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1 Introduction
For routers and switches to handle ever-increasing band-
width requirements, the packet “fast-path” must be
handled with specialized hardware. There have been two
approaches to building such packet forwarding hardware.
The first is to embed particular algorithms in hardware;
this is what most commodity forwarding chips do (e.g.,
those from Broadcom, Marvell, and Fulcrum). These
chips have led to amazing increases in performance and
reductions in cost; for instance, one can now get 24 ports
of gigabit ethernet for under $1000.

Unfortunately, this approach offers only very rigid func-
tionality; one can’t change protocols or add new features
that require hardware acceleration without redoing the
chip. This forces network forwarding enhancements to
evolve on hardware design timescales, which are glacially
slow compared to the rate at which network applications
and requirements are changing.

To counter this inflexibility, several vendors have
taken a different approach by introducing more flexible
“network processors”. These have not been as successful
as anticipated, for at least two reasons. First, designers
were never able to find a sweet-spot in the tradeoff
between hardware simplicity and flexible functionality,
so the performance/price ratios have lagged well behind
commodity networking chips. For another, the interface
provided to software has proven hard to use, requiring
protocol implementors to painstakingly contort their
code to the idiosyncrasies of the particular underlying
hardware to achieve reasonable performance. These two
problems (among others) have prevented general-purpose
network processors from dislodging the more narrowly
targeted commodity packet forwarding hardware that
dominates the market today.

In this paper, we step back from these two well-known
approaches and ask more fundamentally: what would we
want from packet forwarding hardware, how might we
achieve it, and what burden does that place on networking
software?

Ideally, hardware implementations of the forwarding
paths should have the following properties:

• Clean interface between hardware and software:
The hardware-software interface should allow each
to evolve independently. Protocol implementations
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should not be tied to particular networking hardware,
and networking hardware should not be restricted
to particular protocols. General-purpose network
processors have largely failed the first requirement,
while the current generation of commodity network-
ing chips fail the second requirement.
• Hardware simplicity: In order to scale to increasing

speeds, the hardware functionality should be of
very limited complexity. Again, both current
approaches to hardware acceleration fail to satisfy
this requirement.
• Flexible and efficient functionality: The resulting

software-hardware combination should be capable
of realizing a wide variety of networking functions
at high-speed and low-cost, while having short
development cycles. Commodity chips work at
high-speed and low-cost, but have long development
cycles for new functionality. General-purpose
network processors are not yet competitive on speed
or cost.

In this paper we propose a different approach to
hardware packet forwarding that has the potential to
realize all of these goals. Our approach assigns a
completely different role to hardware. Traditionally,
hardware implementations have embodied the logic
required for packet forwarding. That is, the hardware
had to capture all the complexity inherent in a packet
forwarding decision.

In contrast, in our approach all forwarding decisions
are done first in software, and then the hardware merely
mimics these decisions for subsequent packets to which
that decision applies (e.g., all packets destined for the
same prefix). Thus, the hardware does not need to
understand the logic of packet forwarding, it merely
caches the results of previous forwarding decisions (taken
by software) and applies them to packets with the
same headers. The key task is to match incoming
packets to previous decisions, so the required hardware
is nothing more than a glorified TCAM, which is simple
to implement (compared to other networking hardware)
and simple to reason about. We describe this approach in
more detail in Section 2.

One key challenge in this approach is scaling to
high speeds. Achieving high forwarding rates is not a
matter of the number of clock cycles needed to make
a forwarding decision, but instead is one of cache hit
rates; what fraction of packet forwarding can be done
based on the forwarding of previous packets? This
question is central to the viability of this approach, and
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we address it in Section 3. Another key challenge
is deciding to which packets a particular forwarding
decision applies (i.e., which fields in the packet header
must match in order to apply a decision), and when this
decision has been rendered obsolete by changing network
state (e.g., changes in forwarding tables); these system
design issues are addressed in Section 4.

This approach has been motivated by a long line
of flow-oriented approaches to networking hardware,
from [5] to [2] (and many others). What makes our
approach different from traditional connection-oriented
architectures (e.g., ATM) is that our approach does
not require any change to networking protocols. Our
approach (similar to the references [2, 5]) only changes
the interface between hardware and software, but does
not affect protocols or the Internet architecture. Like [3]
we seek to provide a flexible software model with
hardware forwarding speeds, however in our approach we
propose to fully decouple the software from the hardware,
while [3] provides direct access to hardware resources
such as the TCAM and special purpose ASICs. We view
this as a necessary and complimentary step for integrating
with existing hardware.

