
MIXIT: The Network Meets the Wireless Channel
Sachin Katti Dina Katabi

skatti@mit.edu dk@mit.edu

Abstract– The traditional contract between the network
and the lower layers states that the network does routing
and the lower layers deliver correct packets. In a wireless
network, however, different nodes may hear most bits in a
transmission, yet none of them receives the whole packet
uncorrupted. The current approach imposes fate sharing on
the bits, dropping a whole packet because of a few incorrect
bits. In contrast, this paper proposes MIXIT, a new architec-
ture that performs opportunistic routing on groups of cor-
rectly received symbols. We show using simulations driven
with Software Radios measurements that MIXIT provides
4x throughput improvement over state-of-the-art opportunis-
tic routing.

1 INTRODUCTION

Multi-hop wireless networks have been designed to mimic
wired networks. Conventional protocols ignore the broad-
cast capability of a wireless network, treat it as a set of inde-
pendent point-to-point links, and route through it by string-
ing a sequence of such links. Recently, however, the net-
working community has recognized the importance of em-
bracing this underlying characteristic of the wireless medium.
ExOR [1] and MORE [2] are opportunistic routing proto-
cols that exploit wireless broadcast. They allow any node
that hears a transmitted packet to participate in forwarding it
toward its destination. This allows them to benefit from spo-
radic opportunistic receptions on long links, thereby provid-
ing significant throughput gains.

But these opportunistic protocols do not go far enough.
They are hobbled by another holdover from the wired de-
sign: their insistence on using only correctly received pack-
ets. This works well in wired networks, where symbol1 er-
rors are rare, and almost all packet losses are due to conges-
tion. In contrast, wireless networks show significant packet
loss due to transient medium errors. All the symbols in a
packet, however, do not share the same fate. Often only a
few symbols are in error, while the rest are correct. It is
wasteful to throw away the majority of the symbols that are
correct due to a few incorrect ones. Significant performance
gains can be obtained if nodes forward partial packets con-
sisting of correctly received symbols, and drop the incorrect
ones.

Our work is motivated by a simple key insight. There
is a synergy between the ideas of opportunistic routing and
1A symbol is a unit of transmission. It is a sequence of bits that are mapped
to a single real value using a modulation scheme, and then transmitted over
the channel.

partial packet forwarding. Opportunistic routing capitalizes
on sporadic receptions over long links allowing a packet
to make quick strides towards the destination [1]. But long
links are inherently less reliable and likely to exhibit sym-
bol errors. Yet, by insisting on receiving fully correct pack-
ets, current protocols are missing the bulk of their oppor-
tunities. Similarly, partial packet forwarding can also cap-
italize on opportunistic routing. When errors are high, no
node receives a full packet correctly. But because of spa-
tial diversity, each symbol will be received by some node
correctly [16, 19], thus across a set of intermediate nodes
the packet will be received correctly in aggregate. These
intermediate nodes can then collaboratively route their op-
portunistically received partial packets to the destination,
where they will be assembled into a complete packet.

This paper introduces MIXIT, an architecture that per-
forms opportunistic routing on groups of correctly received
symbols. MIXIT exploits the fact that the physical layer
naturally computes a confidence measure for each decoded
symbol [23, 8, 5]. This allows the routers to identify which
symbols in a corrupt packet are likely correct and forward
them. The core component of MIXIT is a novel symbol-
level network code that also functions as a rateless error
correcting code. This code addresses the two main chal-
lenges in forwarding partial packets. First, tracking the state
of which node received which symbols to prevent duplicate
transmissions can become a daunting coordination task. With
symbol-level network codes, routers forward random linear
combinations of their correctly received symbols, reduc-
ing the probability of sending duplicate information, and
eliminating the need for coordination. Second, though the
routers forward only symbols that were decoded with high
confidence, there is a chance that a forwarded symbol is
incorrect. Symbol-level network codes automatically func-
tion as rateless error correcting codes, providing an adap-
tive amount of redundancy to correct any erroneous sym-
bols that seep through.

