
Capturing Complexity in Networked Systems Design:
The Case for Improved Metrics

Sylvia Ratnasamy
Intel Research

ABSTRACT

The systems and networking community lays great store
by “clean”, “elegant” system designs. Yet, our notion of
what these terms mean often relies more on intuition and
qualitative discussion than rigorous quantitative metrics.
This paper questions whether we can do better and takes
a first stab at quantifying this notion of complexity with re-
gard to the algorithmic component of a networked system
design.

While the success of our particular attempt is unclear,
we believe identifying such metrics would be valuable not
only in improving our own design and analysis method-
ologies but also to better articulate our design aesthetic to
other communities that design for Internet contexts (e.g.,
algorithms, formal distributed systems, graph theory).

1 INTRODUCTION

The design of a networked system frequently includes a
strong algorithmic design component. For example, solu-
tions to a variety of problems – routing, distributed stor-
age, multicast, name resolution, data processing in sen-
sor networks, resource discovery, overlays – all define dis-
tributed procedures by which a collection of nodes accom-
plish a network-wide task.

A much valued property in Internet systems such as the
above is that of design simplicity. However, as the liter-
ature reveals, our rationalization about the simplicity (or
lack thereof) of design options is often through qualita-
tive discussion or, at best, proof-of-concept implementa-
tion. What rigorous metrics we do employ tend to be bor-
rowed from the theory of algorithms. These metrics how-
ever were intended to capture the overhead or efficiency
of an algorithm and are at times incongruent with our no-
tion of what makes for simple systems. For example, two
of the most common metrics used to calibrate system de-
signs are the amount of state maintained at nodes and the
number of messages exchanged across nodes. However,
most of us would consider flooding a simple although in-
efficient solution. Similarly, a piece of state obtained as
the result of complex consensus or leader election proto-
col feels intuitively more complex than state that holds the
IP address of a neighboring node.

We conjecture that this mismatch in design aesthetic
contributes to the frequent disconnect between the more
theoretical and applied research on networking problems.

A good example of this is the work on routing. Routing so-
lutions with small forwarding tables are widely viewed as
desirable and the search for improved algorithms has been
explored in multiple communities;e.g., a fair fraction of
the proceedings at STOC, FOCS, PODC and SPAA are
devoted to routing problems. The basic distance-vector
and link-state protocols incur high routing state (O(n) en-
tries) but are simple and widely employed. By contrast, a
rich body of theoretical work has led to a suite ofcom-
pact routing algorithms (e.g., [1–4]). These algorithms
construct optimally small routing tables (O(

√
n) entries)

but appear more complex and have seen little adoption.
Such discrepancies are even more common in the context
of sensor networks where the difficulties of the operational
environment render simplicity that much more valuable.

Note that this is not to suggest existing performance
metrics aren’t relevant or useful. On the contrary, all else
being equal, solutions with less state or traffic overhead,
are strictly more desirable. The point – or rather conjec-
ture – here is that design simplicity plays a role in selecting
solutions for real-world systems but existing performance-
focused metrics can be incongruent with our notion of
what constitutes elegant system design.

This paper raises the question of whether we can iden-
tify metrics that more directly capture the intuition behind
our judgment of system designs. Some might view system
design and evaluation as inherently reliant on the design
aesthetic and experience of system designers. The conjec-
ture behind this paper is that maybe this need not be true –
the system designs we work with are sufficiently determin-
istic that there ought to be no fundamental reason why our
appreciation of a design cannot be based on quantifiable
measures. Such metrics, if we can identify them, would
not only allow us to more rigorously discriminate between
design options but also to better align the design goals of
the algorithms and systems communities.

This paper takes a first stab at identifying such metrics.
Our results are preliminary, intended primarily to initiate
discussion on the merits and nature of alternate metrics.
Moreover, we stress that our metrics are intended to com-
plement, and not replace, existing performance metrics.
For example, in the case of a routing algorithm, our met-
rics might capture the complexity of route construction but
reveal little about the quality of computed paths. Finally,
while we focus on system design at the algorithmic or pro-
cedural level, there are many aspects to a software system

HotNetsV Session 6: Dependence 91



A R2R1 B

R3 C

B

x=0s=1s=2s=d

scenario-1c

A R2R1 B

scenario-1b

yx+=ys=x+y

scenario-1a

xs=x

next(A)=R2next(A)=R1next(A)=A

Figure 1: Complexity in different scenarios.

that contribute to its ultimate complexity. For example,
as the CAP theorem [5] tells us, the very definition and
prioritizing of a system’s service model and guarantees,
profoundly impacts complexity. The same is true for the
sound design of its software implementation. Although at
least as important as distributed complexity, these are not
aspects we consider in this paper.

