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Abstract. In this paper, we prove some strong and A-convergence theorems for mappings, which satisfy the
condition (E) in the setting of Busemann spaces via the M iteration process. Numerical examples are given to
show the efficiency of the M iteration process. As an application, we investigate the well-known Delay differential
equation.
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1. INTRODUCTION

An efficient tool to find fixed points for nonexpansive mappings is the iterative method such as
Mann iterative process, Ishikawa iterative process and Norr iterative process. In 1979, Reich [1]
obtained, in a uniformly convex Banach space with a Frechet differentiable norm, a celebrated
weak convergence result of nonexpansive mappings. In 2008, Dhompongsa and Panyanak [2]
obtained A-convergence theorems for the Picard, Mann and Ishikawa iterations of nonexpansive
mapping in the setting of CAT (0) space. Also an analogue of the Kirk’s fixed point theorem
in class of uniformly convex metric spaces, as an extension of the class of CAT (0) spaces, was
given in [3, Corollary 3.10]. Some existence and approximation results for SKC mappings in
Busemann spaces have been recently studied by Khan, Abbas and Nazir [4]. The approximation
of mappings satisfying condition (E) in Busemann space was studied by Bagherboum [5].

The well-known Banach contraction theorem uses the Picard iterative process for fixed points
of contractions. There are many other import extensions of the Picard iterative process, such as,
Mann iterative process [6], Ishikawa iterative process [7], S iterative process [8], Noor iterative
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process [9], Abbas iterative process [10], SP iterative process [11], S* iterative process [12],
CR iterative process [13], Normal-S iterative process [14], Picard-Mann iterative process [15],
Picard-S iterative process [16], Thakur New iterative process [17], K* iterative process [18],
M* iterative process [19] and so on. Recently, Ullah and Arshad [20] introduced a new iterative
process called M iterative process. They prove that the M iterative process is faster than the
other known iterative processes, such as, the Picard-S and S iterative processes. In [20], they
developed an example of mappings satisfying condition C, which is not nonexpansive and used
it to show the efficiency of M iterative process. They also proved weak and strong convergence
theorems for the mappings satisfying condition C in the setting of uniformly convex Banach
spaces.

The purpose of this paper is to prove the effectiveness of the M iterative process with the help
of numerical examples. Moreover, utilizing the M iteration process, some A-convergence and
strong convergence theorem for the mapping satisfying condition E are proved in uniformly
convex Busemann spaces.

2. PRELIMINARIES

Let (X,d) be a metric space. A geodesic form x to y in X is a map ¢ from closed interval
0,] € R to X such that ¢(0) = x,¢(I) = y and d(c(t),c(f)) = |t —1'| for all £, € [0,1]. In
particular, ¢ is an isometry and d(x,y) = [. The image of ¢ is called a geodesic (or metric)
segment joining x and y. The space (X,d) is said to be geodesic space if every two points of X
are joined by a geodesic and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y € X, which we will denote by [x,y], called the segment joining x to
Y.

Let v: [a,b] — X be a path in a metric space X. We say that y is an affine parameterized
geodesic if either 7y is a constant path or there exists a geodesic path ¥ : [c,d] — X such that
y=7 oW, where ¥ : [a,b] — [c,d] is the unique affine homeomorphism between the intervals
[a,D] and [c,d].

Lat X be a uniquely geodesic space. If y([a,b]) is a geodesic segment joining x and y and
A €10,1], then z:= y((1 — A)a+ Ab) is the unique point in y([a, b]) satisfying d(z,x) = Ad(x,y)
and d(x,z) = (1 — A)d(x,y). In the sequel, the notation [x,y] is used for the geodesic segment
Y([a,b]) and z is denoted by (1 — A)x @ Ay, provided that there is no possible ambiguity. A
subset C C X is said to be geodesically convex if C includes every geodesic segment joining
any two of its point.

Let X be a geodesic metric space and let f : X — R be a mapping. We say that f is convex
(respectively strictly convex) if for every geodesic path y: [a,b] — X, the map fo7y: [a,b] = R
is convex (respectively strictly convex). It is know if f: X — Ris a function and g : f(X) — R
is an increasing convex (respectively strictly convex) function, then go f : X — R is convex
(respectively strictly convex).