MIXIT embraces the basic characteristics of the wire-
less medium, presenting a unifying architecture that natu-
rally exploits both space and time diversity. It disposes of
artificial and self-defeating abstractions such as the point-
to-point link and indivisible packets in favor of a more nat-
ural and useful abstraction. The new abstraction allows the
network and the lower layers to collaborate on the common
objectives of improving throughput and reliability. At the
same time it maintains desirable properties such as being
distributed, low-complexity, implementable and integrable

1

with the rest of the network stack.
We evaluate MIXIT using simulations that are driven

with channel measurements from GNU Software Radios [4,
7]. Our preliminary results show that, on average, MIXIT
provides 4x throughput improvement over packet-level op-
portunistic routing.

2 ILLUSTRATIVE EXAMPLE

Consider the scenario in Fig. 1, where the sourceS wants
to deliver two packets,Pa and Pb, to the destination. Let
the bit error rate (BER) be relatively high such that when
the sourceS broadcastsPa and Pb, the nodes in the net-
work receive some symbols in errors. Fig. 1 illustrates such
corrupted symbols using hashed cells. Due to spatial diver-
sity [16, 19], however, the few corrupted symbols at nodes
R andR′ are unlikely to be in the same locations. However,
with the current approach, the existence of a few erroneous
symbols causesR andR′ to ignore their receptions and ask
the source to retransmit both packets. If the routers how-
ever were able to forward their correctly received symbols,
the destination would receive a clean copy of every symbol,
without any retransmissions.

To approach this ideal scenario, we first recognize that a
node can identify which symbols are correctly received with
high probability. Current physical layers (PHYs) compute a
confidence value for each decoded symbol [8, 23]. Using
this information the PHY can mark the received symbols as
clean or faulty. We say a symbol isclean if its confidence
value is above a threshold,γ, andfaulty otherwise. We refer
the reader to [8] for measurements of these confidence val-
ues, and note that asγ increases, the probability that a clean
symbol is corrupted becomes vanishingly small [8].

Though the routers can now filter out the faulty symbols
and forward the clean ones, they may still waste a lot of
capacity. Specifically, most symbols are received correctly
by bothR andR′. Hence without additional measures, the
routers will transmit the same symbols to the destination,
wasting the wireless capacity. To avoid such waste, MIXIT
employs symbol-level network coding, i.e., it makes the
routers forward linear combinations of the clean symbols
they received. Assumingai andbi are the ith symbols inPa

andPb respectively, routerR picks two random numbersα
andβ, and creates a coded packetPc, where the ith symbol,
ci is computed as follows:

ci =











αai + βbi if ai andbi are clean symbols

αai if ai is clean andbi is faulty

βbi if ai is faulty andbi is clean.

If both ai andbi are faulty, no symbol is sent in that position.
Similarly, R′ generates a coded packetPd by picking two
random valuesα′ andβ′ and applying the same logic in the
above equation.

When R and R′ broadcast their respective packets,Pc

and Pd, the destination receives corrupted versions where
some symbols are incorrect, as shown in Fig. 1. Thus the

destination has four partially corrupted receptions:Pa and
Pb, directly overheard from the source, contain many erro-
neous symbols; andPc and Pd which contain a few erro-
neous symbols. For each symbol positioni, the destination
needs to decode two original symbolsai andbi. As long as
the destination receives two uncorrupted independent sym-
bols in locationi, it will be able to properly decode [6]. For
example, consider the symbol positioni = 2, the destina-
tion has received:

c2 = αa2 + βb2

d2 = α′a2.

Given that the header of a coded packet contains the mul-
tipliers (e.g.,α andβ), the destination has two linear equa-
tions with two unknowns,a2 andb2, which are easily solv-
able. Once the destination has decoded all symbols cor-
rectly, it broadcasts an ACK, causing the routers to stop
forwarding packets.

The rest of this paper extends MIXIT to general topolo-
gies, and ensures that the routers do not generate spurious
transmissions and that the destination can detect residual
errors and correct them.

3 RELATED WORK

This paper builds on prior work on opportunistic rout-
ing [1, 2], cooperative spatial diversity [16, 14], and wire-
less network coding [11, 9, 17, 21]. In particular, MIXIT’s
design borrows from MORE’s, but the distinction between
them is clear, as MORE operates on packets and cannot deal
with faulty symbols. We also note that MIXIT is aligned
with work on analog and physical layer network coding [10,
18], but it operates on symbols rather than signals, making
it simple enough to fit within the current network stack.