2 Our Approach
2.1 General Description

Packet forwarding decisions deterministically depend on
the header of the arriving packet and on some local state in
the router/switch (such as a routing table).1 For example,
the header/state combination for ethernet forwarding is
the destination MAC address and the L2 learning table,
whereas for IP forwarding it is the destination IP address
and the FIB.

The forwarding decision includes both the output
port(s) on the network device as well as possible modifi-
cations to the packet header, such as the label swapping in
MPLS or packet encapsulation/decapsulation. As long as
the relevant pieces of local state have not changed, then
all packets with the same packet header should receive the
same forwarding behavior. This statement applies to any
forwarding protocol that depends only on packet headers
and local state.

To leverage this fact, we treat packet forwarding as a
matching process, with all packets matching a previous
decision handled by the hardware, and all non-matching
packets handled by the software. We assume that when a
packet is handled by software, we can infer a flow entry
for that packet which contains four pieces of information:
Ingress port(s): This specifies to which ingress ports a
flow entry applies. Many rules will only apply to the
ingress port of the packet that generated the flow entry,

1We are ignoring forwarding decisions based on deep-packet
inspection.

but other rules (such as “packets with TTL=1 should be
dropped”) can be applied to all ingress ports.
Matching rule: The software specifies the fields in the
packet header that must match for the flow entry to
apply. This could be the entire header (i.e., requiring
a perfect match), or only some fields (e.g., perhaps only
the destination address to match).
Forwarding action: The forwarding action is the set of
output ports to which the packet should be sent, along
with (optionally) the rewritten packet headers for each
port. Dropping the packet is represented by a special null
output port.
State dependence: This represents the local state on
which the forwarding decision is based (such as entries in
a routing table or ACL database).

When a packet arrives, it is compared to the table of
flow entries corresponding to its ingress port. If its packet
header does not match any of the entries, then it is sent
to software for processing. If it matches a flow entry, the
packet is handled according to the specification of the
forwarding action in the flow entry. Whenever a piece
of local state changes, such as an update to an ACL or
routing table, then all flow entries that depended on that
state are invalidated and removed from the flow table.

Before proceeding to examples, we mention a few more
detailed points. First, the matching rules must be defined
so a packet matches no more than one rule. Since we
assume that the software deterministically forwards each
packet based on its header fields and particular system
state, it should be possible to generate non-conflicting
entries at runtime.

Second, we view stateful tunneling (e.g., IPsec in
which a sequence number is updated for every packet) as
virtual output ports rather than part of the forwarding
logic. This is similar to how they are handled in
standard software IP forwarding engines in which they are
modeled as networking interfaces. If we did not use this
technique then no flow entry would be recorded for such
flows, because the state on which the forwarding actions
depends (which includes per-packet modifications) would
be updated on every new packet arrival.

Third, there are a number of possible system designs
that could determine the headers and system state used
in a decision, such as a special-purpose programming
language, a specialized compiler or even hardware
support. We discuss these further in Section 4. However,
the primary goal of this paper is not to give a specific and
comprehensive system design (we are working on this
and plan to discuss it in future work), but rather to explore
the fundamental viability of our general approach.

2.2 Examples

To demonstrate how our proposal operates in practice, we
discuss two examples of familiar datapath functions in
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Packet fields Memory dependencies Output Modifications
eth type = VLAN, VLAN ID VLAN database, port configuration, L2 MAC table access port remove VLAN

eth type ! = VLAN VLAN database, port configuration, L2 MAC table access port None
eth type = VLAN, VLAN ID VLAN database, port configuration, L2 MAC table trunk port None

eth type ! = VLAN VLAN database, port configuration, L2 MAC table trunk port add VLAN

Table 1: Packet fields, memory dependencies and potential packet modifications for VLAN tagging example.

if eth.type 6= IPv4 then1

send to(drop port); return;2

end3

if ip.ttl ≤ 1 then4

generate icmp(); return;5

end6

if not valid ip.chksum then7

send to(drop port); return;8

end9

decrement(ip.ttl); update(ip.chksum);10

if no ip.options and not ip.fragmented then11

next hop, dst port←− fib(ip.dst ip);12

eth.src mac←− dst port.mac;13

eth.dst mac←− arp cache(next hop);14

send to(dst port);15

else16

// Complex header processing...17

end18

Figure 1: Pseudo code for IP routing.

heavy use today, IPv4 routing and VLAN tagging.
IP routing. We begin by describing how our approach
operates with standard IPv4 routing (pseudo-code shown
in Figure 1). From the standpoint of caching, IPv4 is non-
trivial in that it includes multiple state dependencies as
well as a number of header modifications (TTL decrement,
checksum update, L2 address updates).

