
Package ‘spatstat.explore’
January 8, 2025

Version 3.3-4

Date 2025-01-08

Title Exploratory Data Analysis for the 'spatstat' Family

Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>= 3.5.0), spatstat.data (>= 3.1-2), spatstat.univar (>=
3.0-0), spatstat.geom (>= 3.3-2), spatstat.random (>= 3.3-1),
stats, graphics, grDevices, utils, methods, nlme

Imports spatstat.utils (>= 3.1-0), spatstat.sparse (>= 3.1-0), goftest
(>= 1.2-2), Matrix, abind

Suggests sm, gsl, locfit, spatial, fftwtools (>= 0.9-8),
spatstat.linnet (>= 3.2-1), spatstat.model (>= 3.3-1), spatstat
(>= 3.1-1)

Description Functionality for exploratory data analysis and nonparametric analysis of
spatial data, mainly spatial point patterns,
in the 'spatstat' family of packages.
(Excludes analysis of spatial data on a linear network,
which is covered by the separate package 'spatstat.linnet'.)
Methods include quadrat counts, K-functions and their simulation envelopes, nearest neigh-
bour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed in-
tensity, relative risk estimation with cross-validated bandwidth selection, mark correlation func-
tions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate ef-
fects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-
Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-
stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-
Smirnov, ANOVA) are also supported.

License GPL (>= 2)

URL http://spatstat.org/

NeedsCompilation yes

ByteCompile true

BugReports https://github.com/spatstat/spatstat.explore/issues

1

http://spatstat.org/
https://github.com/spatstat/spatstat.explore/issues

2 Contents

Author Adrian Baddeley [aut, cre, cph]
(<https://orcid.org/0000-0001-9499-8382>),

Rolf Turner [aut, cph] (<https://orcid.org/0000-0001-5521-5218>),
Ege Rubak [aut, cph] (<https://orcid.org/0000-0002-6675-533X>),
Kasper Klitgaard Berthelsen [ctb],
Warick Brown [cph],
Achmad Choiruddin [ctb],
Jean-Francois Coeurjolly [ctb],
Ottmar Cronie [ctb],
Tilman Davies [ctb, cph],
Julian Gilbey [ctb],
Jonatan Gonzalez [ctb],
Yongtao Guan [ctb],
Ute Hahn [ctb],
Kassel Hingee [ctb, cph],
Abdollah Jalilian [ctb],
Frederic Lavancier [ctb],
Marie-Colette van Lieshout [ctb, cph],
Greg McSwiggan [ctb],
Robin K Milne [cph],
Tuomas Rajala [ctb],
Suman Rakshit [ctb, cph],
Dominic Schuhmacher [ctb],
Rasmus Plenge Waagepetersen [ctb],
Hangsheng Wang [ctb]

Repository CRAN

Date/Publication 2025-01-08 11:00:02 UTC

Contents
spatstat.explore-package . 7
adaptive.density . 15
allstats . 16
alltypes . 18
as.data.frame.envelope . 21
as.function.fv . 22
as.function.rhohat . 23
as.fv . 25
as.owin.quadrattest . 26
as.tess . 29
auc . 30
berman.test . 31
bind.fv . 33
bits.envelope . 35
bits.test . 37
blur . 40
blurHeat . 41

https://orcid.org/0000-0001-9499-8382
https://orcid.org/0000-0001-5521-5218
https://orcid.org/0000-0002-6675-533X

Contents 3

boyce . 43
bw.abram.ppp . 45
bw.CvL . 48
bw.CvL.adaptive . 50
bw.CvLHeat . 52
bw.diggle . 53
bw.frac . 55
bw.optim.object . 56
bw.pcf . 57
bw.ppl . 59
bw.pplHeat . 61
bw.relrisk . 62
bw.relriskHeatppp . 64
bw.scott . 65
bw.smoothppp . 67
bw.stoyan . 69
cdf.test . 70
circdensity . 73
clarkevans . 74
clarkevans.test . 76
clusterset . 78
collapse.fv . 80
compatible.fasp . 82
compatible.fv . 83
compileCDF . 84
compileK . 85
cov.im . 87
dclf.progress . 88
dclf.sigtrace . 90
dclf.test . 93
density.ppp . 96
density.psp . 103
density.splitppp . 104
densityAdaptiveKernel.ppp . 106
densityAdaptiveKernel.splitppp . 108
densityfun.ppp . 109
densityHeat . 111
densityHeat.ppp . 112
densityVoronoi . 115
deriv.fv . 117
dg.envelope . 119
dg.progress . 121
dg.sigtrace . 123
dg.test . 126
dimhat . 128
distcdf . 129
domain.quadrattest . 130
edge.Ripley . 132

4 Contents

edge.Trans . 133
Emark . 135
envelope . 138
envelope.envelope . 147
envelope.pp3 . 149
envelopeArray . 152
eval.fasp . 154
eval.fv . 155
Extract.fasp . 157
Extract.fv . 158
F3est . 160
fasp.object . 162
Fest . 164
Finhom . 168
FmultiInhom . 170
formula.fv . 172
fryplot . 173
fv . 175
fv.object . 178
fvnames . 179
G3est . 180
Gcross . 182
Gcross.inhom . 185
Gdot . 188
Gdot.inhom . 191
Gest . 193
Gfox . 196
Ginhom . 198
Gmulti . 200
GmultiInhom . 203
harmonise.fv . 205
Hest . 206
hopskel . 209
hotbox . 210
idw . 212
Iest . 214
increment.fv . 216
integral.fv . 217
Jcross . 218
Jcross.inhom . 221
Jdot . 223
Jdot.inhom . 225
Jest . 227
Jinhom . 230
Jmulti . 233
Jmulti.inhom . 235
K3est . 237
Kcross . 239

Contents 5

Kcross.inhom . 242
Kdot . 246
Kdot.inhom . 249
Kest . 252
Kest.fft . 257
Kinhom . 258
Kmark . 263
Kmeasure . 266
Kmulti . 268
Kmulti.inhom . 271
Kscaled . 274
Ksector . 278
laslett . 279
Lcross . 281
Lcross.inhom . 283
Ldot . 285
Ldot.inhom . 286
Lest . 288
Linhom . 289
localK . 291
localKcross . 293
localKcross.inhom . 295
localKdot . 297
localKinhom . 299
localpcf . 301
lohboot . 304
markconnect . 307
markcorr . 309
markcrosscorr . 313
markmarkscatter . 315
marktable . 316
markvario . 317
Math.fasp . 319
Math.fv . 321
methods.rho2hat . 322
methods.rhohat . 324
methods.ssf . 325
miplot . 328
nnclean . 329
nncorr . 331
nndensity.ppp . 334
nnorient . 335
pairMean . 337
pairorient . 338
pairs.im . 340
panel.contour . 341
pcf . 343
pcf.fasp . 344

6 Contents

pcf.fv . 346
pcf.ppp . 348
pcf3est . 352
pcfcross . 354
pcfcross.inhom . 356
pcfdot . 358
pcfdot.inhom . 361
pcfinhom . 363
pcfmulti . 366
plot.bermantest . 368
plot.cdftest . 369
plot.envelope . 371
plot.fasp . 372
plot.fv . 374
plot.laslett . 378
plot.quadrattest . 379
plot.scan.test . 380
plot.ssf . 382
plot.studpermutest . 383
pool . 385
pool.anylist . 386
pool.envelope . 387
pool.fasp . 388
pool.fv . 389
pool.quadrattest . 390
pool.rat . 391
PPversion . 393
quadrat.test . 394
quadrat.test.splitppp . 398
radcumint . 399
rat . 401
rectcontact . 402
reload.or.compute . 403
relrisk . 404
relrisk.ppp . 405
relriskHeat . 409
rho2hat . 411
rhohat . 413
roc . 420
rose . 421
rotmean . 423
scan.test . 425
scanLRTS . 427
sdr . 429
sdrPredict . 431
segregation.test . 432
sharpen . 433
Smooth . 435

spatstat.explore-package 7

Smooth.fv . 436
Smooth.ppp . 437
Smooth.ssf . 440
Smoothfun.ppp . 441
SmoothHeat . 442
SmoothHeat.ppp . 443
spatcov . 444
spatialcdf . 446
SpatialMedian.ppp . 448
SpatialQuantile . 450
SpatialQuantile.ppp . 451
ssf . 453
stienen . 454
studpermu.test . 455
subspaceDistance . 457
thresholdCI . 458
thresholdSelect . 459
transect.im . 460
Tstat . 462
varblock . 463
Window.quadrattest . 465
with.fv . 466
with.ssf . 468
[.ssf . 469

Index 470

spatstat.explore-package

The spatstat.explore Package

Description

The spatstat.explore package belongs to the spatstat family of packages. It contains the core
functionality for statistical analysis and modelling of spatial data.

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the
analysis of spatial patterns of points in two-dimensional space.

The original spatstat package has now been split into several sub-packages.

This sub-package spatstat.explore contains the user-level functions that perform exploratory data
analysis and nonparametric data analysis of spatial data.

(The main exception is that functions for linear networks are in the separate sub-package spat-
stat.linnet.)

8 spatstat.explore-package

Structure of the spatstat family

The orginal spatstat package grew to be very large. It has now been divided into several sub-
packages:

• spatstat.utils containing basic utilities

• spatstat.sparse containing linear algebra utilities

• spatstat.data containing datasets

• spatstat.univar containing functions for estimating probability distributions of random vari-
ables

• spatstat.geom containing geometrical objects and geometrical operations

• spatstat.explore containing the functionality for exploratory data analysis and nonparametric
analysis of spatial data.