2 STRAWMAN

At a high level, one might view much of system design as
centered around the issue ofstate– defining what state is
required, how it is constructed and used by different oper-
ations, and so forth. For example, a routing solution de-
fines the forwarding entries required, the process by which
nodes discover these entries, and how a packet is deliv-
ered end-to-end using this forwarding state. In all this, the
strain particular to wide-area systems arises when state is
distributed and hence a given piece of state is dependent
not only on the different nodes storing its input state but
also the network and intermediate nodes needed to relay
this input state to the node in question. In other words, for
a given piece of state, not only are its dependencies dis-
tributed, there are also more of them. Moreover, relative
to a centralized or cluster environment, these dependency-
inducing elements (input/relay nodes, links,etc.) tend to
be more independent in their failure or change models.
While traditional metrics count the amount of state but
otherwise mostly treat all state as equal, we postulate thata
key ingredient to capturing the difficulties in a networked
system is to measure theensemble of distributed depen-
denciesthat must hold together for a given piece of state
to be consistent with the inputs from which it is derived.

In what follows, we attempt to develop such a metric.
Metrics are only as useful as they are usable and, it is
worth noting that current popular metrics simply count the
total state and messages. These are conceptually simple,
and lend themselves to evaluation through simple exami-
nation, analysis, or even mechanistically in simulation. A
key goal we set is to define metrics that are somewhat sim-
ilarly accessible. Our strategy – at least in this first cut –
is to limit ourselves to metrics that only involvecounting

the different dependencies and avoid incorporating intri-
cate models of node or link failure, state machine descrip-
tions and the like. We discuss some of the limitations of
our counting-based approach later in the paper.

We use a series of incremental observations and toy sce-
narios to help develop our proposed metric. Our discus-
sion considers only distributed dependencies in state and,
where the context is clear, abuses notation to let state iden-
tify the node storing the state;e.g., instead of saying deliv-
ered to nodeX that stores states, we simply say delivered
to s.

Value vs. transport dependencies: We start with the
case where a piece of state, denoteds, is derived from a
single input state, denotedx. For example, in scenario-1a
in Figure 1,x denotes the current temperature reading at
nodeB and states at nodeA is assigned the value ofx.
The value ofs is derived fromx and hence any change
in x must be communicated to nodeA. By contrast,s is
dependent on thenext(A) state atB, R1 andR2 only for
the delivery ofx to sbut a change in any of these does not
require an update tos. We distinguish between these two
forms of dependencies and says is valuedependent onx
andtransportdependent onnext(A), at B, R1 and R2.

Let vs denote the number of pieces of state on which
s is value dependent, andts←x, the number of pieces of
state relied on to transportx to s. Since we’re only in-
terested in distributed dependencies, we setvs = ts←s = 0
if s was generated at the local node; thus, in Figure 1,
vx = tx←x = 0 and correspondingly,vs = 1 andts←x = 3.
Note that a piece of state is not necessarily value depen-
dent on its inputs. For example, say we defineds as the
temperature at node B at a specific time T1 (as opposed to
B’s current temperature). In this case, once established,s
is unaffected by changes at node B or the network between
A and B. Thus, fors derived fromx, we setvs = vx +1 if
s is value dependent onx andvs = max(vx,ε) otherwise,
whereε (0 < ε≪ 1) is a minimal dependency value we
introduce to ensure all non-local state has a non-zero de-
pendency which also captures the one-time cost of state
initialization. Similarly, to ensure than any inter-node
communication incurs a minimal dependency cost, we set
tx←y = max(ε,tx←y), for adjacentx andy.