Definition 2.1. [21] The geodesic metric space (X,d) is called a Busemann space if for any two
affine parameterized geodesics y: [a,b] = X and ¥ : [@’,b/] — X, the map D, : [a,b] x [a’,b'] —
R define by D, (t,¢") = d(y(r),7 (t')) is convex; i.e., the metric of Busemann space is convex.
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The statements, which are equivalent to this definition, were presented in [22, Proposition
8.1.2]. The simplest examples of Busemann spaces are CAT (0) spaces, strictly convex normed
spaces (in particular, strictly convex Banach spaces and uniformly convex Banach spaces such
as the LP, [P and W™, spaces, for 1 < p < oo, Minkowski spaces (i.e., finite dimensional affine
spaces equipped with a Finsler metric, which is invariant under translations) and the simply
connected Reimannian manifolds of nonpositive sectional curvature.

In these spaces, the following conditions are fulfilled [5]:

(1) d(z,(1=A)x®Ay) < (1 —A)d(z,x) +Ad(z,y),

(2) d((1=2A)xSAy), (1= A )x®Ay) = [A = A7),

B)(1-=A)xBAy=2Ayd (1 —A)x,

(4)d(1—=A)xdAz,(1=A)ydAw) < (1—-A)d(x,y)+Ad(z,w),

where x,y,z,w € X and A,A” € [0,1]. Therefore, Busemann spaces are hyperbolic spaces,
which were introduced by Kohlenbach [23].

Definition 2.2. The Busemann space [5] (X,d) is said to be uniformly convex if for r > 0 and
€ € (0,2], there exists a map 6 such that, for every three points a,x,y € X,

d(x,a) <r

d(y,a) <r jd(%x@%y,a)g(l—&r,

d(x,y) > er
such that, for all € € (0,2], inf{6 : r > 0} > 0.

A mapping 1 : (0,00)x(0,2] — (0, 1] providing such a n(r,€) := & for given r >0 and € €
(0,2] is called a modulus of uniform convexity.

From now on, a modulus of the uniform convexity with a decreasing modulus with respect to
r (for a fixed ¢€) is called a monotone modulus of the uniform convexity. The following lemma
shows a property of uniformly convex Busemann spaces which will be useful to obtain our main
results.

Definition 2.3. A point p is called a fixed point of a mapping T if T (p) = p, and F (T') represents
the set of all fixed points of mapping 7. Let C be a nonempty subset of a Busemann space X.

Lemma 2.4. [24, Lemma 2.2] Let X be a uniformly convex Busemann space with a monotone
modulus of convexity N and let x € X. Let {A,,} be a sequence in |b,c| for some b,c € (0,1) and
{xn}, {vn} be sequences in X such that, for some r > 0,

lim supd(x,,x) < r, lim supd(yn,x) < r and lim supd(A,x, B (1 — Ay)yn,x) = 1.
n—yoo n—soo n—yoo

Then
limd(x,,y,) =0.

n—yoo

Let C be a nonempty closed convex subset of a CAT (0) space X and let {x,} be a bounded
sequence in X. For x € X, we setr(x, {x,}) = limsup,_,..,d(x,,x). The asymptotic radius of {x,}
relative to C is given by

r(C,{x,}) = inf{r(x,{x,}) : x € C},
and the asymptotic center of {x,} relative to C is the set

AC{x,}) ={x e C:r(x,{xx}) = r(C,{xn})}-
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It is known that, in a CAT (0) space, A(C,{x,}) consists of exactly one point.

This set may be empty, a singleton, or may certain infinite points. In fact, if { x, } converges
strongly to x € C, then A.({x,}) = {x} and { x,} converges strongly to x and x ¢ C, where
d(x,C) := infeecd(x,c) and A.({xn}) = {c € C: d(x,c) = d(x,C)} := Pc(x), which Pc(x) is
the projection of x on C. The existence of unique projection of x on a nonempty closed convex
subset in complete Busmann space was proved, for more in [25, Proposition 8.4.8].

Now for an arbitrary bounded sequence {x,}, ¢ : X — R™ is define by @(x) = r(x, {x,}).
It can be easily observed that ¢ is a continuous convex function. Indeed, the continuity fol-
lows from the triangle inequality convexity is an immediate consequence of convexity distance
function (see, [25, Example 8.4.7(1)]).