We also build on prior work on soft information. Phys-
ical layers compute a confidence value on their symbol de-
coding decisions [19]. This is typically called soft informa-
tion and its benefits have been widely discussed in informa-
tion theory [13, 5, 20]. Recent works [8, 23] have proposed
to extend the interface to the physical layer to expose this
information to higher layers. MIXIT leverages this wider
interface but uses it differently. The above proposals used
the confidence information either to retransmit only low-
confidence chunks in a corrupted packet [8] or make access
points combine their confidence values over the wired Eth-
ernet to reconstruct correct packets from erroneous recep-
tions [23]. In contrast, MIXIT exploits the PHY confidence
values to decide which symbols to forward and integrates it
with opportunistic routing and network coding.

4 MIXIT’ S ARCHITECTURE

MIXIT is designed for reliable file transfer over lossy
stationary mesh networks. It assumes that the wireless cards
are instrumented to deliver corrupted packets, where sym-
bols with a confidence-level higher thanγ are marked as

2

1a 2a na

1b 2b nb

1a 2a na

1b 2b nb

1b 2b nb

1a 2a na

111 bβ'aα'd +=

2d nd

1c 2c nc
1a 2a na

1b 2b nb

1c 2c nc

1d 2d nd

1d

22 aα'd =

nn bα'd =

11 βbc =
222 βbαac +=

nn αac =

α

β

α'

β'

22 aα'd =
222 βbαac +=

P
a

P
b

P
a

P
b

P
a

P

)b,(a 22

Solve linear

equations

S D

R

R’

P
c

P
d

P
a

P
b

P
c

P
d

P
b

P
d

Figure 1—Example: The source broadcastsPa andPb. The destination and the routers,R andR′, receive corrupted versions of the packets. A hashed cell
represents a corrupted symbol. IfR andR′ forward the correct symbols without coding, they generate spurious data and waste the capacity. With symbol-
level network coding, the routers transmit linear combinations of the correct symbols, ensuring that they forward useful information to the destination.

Term Definition

Clean Symbol A symbol that is received at the PHY with confi-
dence higher thanγ

Faulty Symbol an unclean symbol
Coded Symbolsj Random linear combination of the clean symbols in

the jth position in the received packets
Native Symbol Uncoded Symbol
ETS of a link The inverse of the symbol delivery probability on

that link
Closer to destina-
tion

NodeX is closer than nodeY to the destination, if the
shortest path fromX to the destination has a lower
ETS than that fromY.

Table 1—Definitions used in the paper.

clean, as defined in Table 1. The description below assumes
that control information, i.e., the header, is correctly re-
ceived. Since the header size is relative small in comparison
with the packet size, it can be protected with a negligible
amount of FEC.

(a) The Source:The source sends the file in batches ofK
packets. When the 802.11 MAC is ready to send, the source
creates a random linear combination of theK native pack-
ets in the current batch and broadcasts the coded packet.
Thus, the jth symbol in a coded packet,s′j , is a linear com-
binations of the jth symbols in theK native packets, i.e.,
s′j =

∑

i visji, wheresji is the jth symbols in the ith packet in
the batch, andvi is a per-packet random multiplier. We call
~v = (v1, . . . , vK) thecode vector of the coded packet.

The source adds a MIXIT header to the coded packet
and broadcasts it. The header describes which symbols were
coded together. This description is trivial to articulate at the
source because all symbols in a coded packet are generated
using the packet’s code vector,~v.

The header also contains the forwarders list. This is an
ordered list that contains nodes closer to the destination
than the source. While previous opportunistic routing pro-
tocols [1, 2] use the expected number of transmissions to
deliver a packet (ETX) [3] as their distance metric, we use
the expected number of transmissions to correctly deliver a
symbol (ETS). ETS is computed analogously to ETX. Nodes
periodically ping each other with packets that contain known

symbols, and compute the percentage of correctly delivered
symbols. The inverse of this number is taken as the ETS of
the link. The ETS of the path from nodeX to the destination
is the length of the shortest path fromX to the destination
computed using the links’ ETS as weights.