Combining value and transport dependencies Con-
sider the slightly more involved scenario-1b in whichy
records the current temperature at nodeC, x represents the
sum ofy and the current temperature atB, ands is once
again set tox. Now, vx = 1 (sincex also depends ony)
and hencevs = 2. The transport dependencyty←y = 0,
tx←y = 2, andts←x = 3. We note that value dependencies
accumulate in a fairly straightforward fashion but the ex-
tent or frequency with which transport dependenciests←x

are incurred depends on the number of value dependen-
cies downstream fromx. For example,s depends onts←x

292 Capturing Complexity in Networked Systems Design: The Case for Improved Metrics



to relay changes in the temperature at either B or C but
changes iny are only relayed usingtx←y.

Based on the above discussion, for states derived from
a single inputx, we definecs, the complexity ofsas:

cs = vs× ts←x +cx

Thus, fors in scenario-1,cs = 3 andcx =0 while in
scenario-2,cy =0, cx=2 andcs = 2×3+2= 8.

Note thatcs emphasizes the simultaneous importance
of balancing both value and transport dependencies in
achieving low complexity – a single dependency input
x (vx =1) delivered tos via a convoluted network path
is deemed complex as is an input that is one hop away
(ts←x = 1) butx itself is derived from a long chain of pre-
vious inputs.

As a final example before proceeding, consider
scenario-1c in Figure 1. Herex = 0 and each node com-
putess, its distance tox by incrementing its right-hand
neighbor’s value ofs by 1. We abuse notation and let
d denote a node withs = d; then we havevd = d and
td←(d−1) = 1 andcd = d×1+ cd−1. We havecx = 0 and
hencecd = O(d2).

Multiple inputs So far, we considereds derived from a
single inputx. (Note that by input, we mean direct inputs;
e.g., in scenario-1b, we considerx as input tos but noty.)
We now consider the case wheres is derived fromm in-
putsx1, x2, . . . ,xm. We consider two basic variants that
can be combined to yield more complex scenarios. In the
first, all m inputs are required to computes (e.g., comput-
ing the min, max or average ofm input readings); in the
secondscan be derived fromanyone of them inputs (e.g.,
recording liveness). For simplicity, we assumets←xi = 1
in both cases.

When allm inputs are required, we set:

vs =
m

∑
i=1

(vxi +1)

cs =
m

∑
i=1

((vxi +1)× ts←xi +cxi)

Thus ifvxi = cxi = 0, we havevs = cs = m.
In the second scenario,s can get by with any one of

m inputs coming through. Accordingly, we set the value
dependency and complexity ofsas follows:

vs =
1
m
×

m

∑
i=1

(vxi +1/m)

cs =
1
m
×

m

∑
i=1

((vxi +1/m) ts←xi +cxi)

Note that the above reflect the observation that in the
one-of-m variant,s is less dependent on each individual
input and does not depend on the sum total of all inputs.
Again, whenvxi = cxi = 0, we havevs = cs = 1/m.

Case Description vs cs

1 s=x; s,x are 1 hop apart 1 O(1)
2 s=x; s,x arek hops apart 1 O(k)
3 s=hops to x; s,x arek hops apart k O(k2)
4 s=ALL(x1,. . . ,xm); s, xi 1 hop apart m O(m)
5 s=ANY(x1,. . . ,xm); s, xi 1 hop apart 1/m O(1/m)
6 s=x; m1-hop paths from x to s 1 O(1/m)

Table 1: The value dependency and complexity for a single piece of state
s for various base-case scenarios.

Multiple paths There may exist multiple paths by
which an input can be delivered to the required node. For
example, consider the case wherex is delivered tos along
any one ofm disjoint paths, and the transport dependency
of each disjoint path is (say)d. We treat multiple paths
akin to the corresponding multiple input scenarios and
hence setts←x = d/mand hence the complexitycs = d/m
which is lower than the single-input-single-path case by a
factorm. 1

Table 1 summarizes our complexity evaluation for states
in the various toy scenarios. We see that, as one might ex-
pect, the complexity of state derived from a single input
(case#1) is less than that derived from m inputs (#4) but
greater than for one-of-m-inputs (#5). Similarly complex-
ity decreases as the network offers more delivery options
between input and output (1 vs. 6). Note too that, our met-
ric penalizes a value dependency ofd that is accumulated
in series or depth (#3) more than the same value depen-
dency accumulated in breadth (# 4). This is reasonable as
deeper dependencies incur more transport dependencies.