Definition 2.5. Let {x, } be a bounded sequence in X and let x € X. The sequence {x, } is said to
be A -converge to x if the point x is the unique asypmtotic center of {u, }, for any subsequences
{un} of {x,}. Such a bounded sequence is called regular. In this case, we write A —lim,x, = x
and call x the A — limir of {x,}.

Any bounded sequence {x,} in X is said to be regular with respect to subset C of X if the
asymptotic radii of subsequences of {x,} with respect to C are the same. We have the following
lemma. Based on this lemma, any bounded sequence has a A-convergent subsequence.

Lemma 2.6. Let X be a uniformly convex Busemann space, {x,} be a bounded sequence in X
and C be a subset of X. Then {x,} has a subsequence which is regular with respect to C.

It is clear that any strong convergence sequence is A-convergence. Also, if C is a closed
convex subset of a Busemann apace, then A-convergence of any bounded sequence to x implies
that x,, — x (i.e., the asymptotic center of {x,} with respect to C is x).

Lemma 2.7. [11, Proposition 2.1] If C is a closed convex subset of a uniformly convex Buse-
mann space X and {x,} is a bounded sequence in C, then the asymptotic center of {x,} is in
C.

Lemma 2.8. [26, Proposition 3.7] Let C be a closed convex subset of a uniformly convex Buse-
mann space X and let T : C — X be a mapping satisfying condition (E). Then the conditions
{xn} A-converges to x and d(Tx,,x,) — 0 implies x € C and Tx = x.

Definition 2.9. If 7 is a mapping satisfying condition (E) and has a fixed point, than T is a
quasi-nonexpansive mapping.

3. THE M ITERATIVE PROCESS

The M Iteration process introduced by Ullah and Arshad [20] is defined as:

xg €C,
in = (1 - an)xn + 0, Txy,
Yn =Tz,
Xn+1 = Tyn,

(3.1)

where n > 0 and {0, } is a real sequence in [0, 1].



TABLE 1. Sequences generated by M, Picard-S and S iteration processes for
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mapping f of Example 3.1.

M

Picard-S

S

X0
X1
X2
X3
X4
X5
X6
X7
X3
X9

10
5.44565574132238
5.00693080112109
5.00008898476401
5.00000113904951
5.00000001457984
5.00000000018662
5.00000000000239
5.00000000000003
5.

X10 5.

10
5.66076955440972
5.01960812810809
5.00044149419855
5.00000985609151
5.00000021998893
5.00000000491015
5.00000000010960
5.00000000000245
5.00000000000006
5.

10

6.83624962725991
5.37044124393507
5.04752702755717
5.00540334935426
5.00060429338923
5.00006745514064
5.00000752819304
5.00000084014883
5.00000009376064
5.00000001046369

Xo=6 Xo=10 Xo=40

5.0 |- =

Xn Xn Xn

FIGURE 1. Convergence of M, and S iteration processes to the fixed
point 5 of the mapping define in Example 3.1 for different initial values.

Example 3.1. Let us define a function 7 : [0,50) — [0,50) by f(x) = vx* — 8x+40. Clearly,
T is a contraction mapping. Let o, = 0.85 for all n. The iterative values for initial value
xo = 10 are given in Table 1. Figure 1 shows the convergence graphs for different initial values.
Table and graphs shows that M iterative process is more efficient as compare to other iterative
processes.

In 2008, Suzuki [27] introduced the concept of generalized nonexpansive mappings which is
a condition on mappings called condition (C).

Definition 3.2. A mapping T : C — C is said to satisfy condition (C) if, for all x,y € C,

1
Ed(x, Tx) <d(x,y) implies d(Tx,Ty) < d(x,y).

Definition 3.3. A mapping T : C — C is said to satisfy condition (Ey ), if, for all x,y € X,
(x,Ty) < pd(x,Tx) +d(x,y).