(b) The Forwarders: Nodes listen to all transmissions.
When a node hears a packet, it checks whether it is in the
forwarders list. If so, the node checks whether the packet
contains new information, i.e., is innovative. Technically
speaking, a packet is innovative if its code vector~v is lin-
early independent from the vector of the packets the node
has previously received from this batch. Checking for in-
dependence can be done using simple algebra (Gaussian
Elimination [12]) over these short vectors. The node ignores
non-innovative packets, and stores the innovative packetsit
receives from the current batch. Note that the symbols in
the stored packets are marked as clean or faulty.

When the 802.11 MAC permits, the node may forward a
packet. To do so the node creates a random linear combina-
tion of the clean symbols in the packets it has heard from the
same batch and broadcasts it. The coded packet should con-
tain linear combination only of clean symbols. Specifically,
let sji be the jth symbol in the ith packet that the forwarder
has stored from this batch, andvi a per-packet random mul-
tiplier, the jth symbol in the forwarded packet is created as
follows:

s′j =
∑

i

visji, if sji is a clean symbol.

The MIXIT header in the forwarded packet has to artic-
ulate how each symbol is derived from the native symbols.
This is more complex than in the case of the source because
coding is performed only over clean symbols. Consider the
simple example where the batch sizeK = 2 packets:Pa and
Pb. Say that our forwarder has received two coded packets
Pc = αPa + βPb and Pd = α′Pa + β′Pb. Now our for-
warder picks two random numbersv1 andv2 and creates a

3

linear combination of the two packets it received.

P = v1Pc + v2Pd = (v1α + v2α
′)Pa + (v1β + v2β

′)Pb

Thus, the newly generated packet has a code vector~v =
(v1α + v2α

′, v1β + v2β
′). This vector would be sufficient

to describe the whole packet if our forwarder received only
clean symbols. But since some received symbols are faulty,
we need a more detailed description of how individual sym-
bols in the packetP are derived from the native symbols.

Let us focus on the jth symbol position in packetP,
calledsj. Depending on whether our forwarder has cleanly
received the jth symbols inPc andPd, calledcj anddj re-
spectively, the generated symbolsj might take one of four
possible values.

sj =



















(v1α + v2α
′)aj + (v1β + v2β

′)bj cj anddj are clean

v1αaj + v1βbj only cj is clean

v2α
′aj + v2β

′bj only dj is clean

0× aj + 0× bj cj anddj are faulty
(1)

The header has to articulate for each symbol in a transmitted
packet which of the possible coding combinations was used
to create it.

We exploit that wireless errors are bursty [16, 22], and
userun-length-encoding to describe the encoding of the
transmitted symbols in an efficient manner. Specifically, if
the batch size isK, then there are 2K possible coding combi-
nations per symbol, which can be represented usingK bits.
For example, letK = 2 and represent the possible coding
states in Eq. 1 as 00, 01, 10, 11. Then the packet header will
start by stating the four coefficients:(v1α, v2α

′, v1β, v2β
′)

This will be followed by the state of the various symbols
which can be 00, 01, 10, or 11. Clearly, if each symbol can
independently take a different state, the overhead will be
excessive. On the other hand, if all symbols are clean, it is
sufficient to state 00–1500, to indicate that all 1500 symbols
in the packet are in state 00 (Assuming the symbol size is
one byte).

In practice, one can control the header overhead and en-
sure that it stays small. On the one hand, wireless errors are
known to be bursty [16, 22] and thus one would expect long
runs of symbols that have the same state. On the other hand,
our design actively ensures that the header stays within a
bound. Note that the forwarder can always flip states 10,
01 (and even 11) to 00, if such flipping will create longer
runs of the same state. Said differently the forwarder can
decide to ignore some clean symbols to ensure the header
has longer runs of the same state, and thus can be encoded
efficiently. Note that as the forwarder ignores more clean
symbols, the header becomes shorter and at the extreme
MIXIT degrades to the current approach, which drops all
packets that contain corrupted symbols.

(c) The Destination:The destination recovers the original
symbols from the received coded symbols using standard

decoding algorithms [15]. Once the original symbols are re-
covered for each symbol, the destination reassembles them
into the original packets, and sends an ACK to the source to
allow it to move to the next batch. ACKs are sent using best
path routing, which is possible because MIXIT uses stan-
dard 802.11 and co-exists with shortest path routing. ACKs
are also given priority over data packets at every node and
protected using FEC.