Operations on state So far we looked at computing the
complexity of a given piece of state. A similar strategy
can be used to compute the complexity of an operation –
we treat the pieces of state the operation acts on as inputs
and, based on how these inputs are combined, compute the
operation’s complexity from the individual state complex-
ities. E.g., a packet forwarding operation destined for D
relies on the routing table entry for D at each of the series
of nodes from the source to D. Specifically, recall the pre-
vious scenario-1c, where each node learns its distance and
next hop tox (node B). We had computed the complex-
ity of stated hops away as O(d2). Forwarding a packet
from A to B requires the state at each intermediate node
for a complexity of O(d3) (sum of squares). Or, consider
a file download that takes one ofm inputs where each in-

1Many reviewers remarked that the decision to treat one-of-m as hav-
ing a factorm lower complexity than the case of a single input/path is
somewhat debatable because, ultimately, one of the inputs/paths is made
use of. While this is a valid point that merits further scrutiny, the ratio-
nale behind the current choice is that a piece of state is lessdependent on
a single input if alternate inputs are easily available although this reason-
ing might be conflating simplicity and robustness. Note too that, while
the complexity of a single piece of state (in the one-of-m case) may be
lower, the cost of creating more state for the purpose of redundancy will
emerge in consider the net complexity of the complete system.

3HotNetsV Session 6: Dependence 93



put is a pointer to a replica for the file. If each input has a
complexity of (say) O(k) then, akin to the one-of-m inputs
case, our download operation has complexity O(k/m).

In the following section we present some preliminary
analysis of more complete networked designs. However,
before doing so, we discuss some of the limitations of our
proposed metrics and possible improvements.

2.1 Limitations, Future Directions

Correlated inputs: Our formulation treats inputs as in-
dependent and hence might be over-counting the depen-
dencies. For example, the above forwarding operation
sums the state complexities at each hop even though these
are related. The extent of inaccuracy this introduces as
well as compensating measures remains to be studied.

Discriminating between transport dependencies :
Our formulation merely counts the number of transport
dependencies however each transport dependency is itself
state with its own value dependency and complexity and
taking these into account might lead to more discriminat-
ing metrics. For example, we might instead sum the value
dependencies of each transport state.

Capturing absent dependencies Our formulation mea-
sures the complexity involved in having state be consis-
tent with the inputs from which it is derived. However,
this does not necessarily captureall the dependencies that
cause the state to take the value it does. For example, we
measured the complexity of finding the distancek between
two nodess andx. However, this value ofk depends as
much on theabsenceof nodes betweens andk that could
lead to a different value ofk as it does on the presence of
thek−1 nodes betweensandx.

Robustness vs. Simplicity Our formulation assigns
lower complexity to state derived along alternate in-
puts/paths and hence reflects robustness to some extent.
This link is however indirect and potentially limited;
clearly relating complexity to robustness is an important
future direction. Related is whether it might be useful to
discriminate across inputs based on the degree to which
the ouput (whether state or operation) depends on each in-
put. For example, a DHT route critically depends on the
successor entries but the absence of appropriate finger en-
tries only leads to route degradation.

Scope Our metrics do little to validate the assumptions,
correctness or quality of a solution. Capturing notions of
consistency and convergence might require incorporating
a notion of time or temporal dependency into our formu-
lation and is another avenue for future exploration.

3 INITIAL COMPLEXITY STUDIES

This section presents preliminary analysis of a few com-
mon networked systems. We offer a high-level sketch of
results with no detailed derivations; our intention is more
to offer concrete examples of the type of analysis one

might undertake in this context. We explore classical rout-
ing solutions in Section 3.1, and, in Section 3.2, look at re-
source location solutions in the context of P2P and sensor
networks.

3.1 Network Routing

Our first study compares the complexity of distance-vector
(DV) and link-state (LS) to the compact routing algorithm
of Abrahamet al. [4] (AG+ compact) which probably
represents the state-of-the-art in compact routing. For sim-
plicity, our analysis assumes a single shortest path to a
destination.