We say that 7T satisfies condition (E), whenever T satisfies condition (Ey,) for some y > 1.
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Example 3.4. Define a mapping T : C — C by

(l+x y) 0<x< 1
T — 57 5
where C = [0,1]?> C X =(R?,d). Suppose that x = (x1,y1), y (xz,yz) € C We need to show

that T satisfy condition (E) but does not satisfy condition (C). Let x| = and Xy = 2 Then
X = (%7}]1) andy: (%7))2)
1+2
d(X,T)C) _d(('xl M)aT(le’l)) :d((xbyl)v(l—?q?yl) =d (%7yl)a( —i5_ 7y1))
1
d((sa)’I) (5:91) = (=2 + 01 —y1)H)2 =55
50’
1
() = d((x1.31), (32:72)) = d((3.5),3:9) = (3 =32+ —y)?)?
5
d(x,Tx) <d(x,y) and
Ty) = d(T (x1,31),T (x2,y2)) = d((*52,y)
2

;d(x Tx)=

U

Hence

d(Tx

NI'—‘

5

d((35,5),(0,9))((55 =0+ (y—)

Thus

1
7400 Tx) <d(x,y) # d(Tx, Ty) < d(x,y).

Hence T does not satisfy condition (C). To verify that T satisfy condition (E), we consider the
following cases:

Case I (x; < 1 andx, < 1) or (x; > 1 andx, > ).

(@). If x; = % and x; = %, then x = (%,yl) and y = (%,yz),

1 1

() = d((0101), (2,92)) = d((5.0), (5.9) = (5= P+ 0=V = 55,
A(Tx,TY) = d(T (31,3 T(x2,32) = d((529), (52 ) (552 9). (F55.3)
= d(($5.9):(55:9)) = (= 35+ (=)%)* = 5.
Then d(Tx,Ty) < d(x,y), which implies that
d(x,Ty) <d(x,Tx)+d(Tx,Ty) <d(x,Tx)+d(x,y).
(b). If x; = 2 and x, = 1, then x = (£,y1) and y = (£, y2),
2 1 2 1, b1 1
d(x,y) = d((x1,31), (02,32)) = d((5,3): (z.9) = (5 = )"+ =)7))2 = 5,
and
A(Tx.Ty) = d(T(01.31). T(x2,92)) = d((0,),(0,5)) = ((0— 0+ (y—y)2))} =0

Then d(Tx,Ty) < d(x,y), which implies that

d(x,Ty) < d(x,T2) +d(Tx,Ty) < d(x,T2) +d(x,y).
CaseIL: (x; < L andx; > 1) or (x; > L andx, < 1)
(a). If x; = % and xp, = %, then x = (%7)/1) and y = (%,yz),
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AeT) = d((02,32). T (32)) = d((3,9), 0) = (07 + =) = 2.
1
(8, T5) = (o1, 0), T (21, 0)) = (), (250 3)) = d((5.9), (£ 5.)
=<<§—2‘¥5>2+<y—y>2>>5=%,

and 6d(x,Tx) = 25 Thend(y,Ty) < 6d(x,Tx), which implies that d(x, Ty) <d(x,y)+d(y,Ty)
d(x,y)+6d(x,Tx).

IN

(b). If x; = 2 and x, = £, thenx = (2,y) and y = (3, 2),

A0 TY) = d((x2,32), T(32,32) = d{(12,9), (52 ) = d((3.0), (>

Wi
98]

2 2
d(x TX) = d((x17y1)7T(x17y1)> = d((§7y)7 (07y>) = g
Then 6d(x,Tx) = 2. Hence d(y,Ty) < 6d(x,Tx), which implies that d(x,Ty) < d(x,y) +
6d(x,Tx). Hence T is a mapping satisfying condition (E).

4. CONVERGENCE RESULTS FOR A MAPPING SATISFYING CONDITION (E)

In this section, we prove some strong and A—convergence of the sequence generated by M
iteration process for mapping satisfying condition (E) in the setting of Busemann spaces. The
M iteration process in the language of Busemann space is defined as:

xp €C,
Zn = (1 —y)x, ® 04, Txp,
Yn = Tz,
Xn+1 = Ty,

4.1)

where { o, } is a real sequence in [0, 1].

Theorem 4.1. Let C be a nonempty closed convex subset of a Busemann spaces X, and let
T : C — C be a mapping satisfying condition (E) with F(T) # 0. For arbitrary chosen xq € C,
let the sequence {x,} be generated by (4.1), then lim,_,ed(xy, p) exists for any p € F(T).