On packet receipt, the router performs basic header
checks (protocol version, TTL), and verifies the checksum
before doing a prefix lookup in the FIB. Hence, the
forwarding decision depends on all of the protocol fields
as well as the locally stored FIB. Moreover, because the
checksum is dependent on every byte in the header (except
itself), every header field must be included in the flow
entry (including the TTL).2 However, as we show in the
next section, even with the full header included in the
matching rule, our approach can achieve very high cache
hit rates.

After looking up the next hop, the router consults the
ARP cache for the next hop MAC address. The Ethernet
header is updated with the MAC of the outgoing interface
as well as the next hop MAC address before being sent
out. Thus, local port MAC configuration, and ARP cache
2This can be avoided by relying on endpoint checksum
verification as is used in IPv6 and has been suggested
elsewhere [7].

are added as state dependencies for the flow entry.
VLAN tagging. We consider a simple VLAN tagging
implementation, which implements port-based VLAN
encapsulation and decapsulation for packets on access
ports, L2 forwarding within VLANs, and pass-through of
VLAN packets on trunk ports. Table 1 summarizes the
packet header and memory dependencies of this example
for given inputs. Briefly, if an incoming packet was
received on an access port, it is tagged with the VLAN ID
associated with that port. This adds the state dependency
of the VLAN database to any resulting decision. Once the
associated VLAN has been identified (if any) the packet
VLAN ID and destination MAC addresses are used for L2
forwarding. This adds the MAC learning tables to the state
dependency of the flow entry. In the final step, the packet
is sent out of one or more ports as determined by the
L2 forwarding step. If the port is an access port (and the
packet has a VLAN header), the VLAN header is removed.
This adds the port configuration as a dependency.

Tagging and label swapping (e.g., MPLS in addition to
VLAN) fit nicely with our proposal as the associated con-
figuration state generally changes very slowly. However,
for large networks, MAC learning can generate additional
overhead due to learning table entry timeouts. To validate
that these are manageable in practice, we explore the
cache hit and miss ratios of L2 learning over enterprise
traces in the following section.

The two examples presented in this section are limited
to lookup and forwarding. However, additional datapath
mechanisms, such as ACLs, can be added by simply
updating the software. In the case of ACLs, this would
merely add the ACL table to the state dependencies.
Adding forwarding for additional protocols is similarly
straightforward. Since the protocol type is implicitly
included in the matching rule, it will automatically be
de-multiplexed by the hardware.

3 Scaling
In order for the software not to become a bottleneck, the
cache hit rates must correspond to the speed differential
between the software and hardware forwarding rates.
For example, a commodity 48x1Gigabit networking chip
has roughly two orders of magnitude greater forwarding
capacity than a software solution using a standard PC
architecture (e.g., [11] or [8]). Therefore, to maintain
hardware-only speeds for an integrated architecture with
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similar performance characteristics, the hit rates must
exceed 99%.

In this section, we analyze cache hit rates using
standard L2 and L3 forwarding algorithms on network
traces. We explore the performance of our approach as
described here, and also with minor modifications that
help achieve vastly better hit rates.
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Figure 2: Results of cache hit-rate simulations for L2 and
L3 forwarding algorithms.

IP forwarding. We first explore the cache behaviour of
standard IPv4 forwarding. For this analysis we use two
publicly available traces [9, 10], one collected from an
OC-48 link consisting of 6,795,675 packets covering a
5 minute time window, and a second collected from an
OC-12 link consisting of 6,872,338 packets covering one

hour.
We assume the naive hardware implementation of a

managed TCAM in which each matching rule fills up an
entry. The system uses LRU when replacing cache entries
and we assume that the FIB does not change during the
period of analysis.

