K pairs is omitted from this chart.)

The political science community has been building and cu-
rating such datasets for decades; see Schrodt and Yon-
amine (2013) for a review. While early datasets were ob-
tained through human coding, this has been replaced by au-
tomated natural language processing methods that convert
news articles in multiple languages into events.

For our application, we use the machine-generated Inte-
grated Crisis Early Warning System (ICEWS) political event
dataset (O’Brien 2010), with actors and actions from the
Conflict and Mediation Event Observations (CAMEO) on-
tology (Gerner et al. 2002). Actors in this ontology could
either be associated with generic actor roles and organiza-
tions (ex: Police (Brazil)) or they could be specific people
(ex: Hugo Chavez). Actions in the CAMEO framework are
hierarchically organized into 20 high-level actions and they
can be classified by whether they are verbal or material and
whether they involve cooperation or conflict.

In our experiments, we restrict attention to events that oc-
curred in India and the 16 countries mentioned in Figure 2
in the time period 1/1/2011 – 12/31/2015. These are pri-
marily countries from Asia and South America, and were
chosen to try to find interesting interactions among actors
within and across countries. The data was filtered to only
include 17 actor roles, including Citizen, Head of Govern-
ment, Protester, Insurgent, etc. Some manual curation was
required to transform individuals who are current or former
heads of government into their corresponding roles.

Causal Association. Causal discovery is a subject of great
interest in AI and broadly across the sciences (Pearl 2009).
Discovering causal association between a pair of events is
typically done through human assessments (Singh et al.
2002) or learned from textual corpora (Radinsky, Davi-
dovich, and Markovitch 2012; Luo et al. 2016). In this
work, we have access to a structured event dataset of the
form {(ek, tk)}Nk=1, where ek is the event type and tk is
the time of occurrence, tk ∈ R+. The dataset is strictly
temporally ordered with initial time t0 = 0 and end time
tN+1 = T , where T is the total time period. We attempt to
discover pairwise causal association by exploiting the fact
that an event dataset can be modeled as a temporal point pro-
cess and therefore represented using a conditional intensity

model (Gunawardana and Meek 2016).
We make a simplifying modeling assumption: for a can-

didate cause-effect pair (x, y), suppose that the intensity of
y at any time only depends on whether at least one event of
type x has occurred in a preceding fixed window w. It can
be shown that like the base rate of the effect λy , the condi-
tional intensity parameter λwy|x can also be computed using
summary statistics:

λy =
N(y)

T
;λwy|x =

Nw(x � y)

Dw(x)
, (1)

where N(y) counts occurrences of event y, Nw(x � y)
counts occurrences where y occurs and at least one event
of type x occurs within the preceding feasible time window
w, and time period Dw(x) =

∑N+1
k=1

∫ tk
tk−1

Iwx (t)dt. Here
Iwx (t) is an indicator for whether x has occurred at least once
in a feasible window w preceding time t.

We propose a causal association score for the pair (x, y)
that measures how the conditional intensity of effect y is
modified by the presence of potential cause x. We refer to
this score as the conditional intensity ratio with respect to
the base rate, CIRB(x, y) = λw

y|x/λy. We compute these
scores for all event pairs for all 17 countries under consider-
ation in one pass each through the country-specific datasets,
using window w = 15 days and a minimum co-occurence
Nw(x � y) = 20 over the T = 5 year time period. We fur-
ther filter out those pairs in a country whose scores are less
than the mean score for that country. This process yields
an inspiration set of causal pairs (x, y), counts of which are
shown in Figure 2. India has the maximum number of events
in ICEWS and ends up with at least one order of magnitude
more pairs than any other country in scope.

Rule Generalization with Knowledge Graphs
There are many approaches to learning general relationships
from artifacts in the inspiration set. Here we propose the
use of knowledge graphs whenever available and relevant.
Knowledge graphs, represented G(V,E), involve vertices V
for entities (such as people, places, objects, etc.) and edges
E that represent relationships between entities. Large-scale
graphs such as DBPedia, Yago, Freebase, and the Google
Knowledge Graph are popular in a host of applications; see
Nickel et al. (2016) for a review.