Proof. Let p € F(T) and z € C. Since T mapping satisfying condition (E), we have

1

Ed(p,Tp) =0 <d(p,z) implies that d(Tp,Tz) <d(p,z).
Using Definition 2.9, we have

d(Znap) = d((l — 0y xn@anTxmp)

(1 —ot)d(x4, p) +06n[.lid(TP p) +d(xn7p)]
(1= a)d(xu, p) + 0tad(xn, p)
d(%n, p)- (4.2)

)

(1- ocn)d(xn,p) + &, d (Txy, p)
(
(

ININ TN



8 K. ULLAH, M. ARSHAD, A. KALSOOM, H. N. KHAN

Using (4.2), we get

d(yn, P) d(Tzy, p)
(ud(T p,p)+d(z, p)]
d(Znap)

d(xp, p). (4.3)

(VAN VARSI VAN

Similarly by using (4.3), we have

d(xn+1,p) = d(Tyn,p)

[ud(Tp, p) +d(yn,p)]

d(yn, p)

d(xp, p). (4.4)

(VAN VAN VAN

This implies that {d(x,, p) } is bounded and non-increasing for all p € F(T'). Hence lim,,—yo (x5, )
exists, as required. O

Theorem 4.2. Let C be a nonempty closed convex subset of a CAT (0) space X, and let T : C — C
be a mapping satisfying condition (E). For arbitrary chosen xy € C, let the sequence {x,} be
generated by (4.1) for all n > 1, where {a, } is a sequence of real numbers in [a,b] for some a,b
with0 <a <b < 1. Then F(T) # 0 if and only if {x,} is bounded and lim,,_se d(T X, x,) = 0.

Proof. Suppose F(T) # 0 and let p € F(T). Then, by Theorem 4.1, lim,,_.. d(xy, p) exists and
{x,} is bounded. Put

,}Lrll(x"’p) =r 4.5)
From (4.2) and (4.5), we have
limsupd(zy,, p) <limsupd(x,,p) =r. (4.6)
n—oo n—oo
By Definition 2.9, we have
limsupd(Tx,,p) < limsupd(x,,p) =r. 4.7
n—yoo n—oo

On the other hand, by using the M iteration process, we have

d(xnt1,p) = d(Tyn,p)

[1d(T p,p) +d(yn, p)]
d(yn, p)

d(zn, p)-

ININ TN

Therefore

r< liniinfd(zn, p). (4.8)
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By using (4.6) and (4.8), we get
ro= r}l_{l;d(zn, p)
= ,}1_r>nd(((1 — Oy )Xn + 0, Txp), p)
= r}gglo[and(Txnap)'i'(l —(Xn)d(xn,p)]. 4.9)

From (4.5), (4.7), (4.9) and Lemma 2.6, we have that li_r>nd(Txn —x,) =0.
n—soo
Conversely, suppose that {x,} is bounded and lim,_,ed(Tx,,x,;) = 0 Than,by Lemma{x, }
has a subsequences which is regular with respect to C. Let {u, } be a subsequence of {x,} such
that A.(u,) = x,Therefore,
li_r>n supd(up, T p) < lim sup|ud(uy, Tuy) + d(up,x)] = lim supd (up, x).
n—oo n—yoo

n—oo

Thus the uniqueness of asymptotic center implies that x is a fixed point of T and this completes
the proof. 0J

Now we are in the position to prove the A-convergence theorem.

Theorem 4.3. Let C be a nonempty closed convex subset of a complete CAT (0) space X, and
let T : C — C be a mapping satisfying condition (E) with F(T) # 0. Let {t,} and {s,} be
sequences in [0,1] so that oy, € [a,b] with 0 < a < b < 1. From arbitrary xo € C, define the
sequence {x,} generating by (4.1). Then {x,} A-converges to a fixed point of T .

Proof. Since F(T) # 0, by Theorem 4.1, we have that {x, } is bounded and lim,,_,c. d(Txy,x,) =
0. We now let wy,{x,} := JA({u,}), where the union is taken over all subsequences {u,} of
{xn}. We claim that wy,{x,} C F(T). Let u € wy,{x,}. Then there exists a subsequence {u, }
of {x,} such that A({u,}) = {u}. By Lemma 2.7 and Lemma 2.8, there exists a subsequence
{vn} of {u,} such that A-lim,, {v,} =v € C. Since lim,_,od(v,,Tv,) =0. Then v € F(T) by
Lemma 2.8. We claim that # = v. If not, since T is Suzuki generalized nonexpansive mapping
and v € F(T), lim, d(x,,v) exists by Theorem 4.1. Then by uniqueness of asymptotic centers,
we have