• spatstat.model containing the functionality for statistical modelling, model-fitting, formal
statistical inference and informal model diagnostics.

• spatstat.linnet containing functions for spatial data on a linear network

• spatstat, which simply loads the other sub-packages listed above, and provides documenta-
tion.

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat
package by typing library(spatstat), the other sub-packages listed above will automatically be
loaded or imported.

For an overview of all the functions available in the sub-packages of spatstat, see the help file for
"spatstat-package" in the spatstat package.

Additionally there are several extension packages:

• spatstat.gui for interactive graphics

• spatstat.local for local likelihood (including geographically weighted regression)

• spatstat.Knet for additional, computationally efficient code for linear networks

• spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the
earth’s surface

The extension packages must be installed separately and loaded explicitly if needed. They also have
separate documentation.

Overview of Functionality in spatstat.explore

The spatstat family of packages is designed to support a complete statistical analysis of spatial
data. It supports

• creation, manipulation and plotting of point patterns;

• exploratory data analysis;

• spatial random sampling;

• simulation of point process models;

• parametric model-fitting;

spatstat.explore-package 9

• non-parametric smoothing and regression;

• formal inference (hypothesis tests, confidence intervals);

• model diagnostics.

For an overview, see the help file for "spatstat-package" in the spatstat package.

Following is a list of the functionality provided in the spatstat.explore package only.

To simulate a random point pattern:
Functions for generating random point patterns are now contained in the spatstat.random package.

To interrogate a point pattern:

density.ppp kernel estimation of point pattern intensity
densityHeat.ppp diffusion kernel estimation of point pattern intensity
Smooth.ppp kernel smoothing of marks of point pattern
sharpen.ppp data sharpening

Manipulation of pixel images:
An object of class "im" represents a pixel image.

blur apply Gaussian blur to image
Smooth.im apply Gaussian blur to image
transect.im line transect of image
pixelcentres extract centres of pixels
rnoise random pixel noise

Line segment patterns
An object of class "psp" represents a pattern of straight line segments.

density.psp kernel smoothing of line segments
rpoisline generate a realisation of the Poisson line process inside a window

Tessellations
An object of class "tess" represents a tessellation.

rpoislinetess generate tessellation using Poisson line process

Three-dimensional point patterns
An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box
is represented by an object of class "box3".

runifpoint3 generate uniform random points in 3-D
rpoispp3 generate Poisson random points in 3-D
envelope.pp3 generate simulation envelopes for 3-D pattern

10 spatstat.explore-package

Multi-dimensional space-time point patterns
An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.

runifpointx generate uniform random points
rpoisppx generate Poisson random points

Classical exploratory tools:

clarkevans Clark and Evans aggregation index
fryplot Fry plot
miplot Morisita Index plot

Smoothing:

density.ppp kernel smoothed density/intensity
relrisk kernel estimate of relative risk
Smooth.ppp spatial interpolation of marks
bw.diggle cross-validated bandwidth selection for density.ppp
bw.ppl likelihood cross-validated bandwidth selection for density.ppp
bw.CvL Cronie-Van Lieshout bandwidth selection for density estimation
bw.scott Scott’s rule of thumb for density estimation
bw.abram.ppp Abramson’s rule for adaptive bandwidths
bw.relrisk cross-validated bandwidth selection for relrisk
bw.smoothppp cross-validated bandwidth selection for Smooth.ppp
bw.frac bandwidth selection using window geometry
bw.stoyan Stoyan’s rule of thumb for bandwidth for pcf

Modern exploratory tools:

clusterset Allard-Fraley feature detection
nnclean Byers-Raftery feature detection
sharpen.ppp Choi-Hall data sharpening
rhohat Kernel estimate of covariate effect
rho2hat Kernel estimate of effect of two covariates
spatialcdf Spatial cumulative distribution function
roc Receiver operating characteristic curve
sdr Sufficient Data Reduction
thresholdSelect optimal thresholding of a predictor

Summary statistics for a point pattern:

Fest empty space function F
Gest nearest neighbour distribution function G
Jest J-function J = (1−G)/(1− F)
Kest Ripley’s K-function
Lest Besag L-function
Tstat Third order T -function

spatstat.explore-package 11

allstats all four functions F , G, J , K
pcf pair correlation function
Kinhom K for inhomogeneous point patterns
Linhom L for inhomogeneous point patterns
pcfinhom pair correlation for inhomogeneous patterns
Finhom F for inhomogeneous point patterns
Ginhom G for inhomogeneous point patterns
Jinhom J for inhomogeneous point patterns
localL Getis-Franklin neighbourhood density function
localK neighbourhood K-function
localpcf local pair correlation function
localKinhom local K for inhomogeneous point patterns
localLinhom local L for inhomogeneous point patterns
localpcfinhom local pair correlation for inhomogeneous patterns
Ksector Directional K-function
Kscaled locally scaled K-function
Kest.fft fast K-function using FFT for large datasets
Kmeasure reduced second moment measure
envelope simulation envelopes for a summary function
varblock variances and confidence intervals

for a summary function
lohboot bootstrap for a summary function

Related facilities:

plot.fv plot a summary function
eval.fv evaluate any expression involving summary functions
harmonise.fv make functions compatible
eval.fasp evaluate any expression involving an array of functions
with.fv evaluate an expression for a summary function
Smooth.fv apply smoothing to a summary function
deriv.fv calculate derivative of a summary function
pool.fv pool several estimates of a summary function
density.ppp kernel smoothed density
densityHeat.ppp diffusion kernel smoothed density
Smooth.ppp spatial interpolation of marks
relrisk kernel estimate of relative risk
sharpen.ppp data sharpening
rknn theoretical distribution of nearest neighbour distance

Summary statistics for a multitype point pattern: A multitype point pattern is represented by an
object X of class "ppp" such that marks(X) is a factor.

relrisk kernel estimation of relative risk
scan.test spatial scan test of elevated risk
Gcross,Gdot,Gmulti multitype nearest neighbour distributions Gij , Gi•
Kcross,Kdot, Kmulti multitype K-functions Kij ,Ki•
Lcross,Ldot multitype L-functions Lij , Li•

12 spatstat.explore-package

Jcross,Jdot,Jmulti multitype J-functions Jij , Ji•
pcfcross multitype pair correlation function gij
pcfdot multitype pair correlation function gi•
pcfmulti general pair correlation function
markconnect marked connection function pij
alltypes estimates of the above for all i, j pairs
Iest multitype I-function
Kcross.inhom,Kdot.inhom inhomogeneous counterparts of Kcross, Kdot
Lcross.inhom,Ldot.inhom inhomogeneous counterparts of Lcross, Ldot
pcfcross.inhom,pcfdot.inhom inhomogeneous counterparts of pcfcross, pcfdot
localKcross,localKdot local counterparts of Kcross, Kdot
localLcross,localLdot local counterparts of Lcross, Ldot
localKcross.inhom,localLcross.inhom local counterparts of Kcross.inhom, Lcross.inhom

Summary statistics for a marked point pattern: A marked point pattern is represented by an
object X of class "ppp" with a component X$marks. The entries in the vector X$marks may be
numeric, complex, string or any other atomic type. For numeric marks, there are the following
functions:

markmean smoothed local average of marks
markvar smoothed local variance of marks
markcorr mark correlation function
markcrosscorr mark cross-correlation function
markvario mark variogram
markmarkscatter mark-mark scatterplot
Kmark mark-weighted K function
Emark mark independence diagnostic E(r)
Vmark mark independence diagnostic V (r)
nnmean nearest neighbour mean index
nnvario nearest neighbour mark variance index

For marks of any type, there are the following:

Gmulti multitype nearest neighbour distribution
Kmulti multitype K-function
Jmulti multitype J-function

Alternatively use cut.ppp to convert a marked point pattern to a multitype point pattern.

Programming tools:

marktable tabulate the marks of neighbours in a point pattern

Summary statistics for a three-dimensional point pattern:
These are for 3-dimensional point pattern objects (class pp3).

F3est empty space function F

spatstat.explore-package 13

G3est nearest neighbour function G
K3est K-function
pcf3est pair correlation function

Related facilities:

envelope.pp3 simulation envelopes

Summary statistics for random sets:
These work for point patterns (class ppp), line segment patterns (class psp) or windows (class owin).

Hest spherical contact distribution H
Gfox Foxall G-function
Jfox Foxall J-function

Model fitting
Functions for fitting point process models are now contained in the spatstat.model package.

Simulation
There are many ways to generate a random point pattern, line segment pattern, pixel image or
tessellation in spatstat.
Random point patterns: Functions for random generation are now contained in the spatstat.random
package.

See also varblock for estimating the variance of a summary statistic by block resampling, and
lohboot for another bootstrap technique.

Fitted point process models:
If you have fitted a point process model to a point pattern dataset, the fitted model can be simulated.

Methods for simulating a fitted model are now contained in the spatstat.model package.

Other random patterns: Functions for random generation are now contained in the spatstat.random
package.