Figure 3 provides a partial knowledge graph for our ap-
plication, where the vertices include actors from Argentina
and Brazil. Consider the following causal pair in the inspi-
ration set for Brazil: Govt (Brazil) Express Intent To Coop-
erate Govt (Argentina)→ Citizen (Brazil) Disapprove Govt
(Brazil). This event pair could potentially be generalized by
finding paths in the knowledge graph from every actor in the
event pair to the country of Brazil. The bold paths in the
figure highlight two paths from Govt (Argentina) to Brazil,
one from the neighbor relationship between Argentina and
Brazil, and the other from the fact that they are both in the
continent of South America. The resulting rule created from
the former path is: isGovtOf (country) Express Intent To Co-
operate isGovtOf (isNeighborOf (country)) → isCitizenOf



Figure 3: An example partial knowledge graph for selected actors
and countries. The two cycle-free paths from Govt (Argentina) to
Brazil are highlighted with bold arcs.

(country) Disapprove isGovtOf (country). Note that the in-
stance from the inspiration set has been generalized and now
potentially applies to any country. Similar abstraction paths
on graphs pertaining to events have been referred to as pred-
icate projections and have been used for prediction (Radin-
sky, Davidovich, and Markovitch 2012).

One could proceed in this fashion, compiling rules for all
artifacts in the inspiration set I into a complete list of rules
R. We refer to the total number of times a rule r appears in
R as its support, denoted s(r).

For our implementation, we constructed an expanded ver-
sion of the knowledge graph in Figure 3, reproducing similar
relations for each of the 17 countries. Aside from the neigh-
boring relation between bordering countries and member-
ship in continents as well as sub-regions (Middle East and
South Asia), we also included bi-lateral country relations
of alliance (ex: Iran and Palestine) and enmity (ex: India
and Pakistan) as they seem particularly suitable for CAMEO
coded events of conflict and cooperation.

Causal Pair Generation
The final stage in our workflow is the generation of creative
cause-effect pairs, in which we include the critical aspect of
evaluating the quality and novelty of any arbitrary pair.

Evaluation. In this unsupervised setting, we estimate
quality using the generalization rules. Specifically, if we de-
note the set of distinct generalized rules satisfied by event
pair (x, y) asRxy ⊆ R, then:

q(x, y) ∝
∑
r∈Rxy

s(r). (2)

Thus, our proxy for quality is the total support, which is a
measure of how well a causal pair generalizes in aggregate
across contexts. Note that according to the proposed metric,
specific versions of rules are scored higher than their gener-
alizations.

There are several ways of evaluating the novelty of an ar-
tifact in problems of contextual computational creativity. A
reasonable approach is to compare the components of the
artifact under consideration with those prevalent in the con-
text. In our application, artifacts involve events with actors
and actions; we consider an event contextually novel if the

frequencies of the source actor, action, and target actor are
low in the contextual inspiration set. The novelty of an event
pair averages over both events in the pair. Specifically:

nc(x, y) =
gc(ax, vx, a

′
x)

2
+
gc(ay, vy, a

′
y)

2
, (3)

gc(az, vz, a
′
z) = (1−fsc (az))(1−fvc (vz))(1−f tc(a′z)), (4)

where fkc (.) denotes the frequency of the component type k
(either source actor s, action v or target actor t) in events in
the inspiration set Ic. The maximum novelty score is 1 and
occurs when both events in a causal pair only include actors
and actions that are not present in Ic. Other approaches to
measuring novelty are possible but not considered here.

Generation Methodology. We generate creative causal
pairs for a particular country (context) by first constructing a
large set of instances from the complete list of rules R. For
every rule, we generate potentially many candidate pairs by
traversing backwards on the knowledge graph G(V,E) from
the country under consideration to identify actors along all
relation paths in the rule. When a node has many parents
that satisfy a particular relation, we randomly choose one
of the parents as we walk on the graph. As an example,
note that the relation path isGovtOf (isNeighborOf (coun-
try)) from Iraq could lead to Govt (Syria) or Govt (Iran). For
our experiments, we generate up to 10 unique instances for
every rule using these ‘random walks’, similar to Varshney,
Wang, and Varshney (2016).