We test two variants of IPv4 fowarding and show
the results in Figure 2. The first algorithm (traditional
forwarding in the graph) strictly obeys the IPv4 forward-
ing specification (including full header checksum), and
thus, requires a full packet header match to be cached.
Reaching a 99% hit rate requires a TCAM of 4,096 entries
in the OC-12 case. For the OC-48 trace, the results are
significantly worse; the hit rate only reaches 95% even
with an essentially infinite number of entries.

In the second variant (modified forwarding in the
graph), we make two modifications which greatly improve
the results. First, we perform an incremental update of
the checksum which is limited to the TTL decrement
change. As a result, no header values beyond the version,
TTL, and destination are included in the cache entry.3

Secondly, the most precise lookup is a /24 rather than
full IP match (this is not an unreasonable assumption for
high bandwidth links; most FIBs on such links won’t
contain prefixes smaller than /24s). These changes greatly
improve the hit rates. In the case of the OC 48, a 99% hit
rate is achieved at 8,000 entries. Further, the lowest hit
rate we recorded using the OC-12 traces was 99.9889%,
sufficient for speed differentials of over three orders of
magnitude.
L2 learning. We also look at the performance of de-
cision caching for standard L2 learning. Our MAC
learning implementation uses 15 second timeouts of
learned addresses and the hardware uses an LRU cache
replacement strategy. For analysis, we use publicly
available enterprise trace data [1] covering a 3 hour time
period, and containing 17,472,976 packets with 1958
unique MAC addresses.

The cache hit rates of this analysis are shown in the
bottom most graph of Figure 2. For all entry sizes we
tested (the minimum being 256) we found the cache hit
rate to be over 99.9%. We note that the use of soft state
in this manner appears to have significantly lower TCAM
requirements than today’s commercial Ethernet switches
which commonly hold 1 million Ethernet addresses (6MB
of TCAM).

While much more study is warranted on the scaling
properties of caching, we feel that the results are promis-
ing. Commodity TCAMs with entry widths suitable for
L2 and L3 decision caching (e.g., 36 bytes) and with
8k entries (sufficient for all but the OC-48 case) cost
about $50 in bulk at the time of this writing. Further, we
3We note that IPv6 does not require per-hop IP checksums, as
the design community found them redundant.
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note that we make modest assumptions as to the relative
forwarding speeds of the on-board CPUs. With the onset
of multicore, the prospects for the speed differential
between the CPU and the hardware forwarding decreasing
are good. As long as the forwarding doesn’t involve
per-packet state changes, the software should scale as a
function of the number of cores.4

4 System Design Approaches
If the basic matching approach we are advocating can
achieve sufficiently high speeds, as we discussed in
the last section, then the next challenge is whether
we can determine the correct matching rules and state
dependencies. There are two extreme approaches one
can take (though we suspect an intermediate compromise
will be adopted in practice): explicit definition (by
the implementor), or automated inference via runtime
analysis (e.g., dynamic binary instrumentation). We
discuss these in turn.

4.1 Explicit Dependency Identification
The simplest approach to determining matching rules and
state dependencies is to put the onus of identifying them
on the programmer. This could be done manually, forcing
the programmer to explicitly annotate the forwarding
decisions with the headers and system state it relies on.
Note that while the programmer has to explicitly define
these dependencies, they do not have to explicitly manage
the flow entries themselves; once the matching rules and
state dependencies are specified, a compiler would then
generate the necessary code to invalidate any related flow
entries upon updates to local state.

Similar methods have been used for global state man-
agement in parallel programming environments (see e.g.,
[6]), and should be straightforward to apply to packet
forwarding. An alternative approach to extending the
compiler is to provide the developer with a set of library
calls that provide similar functionality to the annotations.

While conceptually simple, this explicit identification
approach imposes a burden on the programmer and
increases the risk of error; even if the algorithm is imple-
mented correctly, a missing state dependency could result
in incorrect runtime behavior. Further, it requires that all
state dependencies be identified, which complicates the
use of non-annotated third-party libraries.