Simulation-based inference

envelope critical envelope for Monte Carlo test of goodness-of-fit
bits.envelope critical envelope for balanced two-stage Monte Carlo test
qqplot.ppm diagnostic plot for interpoint interaction
scan.test spatial scan statistic/test
studpermu.test studentised permutation test
segregation.test test of segregation of types

Hypothesis tests:

quadrat.test χ2 goodness-of-fit test on quadrat counts
clarkevans.test Clark and Evans test
cdf.test Spatial distribution goodness-of-fit test

14 spatstat.explore-package

berman.test Berman’s goodness-of-fit tests
envelope critical envelope for Monte Carlo test of goodness-of-fit
scan.test spatial scan statistic/test
dclf.test Diggle-Cressie-Loosmore-Ford test
mad.test Mean Absolute Deviation test
anova.ppm Analysis of Deviance for point process models

More recently-developed tests:

dg.test Dao-Genton test
bits.test Balanced independent two-stage test
dclf.progress Progress plot for DCLF test
mad.progress Progress plot for MAD test

Model diagnostics:
Classical measures of model sensitivity such as leverage and influence, and classical model diag-
nostic tools such as residuals, partial residuals, and effect estimates, have been adapted to point
process models. These capabilities are now provided in the spatstat.model package.

Resampling and randomisation procedures
You can build your own tests based on randomisation and resampling using the following capabili-
ties:

quadratresample block resampling
rshift random shifting of (subsets of) points
rthin random thinning

Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Ottmar Cronie, Tilman Davies, Julian Gilbey, Yongtao Guan, Ute
Hahn, Kassel Hingee, Abdollah Jalilian, Marie-Colette van Lieshout, Greg McSwiggan, Tuomas
Rajala, Suman Rakshit, Dominic Schuhmacher, Rasmus Waagepetersen and Hangsheng Wang
made substantial contributions of code.

For comments, corrections, bug alerts and suggestions, we thank Monsuru Adepeju, Corey Ander-
son, Ang Qi Wei, Ryan Arellano, Jens Åström, Robert Aue, Marcel Austenfeld, Sandro Azaele,
Malissa Baddeley, Guy Bayegnak, Colin Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bern-
hardt, Andrew Bevan, Brad Biggerstaff, Anders Bilgrau, Leanne Bischof, Christophe Biscio, Roger
Bivand, Jose M. Blanco Moreno, Florent Bonneu, Jordan Brown, Ian Buller, Julian Burgos, Si-
mon Byers, Ya-Mei Chang, Jianbao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen,
Lucía Cobo Sanchez, Jean-Francois Coeurjolly, Kim Colyvas, Hadrien Commenges, Rochelle Con-
stantine, Robin Corria Ainslie, Richard Cotton, Marcelino de la Cruz, Peter Dalgaard, Mario
D’Antuono, Sourav Das, Peter Diggle, Patrick Donnelly, Ian Dryden, Stephen Eglen, Ahmed

adaptive.density 15

El-Gabbas, Belarmain Fandohan, Olivier Flores, David Ford, Peter Forbes, Shane Frank, Janet
Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes Gault, Jonas Geldmann, Marc Genton, Shaaban
Ghalandarayeshi, Jason Goldstick, Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Mar-
tin Bøgsted Hansen, Martin Hazelton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Max-
imilian Hesselbarth, Paul Hewson, Hamidreza Heydarian, Kurt Hornik, Philipp Hunziker, Jack
Hywood, Ross Ihaka, C̆enk Içös, Aruna Jammalamadaka, Robert John-Chandran, Devin John-
son, Mahdieh Khanmohammadi, Bob Klaver, Lily Kozmian-Ledward, Peter Kovesi, Mike Kuhn,
Jeff Laake, Robert Lamb, Frédéric Lavancier, Tom Lawrence, Tomas Lazauskas, Jonathan Lee,
George Leser, Angela Li, Li Haitao, George Limitsios, Andrew Lister, Nestor Luambua, Ben
Madin, Martin Maechler, Kiran Marchikanti, Jeff Marcus, Robert Mark, Peter McCullagh, Mo-
nia Mahling, Jorge Mateu Mahiques, Ulf Mehlig, Frederico Mestre, Sebastian Wastl Meyer, Mi
Xiangcheng, Lore De Middeleer, Robin Milne, Enrique Miranda, Jesper Møller, Annie Mollié, Ines
Moncada, Mehdi Moradi, Virginia Morera Pujol, Erika Mudrak, Gopalan Nair, Nader Najari, Nico-
letta Nava, Linda Stougaard Nielsen, Felipe Nunes, Jens Randel Nyengaard, Jens Oehlschlägel,
Thierry Onkelinx, Sean O’Riordan, Evgeni Parilov, Jeff Picka, Nicolas Picard, Tim Pollington,
Mike Porter, Sergiy Protsiv, Adrian Raftery, Ben Ramage, Pablo Ramon, Xavier Raynaud, Nicholas
Read, Matt Reiter, Ian Renner, Tom Richardson, Brian Ripley, Ted Rosenbaum, Barry Rowling-
son, Jason Rudokas, Tyler Rudolph, John Rudge, Christopher Ryan, Farzaneh Safavimanesh, Aila
Särkkä, Cody Schank, Katja Schladitz, Sebastian Schutte, Bryan Scott, Olivia Semboli, François
Sémécurbe, Vadim Shcherbakov, Shen Guochun, Shi Peijian, Harold-Jeffrey Ship, Tammy L Silva,
Ida-Maria Sintorn, Yong Song, Malte Spiess, Mark Stevenson, Kaspar Stucki, Jan Sulavik, Michael
Sumner, P. Surovy, Ben Taylor, Thordis Linda Thorarinsdottir, Leigh Torres, Berwin Turlach, Tor-
ben Tvedebrink, Kevin Ummer, Medha Uppala, Andrew van Burgel, Tobias Verbeke, Mikko Vih-
takari, Alexendre Villers, Fabrice Vinatier, Maximilian Vogtland, Sasha Voss, Sven Wagner, Hao
Wang, H. Wendrock, Jan Wild, Carl G. Witthoft, Selene Wong, Maxime Woringer, Luke Yates,
Mike Zamboni and Achim Zeileis.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

adaptive.density Adaptive Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern.

Usage

adaptive.density(X, ..., method=c("voronoi","kernel", "nearest"))

Arguments

X Point pattern (object of class "ppp" or "lpp").

method Character string specifying the estimation method

16 allstats

... Additional arguments passed to densityVoronoi, densityAdaptiveKernel.ppp
or nndensity.ppp.

Details

This function is an alternative to density.ppp and density.lpp. It computes an estimate of the
intensity function of a point pattern dataset. The result is a pixel image giving the estimated inten-
sity.

If method="voronoi" the data are passed to the function densityVoronoi which estimates the
intensity using the Voronoi-Dirichlet tessellation.

If method="kernel" the data are passed to the function densityAdaptiveKernel.ppp which es-
timates the intensity using a variable-bandwidth kernel estimator. (This is not yet supported when
X has class "lpp".)

If method="nearest" the data are passed to the function nndensity.ppp which estimates the in-
tensity using the distance to the k-th nearest data point. (This is not yet supported when X has class
"lpp".)

Value

A pixel image (object of class "im" or "linim") whose values are estimates of the intensity of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi <m2.moradi@yahoo.com>.

See Also

density.ppp, densityVoronoi, densityAdaptiveKernel.ppp, nndensity.ppp, im.object.

Examples

plot(adaptive.density(nztrees, 1), main="Voronoi estimate")

allstats Calculate four standard summary functions of a point pattern.

Description

Calculates the F , G, J , and K summary functions for an unmarked point pattern. Returns them as
a function array (of class "fasp", see fasp.object).

Usage

allstats(pp, ..., dataname=NULL, verb=FALSE)

allstats 17

Arguments

pp The observed point pattern, for which summary function estimates are required.
An object of class "ppp". It must not be marked.

... Optional arguments passed to the summary functions Fest, Gest, Jest and
Kest.

dataname A character string giving an optional (alternative) name for the point pattern.

verb A logical value meaning “verbose”. If TRUE, progress reports are printed during
calculation.

Details

This computes four standard summary statistics for a point pattern: the empty space function F (r),
nearest neighbour distance distribution function G(r), van Lieshout-Baddeley function J(r) and
Ripley’s function K(r). The real work is done by Fest, Gest, Jest and Kest respectively. Consult
the help files for these functions for further information about the statistical interpretation of F , G,
J and K.

If verb is TRUE, then “progress reports” (just indications of completion) are printed out when the
calculations are finished for each of the four function types.

The overall title of the array of four functions (for plotting by plot.fasp) will be formed from the
argument dataname. If this is not given, it defaults to the expression for pp given in the call to
allstats.

Value

A list of length 4 containing the F , G, J and K functions respectively.

The list can be plotted directly using plot (which dispatches to plot.anylist).

Each list entry retains the format of the output of the relevant estimating routine Fest, Gest, Jest
or Kest. Thus each entry in the list is a function value table (object of class "fv", see fv.object).

The default formulae for plotting these functions are cbind(km,theo) ~ r for F, G, and J, and
cbind(trans,theo) ~ r for K.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

plot.anylist, plot.fv, fv.object, Fest, Gest, Jest, Kest

Examples

a <- allstats(swedishpines,dataname="Swedish Pines")
if(interactive()) {
plot(a)
plot(a, subset=list("r<=15","r<=15","r<=15","r<=50"))
}

18 alltypes

alltypes Calculate Summary Statistic for All Types in a Multitype Point Pattern

Description

Given a marked point pattern, this computes the estimates of a selected summary function (F ,G,
J , K etc) of the pattern, for all possible combinations of marks, and returns these functions in an
array.