5 MAXIMIZING THROUGHPUT

Naively broadcasting coded clean symbols does not in-
crease throughput. There will be a large overlap between
the packets heard by the routers. Whenever there is an over-
lap, it is more efficient to have the router closer to the des-
tination forward the common information because that re-
quires fewer transmissions. We want a forwarding strategy
that considers such issues and maximizes the throughput.

We observe that we can leverage prior work on packet-
based opportunistic routing because, similarly to MIXIT,
these protocols have to resolve information overlap, albeit
at the packet level. With simple modifications, we can adopt
MORE’s [2] routing algorithm to operate on clean symbols.
In particular, we replace the ETX metric used in MORE
with the ETS metric described in§4, the packet loss proba-
bilities with the symbol loss probabilities at a particularγ,
which we can compute from the same probes we used to
compute the ETS metric. We describe these modifications
in more details below. We note however that this adaptation
of the MORE’s algorithm to symbol-based routing allows
MIXIT to inherit many desirable properties such as: 1) it is
distributed; 2) it has low complexity that is comparable to
current wireless routing (it isO(n2) wheren is the number
of nodes); 3) it works with the 802.11 MAC.

5.1 Forwarding Algorithm

Intuitively, our algorithm works by ensuring that a com-
mon piece of information is forwarded by the node closer
to its destination in ETS metric. Formally, letn be the num-
ber of nodes in the network. For any two nodes,i andj, let
i > j denote that nodei is farther from the destination than
nodej in the ETS metric. Given a thresholdγ, let pij,γ be
the probability that nodej fails to correctly receive a sym-
bol that i transmits. Last, letzi,γ be the expected number
of transmissions that forwarderi must make to forward one
clean symbol from the source,s, to the destination,d, given
a particular thresholdγ. In the following, we assume that
wireless receptions at different nodes are independent, an
assumption that is supported by prior measurements [16].

Let us first calculate the expected number of transmis-
sions that a forwarderj must make to deliver a clean sym-
bol from source,s, to destination,d. The expected number
of symbols thatj receives from nodes with higher distance
is

∑

i>j zi,γ(1 − pij,γ). For each clean symbolj receives,
j should forward it only if no node with lower distance
gets that symbol. This happens with probability

∏

k<j pik,γ .

4

Thus, in expectation, the number of symbols thatj must for-
ward, denoted byLj, is:

Lj =
∑

i>j

(zi,γ(1− pij,γ)
∏

k<j

pik,γ). (2)

Note thatLs = 1 because the source generates the symbol.
Now, consider the expected number of transmissions a

nodej must make.j should transmit each symbol until at
least one node closer to the destination receives it. Thus,
the number of transmissions thatj makes for each symbol it
forwards is a geometric random variable with success prob-
ability (1 −

∏

k<j pjk,γ). This is the probability that some
node with lower distance thanj cleanly receives the sym-
bol. Knowing the number of symbols thatj has to forward
from Eq. (2), the expected number of transmissions thatj
must make is:

zj,γ =
Lj

(1−
∏

k<j pjk,γ)
. (3)

Given the similarity in the derivations with MORE, we
leverage the argument in [2], which shows that the number
of transmissions made by each node, thezj’s, can be com-
puted inO(n2). Further the routing algorithm is distributed
and follows a link-state algorithm, where links weights are
set to the symbol loss probabilities, thepij,γ ’s. These prob-
abilities can be computed in a way similar to how current
routing algorithms compute packet loss probabilities, namely
using pairwise probes.

Furthermore, the above algorithm can be easily inte-
grated with the 802.11 MAC. In MIXIT, transmissions are
triggered by packet receptions and performed only when
the 802.11 MAC permits. For each node, we define a credit
countercredit counter. When a node receives a packet,
the counter is incremented enough to allow the node to for-
ward the clean symbols it received. In particular, for each
symbol sent from source to destination, nodei receives
∑

j>i(1 − pji,γ)zj, wherezj is the number of transmissions
made by nodej andpji,γ is the symbol loss probability from
j to i. Thus, the TXcredit of nodei is:

TX crediti =
zi

∑

j>i zj(1− pji,γ)
. (4)

When the 802.11 MAC allows the node to transmit, the
node checks whether the credits in the counter are more
than the packet size measured in symbols. If yes, the node
transmits a packet and decrements the counter by the size of
the packet; else, the node waits until it has enough credits.