limsupd(v,,v) < limsupd(vy,u)
n n
)

|
=
3
2]
[
o)
QU
)
3
<
—_ = O
N—

I
—
=
=
%)
(==
=
QU
<
3
<

which is a contradiction. Hence u =v € F(T). To show that {x,} A-converges to a fixed point
of T, it is suffices to show that w,,{x, } consists of exactly one point. Let {u, } be a subsequence
of {x,}. By Lemma 2.7 and Lemma 2.8, there exists a subsequence {v,} of {u,} such that
A-lim, {v, =v e C. Let A({u,}) = {u} and A({x,}) = {x}. We have seen that c € F(T). We
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can complete the proof by showing that x = v. If not, since {d(x,,v)} is convergent, by the
uniqueness of asymptotic centers, we have

limsupd (vy,v) < limsupd (v,,x) < limsupd (x,,x) < limsupd (x,,v) = limsupd(v,,v),
n n n n n

which is a contradiction. Hence the conclusion follows. O

Next we prove the strong convergence theorem.

Theorem 4.4. Let C be a nonempty compact convex subset of a CAT(0) space X, and let
T : C — C be a mapping satisfying condition (E). For arbitrary chosen xy € C, let the sequence
{xn} be generated by (4.1) for all n > 1, where {@,} is a sequence of real numbers in [a,b] for
some a,b with 0 < a < b < 1. Then {x,} converges strongly to a fixed point of T .

Proof. By Theorem 4.2 and Theorems 4.3 we have {x,} is bounded and A-converges to x €
F(T). Suppose on the contrary that {x,} does not converge strongly to x. By the compact
assumption, passing to subsequences if necessary, we may assume that there exists x' € C with
x" # x such that {x, } converge strongly to x’. Therefore, lim,, o d (x,x") = 0 < 1im,, 0 d (X, X).
Since x is unique asymptotic center of {x,}, it follows that x’ = x, which is contradiction. This
completes the proof. 0

Now we prove another strong convergence theorem using condition (7).

Theorem 4.5. Let C be a nonempty closed convex subset of a CAT (0) space X, and let T : C — C
be a mapping satisfying condition (E). For arbitrary chosen xy € C, let the sequence {x,} be
generated by (4.1) for all n > 1, where {a, } is a sequence of real numbers in [a,b] for some a,b
with0 <a <b <1 suchthat F(T) # 0. If T satisfy condition (I), then {x,} converges strongly
to a fixed point of T.

Proof. By Theorem 4.1, we have that lim,,_,.d(x,, p) exists for all p € F(T). So, lim;, e d (X,
F(T)) exists. Assume that lim,_,..d(x,, p) = r for some r > 0. If r = 0, then the result follows.
Supposing r > 0, from the hypothesis and condition (1), we have f(d(x,,F(T))) < d(Txy,xn).
Since F(T) # 0, so by Theorem 4.2, we have nli_r&d(T%,x,,) = 0. So,

lim £(d(xp, F(T))) =0, (4.10)

n—oo

which implies limd(x,, F(T)) = 0. Thus, we have a subsequence {x,, } of {x,} and a sequence
n—oo
{yx} C F(T) such that

1
d (X, yk) < % for all k € N.

It follows that
1

d(xnk+17yk) S d(-xnk,yk) < ?
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Hence

AN

d(Yis1,96) < d(Vkr1:Xk+1) +d (X1, k)
1 1

2k+1 T 2k
1
< T — 0, as k — oo.
This shows that {y, } is a Cauchy sequence in F(7) and so it converges to a point p. Since F(T)
is closed, therefore p € F(T') and then {x,, } converges strongly to p. Since lim, e d (X, p)

exists, we have that x, — p € F(T). O

<

5. SOLUTIONS OF FUNCTIONAL EQUATIONS

Throughout this section, we have the space C([a,b]), of all continuous real-valued functions
on a closed interval [a,b], equipped with Chebyshev norm [[x —y||., = max;c(, ) [x(t) — y(?)|-
Clearly (C([a,b]),]]|.,) is a Banach space, see [28]. Now, we consider a delay differential
equation such that

X (1) = f(2,x(r),x(t — 7)), 1 € [t0, D], (5.1)
with initial condition
x(t) =p(t), t € [to— T,1t0]- (5.2)