Usage

alltypes(X, fun="K", ...,
dataname=NULL,verb=FALSE,envelope=FALSE,reuse=TRUE)

Arguments

X The observed point pattern, for which summary function estimates are required.
An object of class "ppp" or "lpp".

fun The summary function. Either an R function, or a character string indicating
the summary function required. Options for strings are "F", "G", "J", "K", "L",
"pcf", "Gcross", "Jcross", "Kcross", "Lcross", "Gdot", "Jdot", "Kdot",
"Ldot".

... Arguments passed to the summary function (and to the function envelope if
appropriate)

dataname Character string giving an optional (alternative) name to the point pattern, dif-
ferent from what is given in the call. This name, if supplied, may be used by
plot.fasp() in forming the title of the plot. If not supplied it defaults to the
parsing of the argument supplied as X in the call.

verb Logical value. If verb is true then terse “progress reports” (just the values of
the mark indices) are printed out when the calculations for that combination of
marks are completed.

envelope Logical value. If envelope is true, then simulation envelopes of the summary
function will also be computed. See Details.

reuse Logical value indicating whether the envelopes in each panel should be based
on the same set of simulated patterns (reuse=TRUE) or on different, independent
sets of simulated patterns (reuse=FALSE).

Details

This routine is a convenient way to analyse the dependence between types in a multitype point
pattern. It computes the estimates of a selected summary function of the pattern, for all possible
combinations of marks. It returns these functions in an array (an object of class "fasp") amenable
to plotting by plot.fasp().

The argument fun specifies the summary function that will be evaluated for each type of point, or
for each pair of types. It may be either an R function or a character string.

alltypes 19

Suppose that the points have possible types 1, 2, . . . ,m and let Xi denote the pattern of points of
type i only.

If fun="F" then this routine calculates, for each possible type i, an estimate of the Empty Space
Function Fi(r) of Xi. See Fest for explanation of the empty space function. The estimate is
computed by applying Fest to Xi with the optional arguments

If fun is "Gcross", "Jcross", "Kcross" or "Lcross", the routine calculates, for each pair of types
(i, j), an estimate of the “i-toj” cross-type function Gij(r), Jij(r), Kij(r) or Lij(r) respectively
describing the dependence between Xi and Xj . See Gcross, Jcross, Kcross or Lcross respec-
tively for explanation of these functions. The estimate is computed by applying the relevant function
(Gcross etc) to X using each possible value of the arguments i,j, together with the optional argu-
ments

If fun is "pcf" the routine calculates the cross-type pair correlation function pcfcross between
each pair of types.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the routine calculates, for each type i, an estimate
of the “i-to-any” dot-type function Gi•(r), Ji•(r) or Ki•(r) or Li•(r) respectively describing the
dependence between Xi and X . See Gdot, Jdot, Kdot or Ldot respectively for explanation of these
functions. The estimate is computed by applying the relevant function (Gdot etc) to X using each
possible value of the argument i, together with the optional arguments

The letters "G", "J", "K" and "L" are interpreted as abbreviations for Gcross, Jcross, Kcross and
Lcross respectively, assuming the point pattern is marked. If the point pattern is unmarked, the
appropriate function Fest, Jest, Kest or Lest is invoked instead.

If envelope=TRUE, then as well as computing the value of the summary function for each combina-
tion of types, the algorithm also computes simulation envelopes of the summary function for each
combination of types. The arguments ... are passed to the function envelope to control the num-
ber of simulations, the random process generating the simulations, the construction of envelopes,
and so on.

When envelope=TRUE it is possible that errors could occur because the simulated point patterns do
not satisfy the requirements of the summary function (for example, because the simulated pattern
is empty and fun requires at least one point). If the number of such errors exceeds the maximum
permitted number maxnerr, then the envelope algorithm will give up, and will return the empirical
summary function for the data point pattern, fun(X), in place of the envelope.

Value

A function array (an object of class "fasp", see fasp.object). This can be plotted using plot.fasp.

If the pattern is not marked, the resulting “array” has dimensions 1× 1. Otherwise the following is
true:

If fun="F", the function array has dimensions m × 1 where m is the number of different marks
in the point pattern. The entry at position [i,1] in this array is the result of applying Fest to the
points of type i only.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the function array again has dimensions m × 1.
The entry at position [i,1] in this array is the result of Gdot(X, i), Jdot(X, i) Kdot(X, i) or
Ldot(X, i) respectively.

If fun is "Gcross", "Jcross", "Kcross" or "Lcross" (or their abbreviations "G", "J", "K" or "L"),
the function array has dimensions m×m. The [i,j] entry of the function array (for i ̸= j) is the

20 alltypes

result of applying the function Gcross, Jcross, Kcross orLcross to the pair of types (i,j). The
diagonal [i,i] entry of the function array is the result of applying the univariate function Gest,
Jest, Kest or Lest to the points of type i only.

If envelope=FALSE, then each function entry fns[[i]] retains the format of the output of the
relevant estimating routine Fest, Gest, Jest, Kest, Lest, Gcross, Jcross ,Kcross, Lcross, Gdot,
Jdot, Kdot or Ldot The default formulae for plotting these functions are cbind(km,theo) ~ r for
F, G, and J functions, and cbind(trans,theo) ~ r for K and L functions.

If envelope=TRUE, then each function entry fns[[i]] has the same format as the output of the
envelope command.

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

plot.fasp, fasp.object, Fest, Gest, Jest, Kest, Lest, Gcross, Jcross, Kcross, Lcross, Gdot,
Jdot, Kdot, envelope.

Examples

bramblecanes (3 marks).
bram <- bramblecanes

bF <- alltypes(bram,"F",verb=TRUE)
plot(bF)
if(interactive()) {

plot(alltypes(bram,"G"))
plot(alltypes(bram,"Gdot"))

}

Swedishpines (unmarked).
swed <- swedishpines

plot(alltypes(swed,"K"))

plot(alltypes(amacrine, "pcf"), ylim=c(0,1.3))

envelopes
bKE <- alltypes(bram,"K",envelope=TRUE,nsim=19)
global version:

bFE <- alltypes(bram,"F",envelope=TRUE,nsim=19,global=TRUE)

extract one entry
as.fv(bKE[1,1])

as.data.frame.envelope 21

as.data.frame.envelope

Coerce Envelope to Data Frame

Description

Converts an envelope object to a data frame.

Usage

S3 method for class 'envelope'
as.data.frame(x, ..., simfuns=FALSE)

Arguments

x Envelope object (class "envelope").

... Ignored.

simfuns Logical value indicating whether the result should include the values of the sim-
ulated functions that were used to build the envelope.

Details

This is a method for the generic function as.data.frame for the class of envelopes (see envelope.

The result is a data frame with columns containing the values of the function argument (usually
named r), the function estimate for the original point pattern data (obs), the upper and lower enve-
lope limits (hi and lo), and possibly additional columns.

If simfuns=TRUE, the result also includes columns of values of the simulated functions that were
used to compute the envelope. This is possible only when the envelope was computed with the
argument savefuns=TRUE in the call to envelope.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

E <- envelope(cells, nsim=5, savefuns=TRUE)
tail(as.data.frame(E))
tail(as.data.frame(E, simfuns=TRUE))

22 as.function.fv

as.function.fv Convert Function Value Table to Function

Description

Converts an object of class "fv" to an R language function.

Usage

S3 method for class 'fv'
as.function(x, ..., value=".y", extrapolate=FALSE)

Arguments

x Object of class "fv" or "rhohat".

... Ignored.

value Optional. Character string or character vector selecting one or more of the
columns of x for use as the function value. See Details.

extrapolate Logical, indicating whether to extrapolate the function outside the domain of x.
See Details.

Details

A function value table (object of class "fv") is a convenient way of storing and plotting several
different estimates of the same function. Objects of this class are returned by many commands in
spatstat, such as Kest, which returns an estimate of Ripley’s K-function for a point pattern dataset.

Sometimes it is useful to convert the function value table to a function in the R language. This is
done by as.function.fv. It converts an object x of class "fv" to an R function f.

If f <- as.function(x) then f is an R function that accepts a numeric argument and returns a
corresponding value for the summary function by linear interpolation between the values in the
table x.

Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or
the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different
rules to the left and right extremes, use extrapolate=c(TRUE,FALSE) and so on.

Typically the table x contains several columns of function values corresponding to different edge
corrections. Auxiliary information for the table identifies one of these columns as the recommended
value. By default, the values of the function f <- as.function(x) are taken from this column of
recommended values. This default can be changed using the argument value, which can be a
character string or character vector of names of columns of x. Alternatively value can be one of
the abbreviations used by fvnames.

If value specifies a single column of the table, then the result is a function f(r) with a single
numeric argument r (with the same name as the orginal argument of the function table).

If value specifies several columns of the table, then the result is a function f(r,what) where r is
the numeric argument and what is a character string identifying the column of values to be used.

as.function.rhohat 23

The formal arguments of the resulting function are f(r, what=value), which means that in a call
to this function f, the permissible values of what are the entries of the original vector value; the
default value of what is the first entry of value.

The command as.function.fv is a method for the generic command as.function.

Value

A function(r) or function(r,what) where r is the name of the original argument of the function
table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

as.function.rhohat, fv, fv.object, fvnames, plot.fv, Kest

Examples

K <- Kest(cells)
f <- as.function(K)
f
f(0.1)
g <- as.function(K, value=c("iso", "trans"))
g
g(0.1, "trans")

as.function.rhohat Convert Function Table to Function

Description

Converts an object of class "rhohat" to an R language function.