5.2 From Clean To Correct Symbols

Up to now we have ignored the difference between a
clean and a correct symbol and focused on delivering clean
symbols to the destination. Yet, for any choice of the con-
fidence threshold,γ, there is a chance that a clean symbol
is actually corrupted. The destination however needs to re-
cover a correct copy of the source’s native symbols. This

problem can be addressed by noting that the coded symbols
in MIXIT are simply linear error correcting codes [15].

Specifically, letǫ(γ) be the symbol error rate at the des-
tination, for a confidence threshold,γ. Thus, a fractionǫ(γ)
of the clean symbols that the destination receives are in-
correct. These symbols can be corrected with added redun-
dancy. Said differently, for a batch ofK packets, if all clean
symbols are correct, then the destination can decode theK
native symbols in positionj in the packets after receiving
K linearly independent coded symbols for that position. If
the received clean symbols are potentially corrupted, then
K coded symbols are not enough for decoding; the destina-
tion needs added redundancy. In particular, to correct for an
error rate ofǫ(γ) it is well-known that the destination needs
an extra 2ǫ(γ) of coded symbols [15].

Thus, in the above algorithm, we need to add the redun-
dancy required to compensate for errors. We have to replace
everyzj with zj(1+2ǫ(γ)). Note however that the whole ob-
jective of the algorithm is to compute the TXcredit in Eq.4.
Multiplying thez’s in Eq.4 by(1+2ǫ(γ)) however does not
change the equation because this term cancels out. Thus, the
nodes need not knowǫ(γ) to perform their forwarding com-
putation.

Note that the destination’s decoding algorithm is dif-
ferent from standard decoding of network codes [2]. The
destination treats the coded symbols for each position as a
linear block-error-correcting code such as a Reed-Solomon
code [15]. It therefore uses decoding algorithms which can
recover from errors in the original symbols, standard net-
work coding algorithms cannot recover from errors. These
decoding algorithms can correct half as many errors as re-
dundancy added, which is the best possible. Thus if among
the K symbols at a particular position, one of them is cor-
rupted, it is sufficient to obtainK + 2 coded symbols to
correct that error [15].

One may wonder about the benefits of MIXIT if at the
end it just functions as an error correcting code. Indeed this
is the beauty of the approach. The nodes need not estimate
the error probability or how much FEC to add. MIXIT func-
tions as a distributed rateless error correcting code, i.e., the
destination keeps receiving coded symbols until it can de-
code (which it can verify by adding a CRC to each native
packet). MIXIT, however, differs from prior work on rate-
less codes because it is distributed and naturally integrates
and exploits the spatial diversity in a wireless network.

6 RESULTS

We present preliminary results that illustrate MIXIT’s
throughput gains and explore when such an approach would
be useful.

Our evaluation uses a combination of simulation and
software radio experiments. Each simulation has 20 nodes
randomly placed in an area of 100×100 m2. The signal
in the wireless channel is attenuated proportionally to the
cube of the distance from sender to receiver. The simula-

5

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

A
vg

. t
ra

ns
m

is
si

on
s/

pa
ck

et

Normalized confidence threshold

Figure 2—Effect of the confidence threshold on the average num-
ber of transmissions to deliver a packet-length of symbols to the
destination.

tor needs to compute two probability distributions. First,
for each wireless channel we need the distribution of the
per-symbol confidence values so that we can sample that
distribution as we simulate the transmission of symbols.
Second, we need to compute what is the probability of a
symbol being in error, given a particular confidence value.
We compute both distributions empirically from GNURa-
dio experiments. We transmit DBPSK modulated packets
between a GNURadio sender-receiver pair, and take the out-
put of the matched filter on the receiver as the per-symbol
confidence, as proposed in [23]. For each channel in a sim-
ulated network, we scale the distribution according to the
ratio of the simulated attenuation and the attenuation of the
actual GNURadio channel. Furthermore, we use the same
experiments to compute the symbol error rate as a function
of the confidence threshold,γ and feed that function to the
simulator. The simulator then simulates the outcome of the
algorithm in§5 for each network instance.