The following are some conditions:
(i). to,b € R, 7> 0;
(ii). f € C ([to,b] x R, R);
(iii). p € C([to — 7,b],R);
(iv). there exists Ly > 0 such that

2
|f(t7u17u2) —f(t,Vl,V2)| < Lf <Z |ui —Vj|> ’ vuhvi € R7l = 1727t € [t07b]; (53)
i=1
(v). 2Lf(b—t()) < 1.
By a solution of problem (5.1)-(5.2), we mean the function p € C([to — t,b],R)NC' ([ty, ], R).
The problem (5.1)-(5.2) can be reconstituted in the following form of integral equation:

_ p(t)v lE[l‘()—T,l‘()],
x0)= { p(t0) + fiy f(5,x(s),x(s — 7))ds, 1 € [to,b). (54)

Now we are in a position to give the following result.

Theorem 5.1. Let conditions (i)-(v) be satisfied. Then problem (5.1)-(5.2) has a unique so-
lution, say, p in C([to — ©,b],R) N C!([ty,b],R) and (3.1) with real sequence {a,}_ in [0,1]

satisfying ). O, = oo, converges to p.
n=0
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Proof. Let {x,}>_, be an iterative sequence generated by M L.P (3.1) for a map f : C([tp —
7,b],R) — C([to — 7,b],R), defined by:

):{ p (1), t € [to— T, 10],
p(to) —|—f,; F(s,x(s),x(s —71))ds, t € [to, D).

Denote the fixed point of f by p. We will show that x, — p as n — o. For t € [ty — T,1], it is
easy to show that x, — p when n — oo.
Next we prove, for t € [fy,b],

Jan = Plle < (1= ) o~ Pl + @0 | 3~ 77l
= (1= @) [ plla o, max | |F5a(0)~ (o)

ST
= (1— o) |on — Pl
p (%) +f;;f(s7xn(s)7xn(s_ T))ds ‘
O | =) = JL £(5, p(s), pls — T))ds
= (1- o) |n — Pl
ftgf(svxn(s)vxn(s_r))
O | = f (s, p(s), p(s — ©))ds
< (1= ) |on — pll

' [xu(s) = p(s)| )
n M L d
o te[tog)’;,b]/to / ( +xu(s—7) — p(s—1)| S

< (1=0) % = pll.,

t —
+an/t Lf( maXSE[to—T,b] \xn(s) _p(S ‘ T)| )dS

0 +MaXe (1 p] xn(s —7) = p(s—

t
(1= 06) [0 = pllot 0 | Ly (=l + [ = pL) s
0

< (1= (1=2L¢(b—10))) |2 = Plles-

It follows that

o =rlle = lIfza =Pl
= teﬁl(’]lﬂ);b] A f(s’zn(s),zn(s—f))—f(S,p(S),p(S—T))dS
< L (20 = 0+ s =) = pls =) s
< 2Lg(b—10) llzn — Pl
< 2L(b—10)(1 — (L 2Ly (b~ 1)) |a — ..
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Similarly, we also have

%1 =Pl = [lfyn=fplo
= pax tf(s,yn(S),yn(S—T))—f(s,p(S),p(s—f))dS

t
< max | L¢(|ya(s) = p(s)|+ [yn(s — ) = p(s — 7)|) ds
t€to—1,b] J1g

< 2Ls(b—19) [|yn — Pl
< (2Ls(b—10))* (1 = (1 = 2Ly (b—10))) %0 — Pl

By using assumption (v), we get that

%41 = Plloe < (1= (1 =2Ls(b—10))) [|Xn — Pl oo - (5.5)
Inductively, we have
%041 = plloe < T — (1 =2Ls(b—10))) lIxo — Pl - (5.6)
k=0

By using assumption (v), we have 1 — o, (1 —2Ls(b—1y)) < 1. Also, we know that 1 —x < e™
for every x € [0, 1]. It follows that

[x0 — Pllos
_ <
[%n+1 = Pllee < o(1=2L s (b—10)) X} 0% °

(5.7)

Taking the limit of both sides of the above inequality yields lim, . ||x, — p||.. =0, i.e., x, = p
for n — oo, i.e., M iterations converges to the solution of problem (5.1)-(5.2). U
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