Usage

S3 method for class 'rhohat'
as.function(x, ..., value=".y", extrapolate=TRUE)

Arguments

x Object of class "rhohat", produced by the function rhohat.

... Ignored.

value Optional. Character string or character vector selecting one or more of the
columns of x for use as the function value. See Details.

extrapolate Logical, indicating whether to extrapolate the function outside the domain of x.
See Details.

24 as.function.rhohat

Details

An object of class "rhohat" is essentially a data frame of estimated values of the function rho(x)
as described in the help file for rhohat.

Sometimes it is useful to convert the function value table to a function in the R language. This is
done by as.function.rhohat. It converts an object x of class "rhohat" to an R function f.

The command as.function.rhohat is a method for the generic command as.function for the
class "rhohat".

If f <- as.function(x) then f is an R function that accepts a numeric argument and returns a
corresponding value for the summary function by linear interpolation between the values in the
table x.

Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or
the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different
rules to the left and right extremes, use extrapolate=c(TRUE,FALSE) and so on.

Typically the table x contains several columns of function values corresponding to different edge
corrections. Auxiliary information for the table identifies one of these columns as the recommended
value. By default, the values of the function f <- as.function(x) are taken from this column of
recommended values. This default can be changed using the argument value, which can be a
character string or character vector of names of columns of x. Alternatively value can be one of
the abbreviations used by fvnames.

If value specifies a single column of the table, then the result is a function f(r) with a single
numeric argument r (with the same name as the orginal argument of the function table).

If value specifies several columns of the table, then the result is a function f(r,what) where r is
the numeric argument and what is a character string identifying the column of values to be used.

The formal arguments of the resulting function are f(r, what=value), which means that in a call
to this function f, the permissible values of what are the entries of the original vector value; the
default value of what is the first entry of value.

Value

A function(r) or function(r,what) where r is the name of the original argument of the function
table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

rhohat, methods.rhohat, as.function.fv.

Examples

g <- rhohat(cells, "x")
f <- as.function(g)
f
f(0.1)

as.fv 25

as.fv Convert Data To Class fv

Description

Converts data into a function table (an object of class "fv").

Usage

as.fv(x)

S3 method for class 'fv'
as.fv(x)

S3 method for class 'data.frame'
as.fv(x)

S3 method for class 'matrix'
as.fv(x)

S3 method for class 'fasp'
as.fv(x)

S3 method for class 'bw.optim'
as.fv(x)

Arguments

x Data which will be converted into a function table

Details

This command converts data x, that could be interpreted as the values of a function, into a function
value table (object of the class "fv" as described in fv.object). This object can then be plotted
easily using plot.fv.

The dataset x may be any of the following:

• an object of class "fv";

• a matrix or data frame with at least two columns;

• an object of class "fasp", representing an array of "fv" objects.

• an object of class "minconfit", giving the results of a minimum contrast fit by the command
mincontrast. The

• an object of class "kppm", representing a fitted Cox or cluster point process model, obtained
from the model-fitting command kppm;

• an object of class "dppm", representing a fitted determinantal point process model, obtained
from the model-fitting command dppm;

26 as.owin.quadrattest

• an object of class "bw.optim", representing an optimal choice of smoothing bandwidth by a
cross-validation method, obtained from commands like bw.diggle.

The function as.fv is generic, with methods for each of the classes listed above. The behaviour is
as follows:

• If x is an object of class "fv", it is returned unchanged.

• If x is a matrix or data frame, the first column is interpreted as the function argument, and
subsequent columns are interpreted as values of the function computed by different methods.

• If x is an object of class "fasp" representing an array of "fv" objects, these are combined
into a single "fv" object.

• If x is an object of class "minconfit", or an object of class "kppm" or "dppm", the result is a
function table containing the observed summary function and the best fit summary function.

• If x is an object of class "bw.optim", the result is a function table of the optimisation criterion
as a function of the smoothing bandwidth.

Value

An object of class "fv" (see fv.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

r <- seq(0, 1, length=101)
x <- data.frame(r=r, y=r^2)
as.fv(x)

as.owin.quadrattest Convert Data To Class owin

Description

Converts data specifying an observation window in any of several formats, into an object of class
"owin".

Usage

S3 method for class 'quadrattest'
as.owin(W, ..., fatal=TRUE)

as.owin.quadrattest 27

Arguments

W Data specifying an observation window, in any of several formats described un-
der Details below.

fatal Logical value determining what to do if the data cannot be converted to an ob-
servation window. See Details.

... Ignored.

Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin.object
for an overview.

The generic function as.owin converts data in any of several formats into an object of class "owin"
for use by the spatstat package. The function as.owin is generic, with methods for different classes
of objects, and a default method.

The argument W may be

• an object of class "owin"

• a structure with entries xrange, yrange specifying the x and y dimensions of a rectangle

• a structure with entries named xmin, xmax, ymin, ymax (in any order) specifying the x and y
dimensions of a rectangle. This will accept objects of class bbox in the sf package.

• a numeric vector of length 4 (interpreted as (xmin, xmax, ymin, ymax) in that order) speci-
fying the x and y dimensions of a rectangle

• a structure with entries named xl, xu, yl, yu (in any order) specifying the x and y dimensions
of a rectangle as (xmin, xmax) = (xl, xu) and (ymin, ymax) = (yl, yu). This will accept
objects of class spp used in the Venables and Ripley spatial package.

• an object of class "ppp" representing a point pattern. In this case, the object’s window structure
will be extracted.

• an object of class "psp" representing a line segment pattern. In this case, the object’s window
structure will be extracted.

• an object of class "tess" representing a tessellation. In this case, the object’s window structure
will be extracted.

• an object of class "quad" representing a quadrature scheme. In this case, the window of the
data component will be extracted.

• an object of class "im" representing a pixel image. In this case, a window of type "mask" will
be returned, with the same pixel raster coordinates as the image. An image pixel value of NA,
signifying that the pixel lies outside the window, is transformed into the logical value FALSE,
which is the corresponding convention for window masks.

• an object of class "ppm", "kppm", "slrm" or "dppm" representing a fitted point process model.
In this case, if from="data" (the default), as.owin extracts the original point pattern data to
which the model was fitted, and returns the observation window of this point pattern. If
from="covariates" then as.owin extracts the covariate images to which the model was
fitted, and returns a binary mask window that specifies the pixel locations.

• an object of class "lpp" representing a point pattern on a linear network. In this case, as.owin
extracts the linear network and returns a window containing this network.

28 as.owin.quadrattest

• an object of class "lppm" representing a fitted point process model on a linear network. In this
case, as.owin extracts the linear network and returns a window containing this network.

• A data.frame with exactly three columns. Each row of the data frame corresponds to one
pixel. Each row contains the x and y coordinates of a pixel, and a logical value indicating
whether the pixel lies inside the window.

• A data.frame with exactly two columns. Each row of the data frame contains the x and y
coordinates of a pixel that lies inside the window.

• an object of class "distfun", "nnfun" or "funxy" representing a function of spatial location,
defined on a spatial domain. The spatial domain of the function will be extracted.

• an object of class "rmhmodel" representing a point process model that can be simulated using
rmh. The window (spatial domain) of the model will be extracted. The window may be NULL
in some circumstances (indicating that the simulation window has not yet been determined).
This is not treated as an error, because the argument fatal defaults to FALSE for this method.

• an object of class "layered" representing a list of spatial objects. See layered. In this case,
as.owin will be applied to each of the objects in the list, and the union of these windows will
be returned.

• An object of another suitable class from another package. For full details, see vignette('shapefiles').

If the argument W is not in one of these formats and cannot be converted to a window, then an error
will be generated (if fatal=TRUE) or a value of NULL will be returned (if fatal=FALSE).

When W is a data frame, the argument step can be used to specify the pixel grid spacing; otherwise,
the spacing will be guessed from the data.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.owin, as.owin.rmhmodel, as.owin.lpp.

owin.object, owin.

Additional methods for as.owin may be provided by other packages outside the spatstat family.

Examples

te <- quadrat.test(redwood, nx=3)
as.owin(te)

as.tess 29

as.tess Convert Data To Tessellation

Description

Converts data specifying a tessellation, in any of several formats, into an object of class "tess".

Usage

S3 method for class 'quadrattest'
as.tess(X)

Arguments

X Data to be converted to a tessellation.

Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. This command creates an object of class "tess" that represents a tessellation.

This function converts data in any of several formats into an object of class "tess" for use by the
spatstat package. The argument X may be

• an object of class "tess". The object will be stripped of any extraneous attributes and re-
turned.

• a pixel image (object of class "im") with pixel values that are logical or factor values. Each
level of the factor will determine a tile of the tessellation.

• a window (object of class "owin"). The result will be a tessellation consisting of a single tile.

• a set of quadrat counts (object of class "quadratcount") returned by the command quadratcount.
The quadrats used to generate the counts will be extracted and returned as a tessellation.

• a quadrat test (object of class "quadrattest") returned by the command quadrat.test. The
quadrats used to perform the test will be extracted and returned as a tessellation.

• a list of windows (objects of class "owin") giving the tiles of the tessellation.

The function as.tess is generic, with methods for various classes, as listed above.