(a) Effect of the Confidence Threshold
The confidence threshold plays a critical role in balancing
the gains of spatial diversity with the potential of markinga
corrupted symbol as clean. We quantify this effect in Fig. 2
which plots the average number of transmissions to reliably
deliver a packet-length of correct symbols to its destina-
tion, as a function of the confidence threshold. We simu-
late 200 random topologies of 20 nodes. For each network,
we pick a random source-destination pair and compute the
average number of transmissions as a function of the confi-
dence threshold. This number includes the additional trans-
missions required to correct any corrupt symbols at the des-
tination.

The figure shows that there is an optimal confidence
threshold. Below that value (i.e., less than< 0.4), the per-
symbol confidence is too low, and hence a significant num-
ber of forwarded symbols may be corrupted and have to be
corrected again by retransmissions. When the threshold is
high on the other hand, many correct symbols are unneces-
sarily dropped, reducing the gains of spatial diversity.

The relationship between the confidence threshold and
the average number of transmissions required is convex and
has an optimal value, but the curve is flat near the optimal
threshold. Further, even though the simulations were per-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

C
um

ul
at

iv
e

F
ra

ct
io

n

Throughput Gain

Figure 3—MIXIT’s throughput gains relative to packet-based op-
portunistic routing

formed with randomly picked source-destination pairs, the
optimal threshold hovers around 0.3− 0.5. This suggests
that one can pick a threshold offline for a network. The
slight loss of optimality is negligible given MIXIT’s large
throughput gains, reported below.

(b) Comparing with Traditional Opportunistic Routing
How does MIXIT compare with packet-based opportunistic
routing protocols like ExoR [1] and MORE [2]? Given the
simple capabilities of our simulator, we cannot compare the
details of these protocols with MIXIT. Instead, we compare
the MORE algorithm described in Section 5.1 of [2] with
the MIXIT algorithm in§4, both under ideal estimates of the
error probabilities. We compute theThroughput Gain as
the ratio of the average number of transmissions to deliver
a fully-correct packet from source to destination in MORE
and MIXIT. This does not account for the fact that MIXIT’s
header is larger than that of MORE’s, and thus should be
taken as an upper bound on the throughput gain.

Fig. 3 plots the CDF of throughput gain of MIXIT rel-
ative to MORE. The simulation is conducted over 200 ran-
dom topologies. For each topology the optimal confidence
threshold is computed, then the average number of trans-
missions required to ship a full packet of 1500 symbols
from the source to the destination with MIXIT is compared
with MORE. The figure shows that MIXIT provides a me-
dian gain of 4x when compared to packet-based opportunis-
tic routing.

(c) When Does MIXIT Help?
Fig. 3 shows a range of throughput gains that varies from
1.2x to 8x. We would like to understand the differences
between topologies with low and high gains. Isolating the
networks with smaller improvements, we have discovered
that they shared one common characteristic. The pairwise
wireless channels are roughly bimodal, i.e., there are very
good links where the large fraction of the symbols in a
packet were received error-free and there were bad links
where most of the symbols were incorrect. MIXIT derives
its gains from exploiting packets received with errors, butin
such networks these opportunities are relatively few. Thus,
the gains are smaller. In contrast for the networks with the
largest gains, the channels show a wide variation over the
entire spectrum; from good links to bad links. MIXIT there-

6

fore can salvage many correct symbols that would other-
wise be dropped, achieving larger gains.

7 DISCUSSION

MIXIT changes how protocol designers think about wire-
less network architecture. Instead of treating wireless net-
works as a set of links where nodes have to code for each
channel separately, MIXIT treats the entire wireless net-
work like a single logical link and creates an adaptive error-
correcting code on the fly. Further, MIXIT increases net-
work throughput by building on the inherit characteristics
of the wireless medium; it embraces wireless broadcast and
exploits both space and time diversities. While MIXIT makes
clear departures from conventional network design, it main-
tains its desirable properties such as being distributed, of
low-complexity, implementable, and integrable with the rest
of the network stack.

Going forward, we plan to implement MIXIT and use
empirical measurements to design efficient run-length en-
coding schemes that capture the error structure with lit-
tle overhead. We are also investigating if we can introduce
sparsity into our network codes, so that decoding has lower
complexity. Finally, we are looking at modifying the routing
algorithm to react to congestion and perform load balancing
among multiple flows.

8 ACKNOWLEDGMENTS

We thank Nate Kushman, Hariharan Rahul and the re-
viewers for their insightful comments. This work is sup-
ported by DARPA CBMANET and an Intel gift. The opin-
ions and findings in this paper are those of the authors and
do not necessarily reflect the views of DARPA or Intel.