Once the candidate pairs have been generated, they can
be exhaustively evaluated for quality and novelty and then
aggregated/ranked in any desired fashion. We normalize
quality scores by dividing by the maximum quality pair in
a country; novelty is already normalized between 0 and 1.

Selected Results & Observations
The ranked causal pairs could be used in a variety of ways.
For instance, an analyst may wish to review high novelty
pairs for assistance in conjuring up future possibilities in a
country. Note that by construction, every pair satisfies at
least one rule, so there is a minimum quality threshold ap-
plied to every pair.

Figure 4 shows selected pairs on a quality-novelty scat-
ter plot from 3 countries in different regions of the world –
North Korea, Palestine, and Tunisia. In North Korea (Fig-
ure 4 (a)), there is a pair around reinforcement of fighting
that is deemed to be high quality as it generalizes well across
countries. The two high novelty pairs are perhaps more in-
teresting and involve protests; in one, these are brought on
by activism while in the other, protests are caused by police
coercion. Recall that we compute novelty using the frequen-
cies of the artifact components in the inspiration set, which
in our case are the actions, source actors, and target actors of
events. The 10 most frequent components of each type for
North Korea are shown in Figure 5. We observe that actions
of protest and actors such as protesters and activists are rare
in North Korea, which is why they are scored as novel by the
system. An analyst may regard large-scale protests in North
Korea to be implausible in the near future, yet engaging with
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Figure 4: Selected causal pairs on a quality-novelty scatter plot for 3 countries.

(a) Actions
(b) Source actors (c) Target actors

Figure 5: Frequencies of the 10 most frequent actions, source actors, and target actors in the inspiration set for North Korea.

the system in this fashion could potentially generate useful
ideas and directions for their investigation.

For the sake of comparison, we also plot the pair involv-
ing police coercion leading to protests for Tunisia (Figure 4
(c)). A quick investigation reveals that this pair is not as
novel in Tunisia since protests are commonplace in the in-
spiration set. We see instead that pairs where the Tunisian
government intends to cooperate with the Egyptian govern-
ment are deemed novel. Note that Tunisia has the smallest
inspiration set (Figure 2).

Due to the focus on country relations in our knowledge
graph, we consistently observe high quality pairs involving
actions such as diplomatic cooperation, consultation, and
the making of public statements across countries; see for in-
stance the high quality pairs in Palestine (Figure 4 (b)). Oc-
casionally, the system is able to identify unusual and quirky
pairs, such as the novel pair in Palestine where police coop-
eration with the media results in a criminal investigation.

We summarize a few other observations from our experi-
mental investigation:

1. The knowledge graph could potentially result in numer-
ous similar instances of the same rule being generated.
In our case, group relations such as regional and conti-
nental membership result in pairs that appear repetitive as
they differ only in the interacting foreign country. This
effect could be limited by enforcing further filtering of
pairs through additional restrictions and/or by deploying

a variety module while recommending a set of pairs.

2. Another effect of the choice of knowledge graph, together
with the choice of inspiration set, is that generated pairs
for a context depend critically on the presence of exist-
ing relevant relations. For instance, our omission of USA
for this analysis affects Mexico heavily – not having any
associations with other countries in our knowledge graph,
all of its recommended pairs only involve domestic actors.

3. Due to the aforementioned reasons, the current version
of the system does require some human selection, much
like other extant systems. The advantage of our proposed
approach however is that the system is at least able to self-
evaluate artifacts.

We highlight numerous challenges associated with our ap-
plication. First, building a good inspiration set is difficult
because the original data sources are machine-generated and
noisy, not to mention the difficulty in discovering causal re-
lations from statistical associations in an event dataset. Fur-
thermore, acquiring and utilizing the appropriate knowledge
is essential to the success of learning useful patterns/rules
from the inspiration set. The current system is an early foray
into work on creative scenarios; we believe that additional
progress is required before the system’s creations can be use-
fully evaluated by users.



Discussion
We discuss how the methods described in the previous sec-
tion are more general than the application as well as the
contextual computational creativity framework that was out-
lined. We also briefly make connections to a few other rele-
vant concepts in computational creativity.