Value

An object of class "tess" specifying a tessellation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

tess

30 auc

Examples

h <- quadrat.test(nztrees, nx=4, ny=3)
as.tess(h)

auc Area Under ROC Curve

Description

Compute the AUC (area under the Receiver Operating Characteristic curve) for an observed point
pattern.

Usage

auc(X, ...)

S3 method for class 'ppp'
auc(X, covariate, ..., high = TRUE)

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model
(object of class "ppm", "kppm", "slrm" or "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"),
or one of the strings "x" or "y" indicating the Cartesian coordinates.

high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

Details

This command computes the AUC, the area under the Receiver Operating Characteristic curve. The
ROC itself is computed by roc.

For a point pattern X and a covariate Z, the AUC is a numerical index that measures the ability of
the covariate to separate the spatial domain into areas of high and low density of points. Let xi be
a randomly-chosen data point from X and U a randomly-selected location in the study region. The
AUC is the probability that Z(xi) > Z(U) assuming high=TRUE. That is, AUC is the probability
that a randomly-selected data point has a higher value of the covariate Z than does a randomly-
selected spatial location. The AUC is a number between 0 and 1. A value of 0.5 indicates a
complete lack of discriminatory power.

Value

Numeric. For auc.ppp and auc.lpp, the result is a single number giving the AUC value.

berman.test 31

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

See Also

roc

Examples

auc(swedishpines, "x")

berman.test Berman’s Tests for Point Process Model

Description

Tests the goodness-of-fit of a Poisson point process model using methods of Berman (1986).

Usage

berman.test(...)

S3 method for class 'ppp'
berman.test(X, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

Arguments

X A point pattern (object of class "ppp" or "lpp").

covariate The spatial covariate on which the test will be based. An image (object of class
"im") or a function.

which Character string specifying the choice of test.

alternative Character string specifying the alternative hypothesis.

... Additional arguments controlling the pixel resolution (arguments dimyx, eps
and rule.eps passed to as.mask) or other undocumented features.

32 berman.test

Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point
pattern data. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using either of two test
statistics Z1 and Z2 proposed by Berman (1986). The Z1 test is also known as the Lawson-Waller
test.

The function berman.test is generic, with methods for point patterns ("ppp" or "lpp") and point
process models ("ppm" or "lppm").

• If X is a point pattern dataset (object of class "ppp" or "lpp"), then berman.test(X, ...)
performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Ran-
domness, CSR) for this dataset.

• If model is a fitted point process model (object of class "ppm" or "lppm") then berman.test(model,
...) performs a test of goodness-of-fit for this fitted model. In this case, model should be a
Poisson point process.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model. Thus, you
must nominate a spatial covariate for this test.

The argument covariate should be either a function(x,y) or a pixel image (object of class "im"
containing the values of a spatial function. If covariate is an image, it should have numeric values,
and its domain should cover the observation window of the model. If covariate is a function,
it should expect two arguments x and y which are vectors of coordinates, and it should return a
numeric vector of the same length as x and y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

Next the values of the covariate at all locations in the observation window are evaluated. The
point process intensity of the fitted model is also evaluated at all locations in the window.

• If which="Z1", the test statistic Z1 is computed as follows. The sum S of the covariate values
at all data points is evaluated. The predicted mean µ and variance σ2 of S are computed from
the values of the covariate at all locations in the window. Then we compute Z1 = (S − µ)/σ.
Closely-related tests were proposed independently by Waller et al (1993) and Lawson (1993)
so this test is often termed the Lawson-Waller test in epidemiological literature.

• If which="Z2", the test statistic Z2 is computed as follows. The values of the covariate at
all locations in the observation window, weighted by the point process intensity, are compiled
into a cumulative distribution function F . The probability integral transformation is then ap-
plied: the values of the covariate at the original data points are transformed by the predicted
cumulative distribution function F into numbers between 0 and 1. If the model is correct,
these numbers are i.i.d. uniform random numbers. The standardised sample mean of these
numbers is the statistic Z2.

In both cases the null distribution of the test statistic is the standard normal distribution, approxi-
mately.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

bind.fv 33

Value

An object of class "htest" (hypothesis test) and also of class "bermantest", containing the results
of the test. The return value can be plotted (by plot.bermantest) or printed to give an informative
summary of the test.

Warning

The meaning of a one-sided test must be carefully scrutinised: see the printed output.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

Lawson, A.B. (1993) On the analysis of mortality events around a prespecified fixed point. Journal
of the Royal Statistical Society, Series A 156 (3) 363–377.

Waller, L., Turnbull, B., Clark, L.C. and Nasca, P. (1992) Chronic Disease Surveillance and testing
of clustering of disease and exposure: Application to leukaemia incidence and TCE-contaminated
dumpsites in upstate New York. Environmetrics 3, 281–300.

See Also

cdf.test, quadrat.test, ppm

Examples

Berman's data
X <- copper$SouthPoints
L <- copper$SouthLines
D <- distmap(L, eps=1)
test of CSR
berman.test(X, D)
berman.test(X, D, "Z2")

bind.fv Combine Function Value Tables

Description

Advanced Use Only. Combine objects of class "fv", or glue extra columns of data onto an existing
"fv" object.

34 bind.fv

Usage

S3 method for class 'fv'
cbind(...)

bind.fv(x, y, labl = NULL, desc = NULL, preferred = NULL, clip=FALSE)

Arguments

... Any number of arguments, which are objects of class "fv", or other data. See
Details.

x An object of class "fv".

y Either an object of class "fv", a data frame, or a function. See Details.

labl Plot labels (see fv) for columns of y. A character vector.

desc Descriptions (see fv) for columns of y. A character vector.

preferred Character string specifying the column which is to be the new recommended
value of the function.

clip Logical value indicating whether each object must have exactly the same do-
main, that is, the same sequence of values of the function argument (clip=FALSE,
the default) or whether objects with different domains are permissible and will
be restricted to a common domain (clip=TRUE).

Details

This documentation is provided for experienced programmers who want to modify the internal
behaviour of spatstat.

The function cbind.fv is a method for the generic R function cbind. It combines any number of
objects of class "fv" into a single object of class "fv". The objects must be compatible, in the
sense that they have identical values of the function argument.

The function bind.fv is a lower level utility which glues additional columns onto an existing object
x of class "fv". It has three modes of use:

• If the additional dataset y is an object of class "fv", then x and y must be compatible as
described above. Then the columns of y that contain function values will be appended to the
object x.

• Alternatively if y is a data frame, then y must have the same number of rows as x. All columns
of y will be appended to x.

• Alternatively if y is a function in the R language, then this function will be evaluated at the
argument values stored in the object x, and these function values will be appended as a new
column to x.

The arguments labl and desc provide plot labels and description strings (as described in fv) for
the new columns. If y is an object of class "fv" then labl and desc are optional, and default to
the relevant entries in the object y. If y is a data frame then labl and desc should be provided, but
there is a default.

For additional flexibility, cbind.fv also accepts arguments which are data frames or functions.

bits.envelope 35

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

fv for creating objects of class "fv" from raw data.

collapse.fv for combining several "fv" objects with similar columns.

with.fv for evaluating expressions.

fvnames for extracting and assigning the column names of standard components of "fv" objects.

Undocumented functions for modifying an "fv" object include tweak.fv.entry and rebadge.fv.

Examples

K1 <- Kest(cells, correction="border")
K2 <- Kest(cells, correction="iso")

remove column 'theo' to avoid duplication
K2 <- K2[, names(K2) != "theo"]

cbind(K1, K2)

bind.fv(K1, K2, preferred="iso")

constrain border estimate to be monotonically increasing
bm <- cumsum(c(0, pmax(0, diff(K1$border))))
bind.fv(K1, data.frame(bmono=bm),

"%s[bmo](r)",
"monotone border-corrected estimate of %s",
"bmono")

add a column of values defined by a function
cbind(K1, upper=function(r) { pi * r^2 + 0.1 })

bits.envelope Global Envelopes for Balanced Independent Two-Stage Test

Description

Computes the global envelopes corresponding to the balanced independent two-stage Monte Carlo
test of goodness-of-fit.

36 bits.envelope

Usage

bits.envelope(X, ...,
nsim = 19, nrank = 1,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm" or "slrm").

... Arguments passed to mad.test or envelope to control the conduct of the test.
Useful arguments include fun to determine the summary function, rinterval
to determine the range of r values used in the test, and verbose=FALSE to turn
off the messages.

nsim Number of simulated patterns to be generated in each stage. Number of simu-
lations in each basic test. There will be nsim repetitions of the basic test, each
involving nsim simulated realisations, together with one independent set of nsim
realisations, so there will be a total of nsim * (nsim + 1) simulations.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

alternative Character string determining whether the envelope corresponds to a two-sided
test (alternative="two.sided", the default) or a one-sided test with a lower
critical boundary (alternative="less") or a one-sided test with an upper crit-
ical boundary (alternative="greater").

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value determining whether to print progress reports.

Details

Computes global simulation envelopes corresponding to the balanced independent two-stage Monte
Carlo test of goodness-of-fit described by Baddeley et al (2017). The envelopes are described in
Baddeley et al (2019).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

bits.test 37

This command is similar to dg.envelope which corresponds to the Dao-Genton test of goodness-
of-fit. It was shown in Baddeley et al (2017) that the Dao-Genton test is biased when the significance
level is very small (small p-values are not reliable) and we recommend bits.envelope in this case.

Value

An object of class "fv".