In the case of DV, the routing entry (denoteds) for a des-
tinationd hops away is akin to case-3 in Table 1 and hence
vs = O(d) andcs = O(d2) and an end-to-end forwarding
operation has complexityO(d3). In LS, a node propagates
its link information to every other node and hence the en-
try e for a single edge hasve = O(1) andce = O(d) (be-
cause the transport dependencies are O(d)). To compute
the actual next-hop entry (denoteds) for a destination, LS
requires the state for each of thed edges to the destination
and hence, once again,vs = O(d), cs = O(d2) and end-to-
end forwarding has complexityO(d3) akin to DV.
AG+ compact guarantees routing table sizes with

O(
√

n) entries and worst-case stretch no more than 3.0.
Moreover, the stretch for Internet-like topologies has been
shown to be≈1.0 for Internet topologies [6], raising the
question of whether compact routing might be an attrac-
tive option for IP routing. Briefly,AG+ compact oper-
ates as follows: a node A’s vicinity ball (denoted VB(A))
is defined as thek nodes closest to A. Node A maintains
routing state for every node in its own vicinity ball as well
as for every node B such that A∈ VB(B). A distributed
coloring scheme assigns every node one ofc colors. Un-
der a slight relaxation this can be done by simply hashing
the node name to a color. One color, say red, serves as the
global backbone and every node in the network maintains
routing state for all red nodes. Finally, a node must know
how to route to every other node of the same color as it-
self. Forn nodes, vicinity balls of sizek = O(

√
nlogn)

andc= O(
√

n) colors, one can show that a node’s vicinity
ball contains every color. With this construction, a node
can always forward to a destination that is either in its own
vicinity, is red, or is of the same color as the node itself.
If none of these is true, the node forwards the packet to a
node in its vicinity that is the same color as the destina-
tion. The challenge inAG+ compact lies in setting up
routes between nodes of the same color without requir-
ing state at intermediate nodes of a different color and
yet maintaining bounded stretch for all paths. Loosely,
AG+ compact achieves this as follows: say nodes A
and D share the same color and A is looking to construct a
routing entry to D. A explores every vicinity ball to which
it belongs (VB(I), A∈ VB(I)) and that touches or over-
laps the vicinity ball of the destination D (i.e., ∃ node X

494 Capturing Complexity in Networked Systems Design: The Case for Improved Metrics



∈ VB(I) with neighbor Y and Y∈ VB(D)). For such C,
A could route to D via C, X and Y.AG+ compact con-
siders possible paths for each neighboring vicinity balls
VB(C) as well as the path through the red node closest
to D and uses the shortest of these for its routing entry to
D. Discovering A’s membership in a node B’s VB itself
incurs significant dependencies – unlike DV/LS where a
node maintains distance for any and every unique destina-
tion it hears about, here B maintains state for A iff A is
one of the k nodes closest to B. In other words, whether B
maintains state for A depends on the relative distance of
other nodes to B which already induces a dependency of
at least O(

√
n). Moreover, the construction of intra-color

routing entries requires that A explore all vicinity balls in
which it is contained, and those of each of theO(

√
n) like-

colored nodes which yields a total dependency ofO(n) –
significantly higher than DV or LS!

Such analysis offers hints for alternate designs. For
example, we conjecture that one might reduce the above
dependencies by

√
n if we defined nodes’ vicinity balls

not as an ordering of nodes but in terms of the distance
around each node; with this change, A’s membership in
B’s vicinity ball would depend only on A, B and the nodes
between them. While such a change would likely weaken
the bounds on the size of routing tables it could offer lower
complexity.

3.2 Resource Discovery

P2P resource discovery Many P2P applications locate
resources using either unstructured (Gnutella) or struc-
tured (DHT) overlays. For the former, each node connects
to some number of other peers and each neighbor entrys
thus hasvs = 1 andcs = 1. (This assumes a transport de-
pendency of 1 for overlay links.) By comparison, a DHT
node might have logn neighbors, each withvs = 2 and
cs = 2logn (due to a value dependency of one for a node’s
successor and hence two for a finger entry; the transport
dependency is logn ignoring once again multiple paths).
The corresponding complexity of end-to-end DHT rout-
ing is thus O(log2n).2 This would seem to support de-
ployment statistics and the common perception that un-
structured solutions are simple, if inefficient. In absolute
terms though, DHTs too exhibit low complexity which
again would seem to concur with the general enthusiasm
for DHTs in the systems and networking communities.