Generalizing Generalization (for Evaluating Quality).
In the causal association application, we tried to identify
and generate contextually creative artifacts by discovering
artifacts that can be deemed novel for a particular context
but also satisfy broader relationships learned from artifacts
across contexts. Generalizing from the inspiration set could
be used to evaluate quality for a broader class of compu-
tational creativity endeavors and could therefore be used in
other types of applications.

Consider for example the application of creative recipes
in culinary art. Varshney, Wang, and Varshney (2016) de-
scribe an approach that uses a knowledge graph pertaining
to ingredients, which could include information about chem-
ical compounds, seasonality, weather conditions pertaining
to ingredient production, etc. One could use techniques sim-
ilar to those described in the causal association application to
generalize from such a knowledge graph along with an inspi-
ration set of recipes, learning rules about which ingredients
work well together based on edges (relations) in the graph.
Varshney, Wang, and Varshney (2016) do indeed describe an
association rule mining approach for learning patterns but
they do not make the explicit connection to quality evalua-
tion as we have done here. Association rule mining is one of
several potential approaches for generalizing from artifacts
that are represented as a set of constituent components, but
note that artifacts could be modeled as more complex rep-
resentations and that relations in such representations could
also be generalized in numerous ways.

Contextual Creativity as P-Creativity. Boden (1990)
distinguishes between p (psychological) and h (historical)
creativity – the former refers to artifacts or ideas creative for
a particular individual whereas the latter considers creativity
from a historical perspective. In the contextual computa-
tional creativity framework outlined here, the intent is to be
p-creative in a context by learning from history, through the
inspiration set, perhaps along with other knowledge.

Generalization for Transformational Creativity. Bo-
den (1990) also makes a distinction with regard to searching
for artifacts, referring to producing combinations of familiar
ideas and exploring the conceptual space as combinatorial
and exploratory creativity respectively. She regards trans-
formational creativity as transforming a conceptual space,
such as by adding dimensions or changing constraints.

We highlight that using generalization to evaluate qual-
ity could potentially lead to behavior resembling transfor-
mational creativity in CC systems, at least in some ways. In-
jecting new data that is substantially different into the inspi-
ration set could have the effect of modifying the way qual-
ity is evaluated and could therefore change constraints dur-

ing search. Importantly, new knowledge acquired from data
sources or other agents could have a more radical effect that
alters the way in which quality is assessed.

A Note on Typicality. Ritchie (2001) mentions typical-
ity of artifacts as another non-novelty related attribute that
could be important in a CC system. We have ignored typi-
cality in our application as it is partially built into the gen-
eration methodology, like in Morris et al. (2012) – actors
that are associated with a particular country can be deemed
typical for that context. It may however be useful to incor-
porate it more explicitly in our application, since one way to
remove seemingly redundant cause-effect pairs is to screen
out those that seem atypical by only considering a country’s
frequently associated foreign actors.

Conclusions
Evaluation is crucial in CC systems since an agent must be
able to assess quality. In particular, the assessment func-
tion must work for previously unseen artifacts, since nov-
elty is the whole point of creativity. In this paper, we have
expounded upon the role that supervision plays in compu-
tational creativity by associating it with quality evaluation.
Supervision could occur by directly encoding a quality func-
tion in a suitably abstract way, but it could also be learned
through supervised learning algorithms.

We have proposed generalization as a means to evaluate
quality in the unsupervised setting where quality is not spec-
ified in any explicit fashion. The benefits of unsupervised
generalization in practical CC systems will likely primarily
arise when used in conjunction with supervision from other
agents. Furthermore, different generalization approaches
may be suitable for different types of applications based on
artifact and knowledge representations.

The core technical contribution of generalizing with a
knowledge graph has been presented in a contextual compu-
tational creativity framework, where quality is determined
from generalization that borrows strength from artifacts
across contexts whereas novelty is context-specific. We
imagine that this sort of approach may not be particularly
useful when all contexts are similar in the inspiration set,
since there would be little capacity to learn something new
for any particular context.

We presented a detailed study of an application with
cause-effect pairs of political events as artifacts and coun-
tries as contexts. Significant work remains towards gradu-
ating the proposed techniques in the workflow for the appli-
cation into a full-fledged CC system. Suitable datasets and
better models for causal discovery are essential, aside from
improvements in the computational creativity techniques.
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