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Hardegen, A., Lawrence, T., Milne, R.K., Nair, G. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114,
75–87.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2019) Pushing
the envelope: extensions of graphical Monte Carlo tests. In preparation.

See Also

dg.envelope, bits.test, mad.test, envelope

Examples

ns <- if(interactive()) 19 else 4
E <- bits.envelope(swedishpines, Lest, nsim=ns)
E
plot(E)
Eo <- bits.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- bits.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)

bits.test Balanced Independent Two-Stage Monte Carlo Test

Description

Performs a Balanced Independent Two-Stage Monte Carlo test of goodness-of-fit for spatial pattern.

38 bits.test

Usage

bits.test(X, ...,
exponent = 2, nsim=19,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm", "lppm" or "slrm").

... Arguments passed to dclf.test or mad.test or envelope to control the con-
duct of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of r values used in the test, and use.theory
described under Details.

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of replicates in each stage of the test. A total of nsim * (nsim + 1)
simulated point patterns will be generated, and the p-value will be a multiple of
1/(nsim+1).

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

Performs the Balanced Independent Two-Stage Monte Carlo test proposed by Baddeley et al (2017),
an improvement of the Dao-Genton (2014) test.

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

bits.test 39

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

A hypothesis test (object of class "htest" which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114,
75–87.

See Also

Simulation envelopes: bits.envelope.

Other tests: dg.test, dclf.test, mad.test.

Examples

ns <- if(interactive()) 19 else 4
bits.test(cells, nsim=ns)
bits.test(cells, alternative="less", nsim=ns)
bits.test(cells, nsim=ns, interpolate=TRUE)

40 blur

blur Apply Gaussian Blur to a Pixel Image

Description

Applies a Gaussian blur to a pixel image.

Usage

blur(x, sigma = NULL, ...,
kernel="gaussian", normalise=FALSE, bleed = TRUE, varcov=NULL)

S3 method for class 'im'
Smooth(X, sigma = NULL, ...,

kernel="gaussian",
normalise=FALSE, bleed = TRUE, varcov=NULL)

Arguments

x, X The pixel image. An object of class "im".

sigma Standard deviation of isotropic Gaussian smoothing kernel.

... Ignored.

kernel String (partially matched) specifying the smoothing kernel. Current options are
"gaussian", "epanechnikov", "quartic" or "disc".

normalise Logical flag indicating whether the output values should be divided by the cor-
responding blurred image of the window itself. See Details.

bleed Logical flag indicating whether to allow blur to extend outside the original do-
main of the image. See Details.

varcov Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with
sigma.

Details

This command applies a Gaussian blur to the pixel image x.

Smooth.im is a method for the generic Smooth for pixel images. It is currently identical to blur,
apart from the name of the first argument.

The blurring kernel is the isotropic Gaussian kernel with standard deviation sigma, or the anisotropic
Gaussian kernel with variance-covariance matrix varcov. The arguments sigma and varcov are
incompatible. Also sigma may be a vector of length 2 giving the standard deviations of two inde-
pendent Gaussian coordinates, thus equivalent to varcov = diag(sigma^2).

If the pixel values of x include some NA values (meaning that the image domain does not completely
fill the rectangular frame) then these NA values are first reset to zero.

The algorithm then computes the convolution x ∗ G of the (zero-padded) pixel image x with the
specified Gaussian kernel G.

blurHeat 41

If normalise=FALSE, then this convolution x ∗ G is returned. If normalise=TRUE, then the con-
volution x ∗ G is normalised by dividing it by the convolution w ∗ G of the image domain w with
the same Gaussian kernel. Normalisation ensures that the result can be interpreted as a weighted
average of input pixel values, without edge effects due to the shape of the domain.

If bleed=FALSE, then pixel values outside the original image domain are set to NA. Thus the output
is a pixel image with the same domain as the input. If bleed=TRUE, then no such alteration is
performed, and the result is a pixel image defined everywhere in the rectangular frame containing
the input image.

Computation is performed using the Fast Fourier Transform.

Value

A pixel image with the same pixel array as the input image x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

interp.im for interpolating a pixel image to a finer resolution, density.ppp for blurring a point
pattern, Smooth.ppp for interpolating marks attached to points.

Examples

Z <- as.im(function(x,y) { 4 * x^2 + 3 * y }, letterR)
opa <- par(mfrow=c(1,3))
plot(Z)
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=TRUE))
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=FALSE))
plot(letterR, add=TRUE)
par(opa)

blurHeat Diffusion Blur

Description

Blur a Pixel Image by Applying Diffusion

42 blurHeat

Usage

blurHeat(X, ...)

S3 method for class 'im'
blurHeat(X, sigma, ...,

connect = 8, symmetric = FALSE, k= 1, show = FALSE)

S3 method for class 'im'
SmoothHeat(X, sigma, ...)

Arguments

X Pixel image (object of class "im").
sigma Smoothing bandwidth. A numeric value, a pixel image or a function(x,y).
... Ignored by blurHeat.im.
connect Grid connectivity: either 4 or 8.
symmetric Logical value indicating whether to force the algorithm to use a symmetric ran-

dom walk.
k Integer. Calculations will be performed by repeatedly multiplying the current

state by the k-step transition matrix.
show Logical value indicating whether to plot successive iterations.

Details

The function blurHeat is generic.

This help file documents the method blurHeat.im for pixel images (objects of class "im"). This is
currently equivalent to SmoothHeat.im, which is also documented here.

If sigma is a numeric value, then the classical time-dependent heat equation is solved up to time t =
sigma^2 starting with the initial condition given by the image X. This has the effect of blurring the
input image X.

If sigma is a function or a pixel image, then it is treated as a spatially-variable diffusion rate, and
the corresponding heat equation is solved.

This command can be used to calculate the expected value of the diffusion estimator of intensity
(densityHeat) when the true intensity is known.

Value

A pixel image on the same raster as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

densityHeat, blur.

boyce 43

Examples

Z <- as.im(function(x,y) { sin(10*x) + sin(9*y) }, letterR)
ZZ <- blurHeat(Z, 0.2)
plot(solist(original=Z, blurred=ZZ), main="")

boyce Boyce Index

Description

Calculate the discrete or continuous Boyce index for a spatial point pattern dataset.

Usage

boyce(X, Z, ..., breaks = NULL, halfwidth = NULL)

Arguments

X A spatial point pattern (object of class "ppp").

Z Habitat suitability classes or habitat suitability index. Either a tessellation (ob-
ject of class "tess") or a spatial covariate such as a pixel image (object of class
"im"), a function(x,y) or one of the letters "a", "b" representing the carte-
sian coordinates.

... Additional arguments passed to rhohat.ppp.

breaks The breakpoint values defining discrete bands of values of the covariate Z for
which the discrete Boyce index will be calculated. Either a numeric vector of
breakpoints for Z, or a single integer specifying the number of evenly-spaced
breakpoints. Incompatible with halfwidth.

halfwidth The half-width h of the interval [z − h, z + h] which will be used to calculate
the continuous Boyce index B(z) for each possible value z of the covariate Z.

Details

Given a spatial point pattern X and some kind of explanatory information Z, this function computes
either the index originally defined by Boyce et al (2002) or the ‘continuous Boyce index’ defined
by Hirzel et al (2006).

Boyce et al (2002) defined an index of habitat suitability in which the study region W is first divided
into separate subregions C1, . . . , Cm based on appropriate scientific considerations. Then we count
the number nj of data points of X that fall in each subregion Cj , measure the area aj of each
subregion Cj , and calculate the index

Bj =
nj/n

aj/a

where a is the total area and n is the total number of points in X.

Hirzel et al (2006) defined another version of this index which is based on a continuous spatial
covariate. For each possible value z of the covariate Z, consider the region C(z) where the value

44 boyce

of the covariate lies between z − h and z + h, where h is the chosen ‘halfwidth’. The ‘continuous
Boyce index’ is

B(z) =
n(z)/n

a(z)/a

where n(z) is the number of points of X falling in C(z), and a(z) is the area of C(z).

If Z is a tessellation (object of class "tess"), the algorithm calculates the original (‘discrete’) Boyce
index (Boyce et al, 2002) for each tile of the tessellation. The result is another tessellation, identical
to Z except that the mark values are the values of the discrete Boyce index.

If Z is a pixel image whose values are categorical (i.e. factor values), then Z is treated as a tessel-
lation, with one tile for each level of the factor. The discrete Boyce index is then calculated. The
result is a tessellation with marks that are the values of the discrete Boyce index.

Otherwise, if Z is a spatial covariate such as a pixel image, a function(x,y) or one of the characters
"x" or "y", then exactly one of the arguments breaks or halfwidth must be given.

• if halfwidth is given, it should be a single positive number. The continuous Boyce index
(Hirzel et al, 2006) is computed using the specified halfwidth h. The result is an object of
class "fv" that can be plotted to show B(z) as a function of z.

• if breaks is given, it can be either a numeric vector of possible values of Z defining the
breakpoints for the bands of values of Z, or a single integer specifying the number of evenly-
spaced breakpoints that should be created. The discrete Boyce index (Boyce et al, 2002) is
computed. The result is an object of class "fv" that can be plotted to show the discrete Boyce
index as a function of z.

When Z is a spatial covariate (not factor-valued), the calculation is performed using rhohat.ppp
(since the Boyce index is a special case of rhohat). Arguments ... passed to rhohat.ppp control
the accuracy of the spatial discretisation and other parameters of the algorithm.