4.2 Transparent Dependency Identification
It would be far easier for programmers if they could
focus on merely implementing the required forwarding
decisions, and let the system automatically infer what
the matching rules and state dependencies were. Unfor-
tunately, while forwarding logic itself may be simple,
4Although, admittedly, the bus speeds between the CPUs and
network hardware require special attention.

deducing the headers and state that effect decisions is
difficult without developer cooperation. For example,
some of the challenges are:
• Most forwarding software will have state not di-

rectly used as a part of the forwarding decision. This
includes counters, file handles, and any configura-
tion state. In an extreme case, a global timer value is
used to timestamp all incoming packets. In a naive
implementation, every time-tick would invalidate
all flow entries. Complex data structures further
complicate the analysis by maintaining their own
internal state which may change without impacting
the outcome of a forwarding decision.
• Processor architecture may require the forwarding

logic to access state that isn’t part of the resulting
decision. For example, prefixes for LPM are
commonly read as a single word (beginning from the
least significant bit), while only the most significant
bits may be relevant to the decision.
• Pipelined and parallel execution models require

careful dependency management to attribute a given
state access with a particular packet.

Despite these challenges, it is worth considering
whether it is possible to determine the headers and state
dependencies via runtime analysis by using, for example,
dynamic binary instrumentation. This could dramatically
increase software overheads, so we are not yet convinced
of its practicality, but we discuss it here as a promising
avenue for future research.

Runtime analysis operates by tracking all memory
references of the forwarding software while processing
packets. This can be done at the granularity of bits [4],
which would be optimal for our application. A simple
heuristic would be to assume that any header value that
was accessed by the software, or any static or heap state,
is a dependency.

Clearly this approach requires disciplined program-
ming over a limited programming model and could not
effectively be applied to existing software. Further, the
inference is only transparent at the syntax level. The
developer must be aware of the runtime characteristics of
the system and act accordingly (for example by avoiding
spurious reads to global data).

4.3 Inferring Packet Modifications
In addition to inferring important headers and state
dependencies, the system must also determine the actions
to apply to the packet. While it may be possible
to transparently infer the changes at runtime using
the techniques discussed in the previous section, a
simpler approach would have the developer specify
actions explicitly in a manner similar to [2]. To be
sufficiently general, the action set must be able to
support the modification of arbitrary bytes as well
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as byte insertion (for encapsulation) and deletion (for
decapsulation).

5 Conclusions
In all but the lowest end switches and routers, packet
forwarding is largely done in hardware. While not often a
subject of study in the academic literature, the advances
in packet forwarding hardware has been remarkable. In
fact, commodity networking chips now support aggregate
speeds that only a few years ago were only available on
the highest-end routers.

As successful as this generation of hardware-accelerated
packet forwarding has been, in the years ahead it must
find a way to accommodate two trends that appear to be
on a collision course:
• Speed: the demand for bandwidth continues to

grow, in enterprises, datacenters, and the wide-area
Internet. Backbone links have transitioned from
20Gbps to 40Gbps, core switches in datacenters
have high densities of 10Gbps ports, and ever-faster
switches and routers are on the horizon.
• Control: the need for better network management

and security, particularly in the areas of traffic engi-
neering and access control, has increased emphasis
on measures for controlling packet forwarding.

Dealing with increasing speed in hardware calls for
limiting the complexity of forwarding decisions (so they
can be done efficiently in hardware) and limiting the
flexibility of these decisions (so the hardware does not
need to be changed). On the other hand, attaining
greater control over forwarding decisions calls for greater
complexity in the forwarding path, and for greater
flexibility (since the nature of these control decisions
will change far more frequently than the basic protocols
change).

The approach described here tries to accommodate
these conflicting desires by retaining full generality
of function while remaining simple to implement (by
hardware designers) and use (by software implementors).
Any forwarding function that depends only on the packet
header and local state can be implemented over the same
hardware, with a very straightforward interface.

Achieving this generality and ease-of-use at high
speeds requires a large enough TCAM-like cache to
achieve a very low cache miss rate. Thus, the viability of
our approach depends on future trends in hardware (which
determines the cost of a given cache size and the
speed of software processing) and network traffic (which
determines the necessary cache size for a given cache
hit rate). We can’t make definitive projections about any
of these, but our initial investigations suggest that our
approach may indeed be viable. In particular, if we focus
on IPv6, with its lack of per-hop checksum, then the
required cache sizes are very inexpensive.

Of course, this is all very preliminary, and we hope to
soon embark on a much fuller investigation. This will
entail a more extensive set of traces, a more thorough
analysis of the factors that determine the cache miss rate,
and building a fully functioning implementation of this
approach.
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