Resource discovery in sensor networks By far the
most common approach to resource location in sensor
nodes uses a flood-and-find approach where a sink floods
the query over the entire network and relevant data is
routed along the reverse path to the sink [7, 8]. The per-
node network state here is merely the parent to the sink

2This DHT analysis may be overly generous as a node A’s successor
state is actually dependent not just on the identifier of A’s successor but
on the absence of any other node between A and its current successor;
our metric does not currently capture such absent dependencies.

which, akin to the simple distance counting scenario in
Section 2, hasvs = k andcs = O(k2) wherek is the node’s
distance to the sink. Whilek and O(k2) appears fairly
low complexity, it is worth noting that in a sensor net-
work, k can be O(

√
n) leading to non-trivial complexity;

we conjecture this may offer some insight on the engi-
neering difficulties that have been reported for even simple
tree construction [8, 9] and speculate that solutions based
on gossip-style protocols [10] might be one approach to
avoiding such scaling in dependencies.

To avoid the inefficiency of flooding, researchers have
explored the use of in-network rendezvous mechanisms.
One highly scalable proposal uses geographic addressing
and routing [11–13]. In traditional geo routing, a node re-
quires only the geo positions of its physical (i.e., in radio
range) neighbors. This incurs very low complexity – for
each neighbor entrys, vs = 1 andcs = 1× ε = ε (as dis-
cussed in Section 2, neighbor discovery effected through
blind broadcasts might be viewed as incurring negligible
transport dependency). Unfortunately, the adoption of ge-
ographic techniques has been hampered by both, concerns
about the cost, power consumption and usability of GPS
technology, and because empirical studies have repeatedly
shown that wireless connectivity is not always congruent
with geo proximity violating a core assumption of geo-
routing.3

Two research directions address these concerns.
Schemes such as CLDP [14] and GDSTR [15] continue
to require GPS but propose novel route recovery algo-
rithms that tolerate incongruities between physical dis-
tance and connectivity. The second approach eschews the
use of geography altogether; schemes such as GEM [16]
and NoGeo [17] instead construct virtual coordinate sys-
tems derived from only the measured connectivity be-
tween nodes. Like traditional geo routing algorithms,
these new schemes are scalable in terms of the routing
state but require additional mechanisms to either recover
from route failures (CLDP, GDSTR) or to construct the
virtual coordinate system (GEM, NoGeo). One might ask
how much of the simplicity of traditional geo-routing is
lost due to this? A quick analysis of the NoGeo pro-
tocol suggests that a routing entrys hasvs = O(n) and
cs = O(n3/2) (due mostly to a periodic initialization phase
to position O(

√
n) perimeter nodes). While the various

schemes should be explored in greater depth, the above
suggests a significant increase relative to both flood-and-
find and the idealized promise of geo routing.

4 DISCUSSION AND FUTURE STUDIES

Validating the goodness of a metric is, almost by defini-
tion, difficult and perhaps the best is to analyze a range of
systems and examine the results. We close with a list of

3Highlighting that complexity metrics do little to validatethe assump-
tions behind a solution.

5HotNetsV Session 6: Dependence 95



open questions and analyses that could help in this regard
as well as offer insight on common design practices.
Centralizing network computations: simpler? Archi-
tectures that centralize the route computation have been
proposed as a simpler alternative to today’s distributed ar-
chitecture [18] and it would be useful to undertake a for-
mal analysis comparing the two. We conjecture the answer
may depend on whether the value dependencies are “reset”
at the centralized computation point.I.e., on whether the
final forwarding entries pushed to routers need to be con-
sistent with the view of the world at the centralized route
computation point or the true state of the world.
Designing for low dependency Section 2 presented a
simple example where time-stamping temperature read-
ings truncates the value dependency of the state being
propagated. To some extent, soft-state protocols em-
ploy a somewhat similar strategy by bounding the life-
time of state and hence the length of dependencies it in-
duces. Similarly, introducing redundancy in both inputs
and transport dependencies lowers our measure of com-
plexity. A useful exercise would be to quantify the com-
plexity of systems that employ such techniques and verify
whether their complexity matches our intuition.
Layered vs. customized solutions Some DHT ap-
plications [19–21] adhere to a standard DHT API and
layer more complex functionality over this API while oth-
ers [22, 23] choose to customize their DHTs to the task
at hand. On the one hand, layering might lead to more
needlessly inherited dependencies while the latter might
introduce more mesh-like dependencies. In this context,
one might for example compare the complexity of a CDN
over a “sloppy DHT” interface [22]vs. the standard DHT
interface or Mercury [23] that builds a customized solution
to distributed range queries versus PHTs [21] that adopts
a layered approach.
Network addressing and routing options A number
of very different approaches to routing and addressing
have been proposed in the context of both wireless and
wired networks – gossip [10], synthetic coordinate sys-
tems [16, 17], clustering/dominating sets [24], tree-based
[7,8], DHT-inspired [25] and so forth – that could be com-
pared in terms of a more complexity-focused evaluation.