REFERENCES

[1] S. Biswas and R. Morris. Opportunistic routing in
multi-hop wireless networks.ACM SIGCOMM, 2005.

[2] S. Chachulski, M. Jennings, S. Katti, and D. Katabi.
Trading structure for randomness in wireless opportunistic
routing. InProc. of ACM SIGCOMM 2007, Kyoto, Japan.

[3] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing.
In ACM MobiCom ’03, San Diego, California, September
2003.

[4] G. FSF. Gnu radio - gnu fsf project.
http://www.gnu.org/software/gnuradio.

[5] J. Hagenauer and P. Hoecher. A Viterbi Algorithm with
Soft-Decision Outputs and its Applications. InIEEE
GLOBECOM, 1989.

[6] T. Ho, R. Koetter, M. Ḿedard, D. Karger, and M. Effros.
The Benefits of Coding over Routing in a Randomized
Setting. InProc. of ISIT, 2003, Yokohoma, Japan.

[7] E. Inc. Universal software radio peripheral. http://ettus.com.
[8] K. Jamieson and H. Balakrishnan. Ppr: Partial packet

recovery for wireless networks. InProc. of ACM
SIGCOMM 2007, Kyoto, Japan.

[9] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein.
Growth Codes: Maximizing Sensor Network Data

Persistence. InProc. of ACM SIGCOMM 2006, Pisa, Italy.
[10] S. Katti, S. Gollakota, and D. Katabi. Analog network

coding. InProceedings of ACM SIGCOMM 2007, Kyoto,
Japan.

[11] S. Katti, H. Rahul, D. Katabi, W. H. M. Ḿedard, and
J. Crowcroft. XORs in the Air: Practical Wireless Network
Coding. InProc. of ACM SIGCOMM 2006, Pisa, Italy.

[12] R. Koetter and M. Ḿedard. An algebraic approach to
network coding.IEEE/ACM Transactions on Networking,
Volume 11, Issue 5, Oct. 2003, Page(s):782 - 795.

[13] F. J. J. R. L. Bahl, J. Cocke. Optimal decoding of linear
codes for minimizing symbol error rate.Information
Theory, IEEE Transactions on, 20(2):2020–2040, 1974.

[14] J. N. Laneman, D. N. C. Tse, and G. W. Wornell.
Cooperative diversity in wireless networks: Efficient
protocols and outage behavior.IEEE Trans. on Inform.
Theory, Volume 50, Issue 12, Dec. 2004 Page(s):3062 -
3080.

[15] D. McKay. Information Theory, Inference and Learning
Algorithms. Cambridge University Press, 2003.

[16] A. Miu, H. Balakrishnan, and C. E. Koksal. Improving loss
resilience with multi-radio diversity in wireless networks. In
MobiCom ’05: Proceedings of the 11th annual international
conference on Mobile computing and networking, 2005.

[17] J. S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Medard.
Codecast: A network-coding based ad hoc multicast
protocol. IEEE Wireless Communications Magazine, 2006.

[18] S. Zhang, S. Liew, and P. Lam. Physical layer network
coding. InProc. of ACM MOBICOM 2006, Los Angeles,
USA.

[19] D. Tse and P. Vishwanath.Fundamentals of Wireless
Communications. Cambridge University Press, 2005.

[20] M. Wang, X. Weimin, and T. Brown. Soft Decision Metric
Generation for QAM with Channel Estimation Error.IEEE
Transactions on Communications, 50(7):1058 – 1061, 2002.

[21] J. Widmer and J.-Y. L. Boudec. Network Coding for
Efficient Communication in Extreme Networks. InProc. of
SIGCOMM WDTN 2005, Philadelphia, USA.

[22] A. Willig, M. Kubisch, C. Hoene, and A. Wolisz.
Measurements of a wireless link in an industrial
environment using an ieee 802.11-compliant physical layer.
IEEE Transaction on Industrial Electronics, 49(6), 2002.

[23] G. Woo, P. Kheradpour, and D. Katabi. Beyond the bits:
Cooperative packet recovery using phy information. In
Proc. of ACM MobiCom 2007, Montreal, Canada.

7