5 ACKNOWLEDGMENTS

The author thanks Kevin Fall, Paul Francis and the anony-
mous reviewers for their valuable feedback.

REFERENCES

[1] L. J. Cowen. Compact routing with minimum stretch. In
ACM SODA, 1999.

[2] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Com-
pact distributed data structures for adaptive routing. In
ACM STOC, 1989.

[3] Mikkel Thorup and Uri Zwick. Compact routing schemes.
In ACM SPAA, 2001.

[4] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Tho-
rup. Compact name-independent routing with minimum
stretch. In16th ACM SPAA, 2004.

[5] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent available partition-tolerant web
services. InSigACT News, 2002.

[6] D. Krioukov, K. Fall, and X. Yang. Compact Routing on
Internet-like Graphs. InIEEE Infocom, 2004.

[7] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: a scalable and robust communication paradigm
for sensor networks. InMOBICOM, 2000.

[8] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG:
a tiny aggregation service for ad hoc sensor networks. In
OSDI, 2002.

[9] Cheng Tien Ee, Sylvia Ratnasamy, and Scott Shenker.
Practical data-centric storage. InNSDI, 2006.

[10] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickles:A
self-regulating algorithm for code propagation and mainte-
nance in wireless sensor networks. InNSDI, 2004.

[11] F. Kuhn, R. Wattenhofer, Y. Zhang, , and A. Zollinger. Ge-
ometric ad-hoc routing: Of theory and practice. In22nd
ACM PODC, 2003.

[12] B. Karp and H. T. Kung. Greedy Perimeter Stateless Rout-
ing for wireless networks. InMOBICOM, 2000.

[13] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing
with guaranteed delivery in ad hoc wireless networks.

[14] Y. J. Kim, R. Govindan, B. Karp, and S. Shenker. Geo-
graphic routing made practical. InNSDI, 2005.

[15] B. Leong, B. Liskov, and R. Morris. Geographic routing
without planarization. InNSDI, 2006.

[16] J. Newsome and D. Song. GEM: Graph embedding for
routing and data-centric storage in sensor networks without
geographic information. InProceedings of SenSys, 2003.

[17] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou,
Scott Shenker, and Ion Stoica. Geographic routing with-
out location information. InMOBICOM, 2003.

[18] M. Caesar, D. Caldwell, N. Feamster, Jennifer Rexford,
Aman Shikh, and J. Merwe. Design and Implementation
of a Routing Control Platform. InNSDI, 2005.

[19] Matthew Harren, J. Hellerstein, Ryan Huebsch, B. Thau
Loo, Scott Shenker, and Ion Stoica. Complex queries in
DHT-based Peer-to-peer networks. InIPTPS, March 2002.

[20] F. Dabek et al. Wide-area cooperative storage with CFS.In
ACM SOSP, October 2001.

[21] Yatin Chawathe et al. A case study in building layered DHT
applications. InProceedings of SIGCOMM, 2005.

[22] M. Freedman, E. Freudenthal, and D. Mazieres. Democra-
tizing content publication with coral. InNSDI, 2004.

[23] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
port scalable multi-attribute range queries. InSIGCOMM,
2004.

[24] J. Gao, L.J.Guibas, J .Hershberger, L. Zhang, and An Zhu.
Discrete mobile centers. InProceedings of the Symposium
on Computational Geometry, 2001.

[25] Matthew Caesaret al.Virtual Ring Routing: Network rout-
ing inspired by DHTs. InSIGCOMM, 2006.

696 Capturing Complexity in Networked Systems Design: The Case for Improved Metrics