Value

A tessellation (object of class "tess") or a function value table (object of class "fv") as explained
above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Boyce, M.S., Vernier, P.R., Nielsen, S.E. and Schmiegelow, F.K.A. (2002) Evaluating resource
selection functions. Ecological modelling 157, 281–300.

Hirzel, A.H., Le Lay, V., Helfer, V., Randin, C. and Guisan, A. (2006) Evaluating the ability of
habitat suitability models to predict species presences. Ecological Modelling 199, 142–152.

See Also

rhohat

bw.abram.ppp 45

Examples

online <- interactive()
a simple tessellation
V <- quadrats(Window(bei), 4, 3)
if(online) plot(V)

discrete Boyce index for a simple tessellation
A <- boyce(bei, V)

if(online) {
plot(A, do.col=TRUE)
marks(A)
tilenames(A)
}

spatial covariate: terrain elevation
Z <- bei.extra$elev

continuous Boyce index for terrain elevation
BC <- boyce(bei, Z, halfwidth=10)

if(online) plot(BC)

discrete Boyce index for terrain elevation steps of height 5 metres
bk <- c(seq(min(Z), max(Z), by=5), Inf)
BD <- boyce(bei, Z, breaks=bk)

if(online) plot(BD)

bw.abram.ppp Abramson’s Adaptive Bandwidths For Spatial Point Pattern

Description

Computes adaptive smoothing bandwidths for a spatial point pattern, according to the inverse-
square-root rule of Abramson (1982).

Usage

S3 method for class 'ppp'
bw.abram(X, h0,

...,
at=c("points", "pixels"),
hp = h0, pilot = NULL, trim=5, smoother=density.ppp)

Arguments

X A point pattern (object of class "ppp") for which the variable bandwidths should
be computed.

46 bw.abram.ppp

h0 A scalar value giving the global smoothing bandwidth in the same units as the
coordinates of X. The default is h0=bw.ppl(X).

... Additional arguments passed to as.im to control the pixel resolution, or passed
to density.ppp or smoother to control the type of smoothing, when computing
the pilot estimate.

at Character string (partially matched) specifying whether to compute bandwidth
values at the points of X (at="points", the default) or to compute bandwidths
at every pixel in a fine pixel grid (at="pixels").

hp Optional. A scalar pilot bandwidth, used for estimation of the pilot density if
required. Ignored if pilot is a pixel image (object of class "im"); see below.

pilot Optional. Specification of a pilot density (possibly unnormalised). If pilot=NULL
the pilot density is computed by applying fixed-bandwidth density estimation to
X using bandwidth hp. If pilot is a point pattern, the pilot density is is computed
using a fixed-bandwidth estimate based on pilot and hp. If pilot is a pixel im-
age (object of class "im"), this is taken to be the (possibly unnormalised) pilot
density, and hp is ignored.

trim A trimming value required to curb excessively large bandwidths. See Details.
The default is sensible in most cases.

smoother Smoother for the pilot. A function or character string, specifying the function to
be used to compute the pilot estimate when pilot is NULL or is a point pattern.

Details

This function computes adaptive smoothing bandwidths using the methods of Abramson (1982) and
Hall and Marron (1988).

The function bw.abram is generic. The function bw.abram.ppp documented here is the method for
spatial point patterns (objects of class "ppp").

If at="points" (the default) a smoothing bandwidth is computed for each point in the pattern X.
Alternatively if at="pixels" a smoothing bandwidth is computed for each spatial location in a
pixel grid.

Under the Abramson-Hall-Marron rule, the bandwidth at location u is

h(u) = h0 ∗ min[
f̃(u)−1/2

γ
, trim]

where f̃(u) is a pilot estimate of the spatially varying probability density. The variable bandwidths
are rescaled by γ, the geometric mean of the f̃(u)−1/2 terms evaluated at the data; this allows the
global bandwidth h0 to be considered on the same scale as a corresponding fixed bandwidth. The
trimming value trim has the same interpretation as the required ‘clipping’ of the pilot density at
some small nominal value (see Hall and Marron, 1988), to necessarily prevent extreme bandwidths
(which can occur at very isolated observations).

The pilot density or intensity is determined as follows:

• If pilot is a pixel image, this is taken as the pilot density or intensity.

• If pilot is NULL, then the pilot intensity is computed as a fixed-bandwidth kernel intensity
estimate using density.ppp applied to the data pattern X using the pilot bandwidth hp.

bw.abram.ppp 47

• If pilot is a different point pattern on the same spatial domain as X, then the pilot intensity is
computed as a fixed-bandwidth kernel intensity estimate using density.ppp applied to pilot
using the pilot bandwidth hp.

In each case the pilot density or intensity is renormalised to become a probability density, and then
the Abramson rule is applied.

Instead of calculating the pilot as a fixed-bandwidth density estimate, the user can specify another
density estimation procedure using the argument smoother. This should be either a function or the
character string name of a function. It will replace density.ppp as the function used to calculate
the pilot estimate. The pilot estimate will be computed as smoother(X, sigma=hp, ...) if pilot
is NULL, or smoother(pilot, sigma=hp, ...) if pilot is a point pattern. If smoother does not
recognise the argument name sigma for the smoothing bandwidth, then hp is effectively ignored, as
shown in the Examples.

Value

Either a numeric vector of length npoints(X) giving the Abramson bandwidth for each point (when
at = "points", the default), or the entire pixel image of the Abramson bandwidths over the relevant
spatial domain (when at = "pixels").

Author(s)

Tilman Davies <Tilman.Davies@otago.ac.nz>. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

Davies, T.M., Marshall, J.C., and Hazelton, M.L. (2018) Tutorial on kernel estimation of continuous
spatial and spatiotemporal relative risk. Statistics in Medicine, 37(7), 1191-1221.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability
densities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

bw.abram

Examples

'ch' just 58 laryngeal cancer cases
ch <- split(chorley)[[1]]

h <- bw.abram(ch,h0=1,hp=0.7)
length(h)
summary(h)

48 bw.CvL

if(interactive()) hist(h)

calculate pilot based on all 1036 observations
h.pool <- bw.abram(ch,h0=1,hp=0.7,pilot=chorley)
length(h.pool)
summary(h.pool)
if(interactive()) hist(h.pool)

get full image used for 'h' above
him <- bw.abram(ch,h0=1,hp=0.7,at="pixels")
plot(him);points(ch,col="grey")

use Voronoi-Dirichlet pilot ('hp' is ignored)
hvo <- bw.abram(ch, h0=1, smoother=densityVoronoi)

bw.CvL Cronie and van Lieshout’s Criterion for Bandwidth Selection for Ker-
nel Density

Description

Uses Cronie and van Lieshout’s criterion based on Cambell’s formula to select a smoothing band-
width for the kernel estimation of point process intensity.

Usage

bw.CvL(X, ..., srange = NULL, ns = 16, sigma = NULL, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

... Ignored.

srange Optional numeric vector of length 2 giving the range of values of bandwidth to
be searched.

ns Optional integer giving the number of values of bandwidth to search.

sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values
of ns and srange.

warn Logical. If TRUE, a warning is issued if the optimal value of the cross-validation
criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

bw.CvL 49

The bandwidth σ is chosen to minimise the discrepancy between the area of the observation window
and the sum of reciprocal estimated intensity values at the points of the point process

CvL(σ) = (|W | −
∑
i

1/λ̂(xi))
2

where the sum is taken over all the data points xi, and where λ̂(xi) is the kernel-smoothing estimate
of the intensity at xi with smoothing bandwidth σ.

The value of CvL(σ) is computed directly, using density.ppp, for ns different values of σ between
srange[1] and srange[2].

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Author(s)

Ottmar Cronie <ottmar@chalmers.se> and Marie-Colette van Lieshout <Marie-Colette.van.Lieshout@cwi.nl>.
Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Cronie, O and Van Lieshout, M N M (2018) A non-model-based approach to bandwidth selection
for kernel estimators of spatial intensity functions, Biometrika, 105, 455-462.

See Also

density.ppp, bw.optim.object.

Alternative methods: bw.diggle, bw.scott, bw.ppl, bw.frac.

For adaptive smoothing bandwidths, use bw.CvL.adaptive.

Examples

if(interactive()) {
b <- bw.CvL(redwood)
b
plot(b, main="Cronie and van Lieshout bandwidth criterion for redwoods")
plot(density(redwood, b))
plot(density(redwood, bw.CvL))

}

50 bw.CvL.adaptive

bw.CvL.adaptive Select Adaptive Bandwidth for Kernel Estimation Using Cronie-Van
Lieshout Criterion

Description

Uses the Cronie-Van Lieshout criterion to select the global smoothing bandwidth for adaptive kernel
estimation of point process intensity.

Usage

bw.CvL.adaptive(X, ...,
hrange = NULL, nh = 16, h=NULL,
bwPilot = bw.scott.iso(X),
edge = FALSE, diggle = TRUE)

Arguments

X A point pattern (object of class "ppp").
... Additional arguments passed to densityAdaptiveKernel.ppp.
hrange Optional numeric vector of length 2 giving the range of values of global band-

width h to be searched.
nh Optional integer giving the number of values of bandwidth h to search.
h Optional. Vector of values of the bandwidth to be searched. Overrides the values

of nh and hrange.
bwPilot Pilot bandwidth. A scalar value in the same units as the coordinates of X.

The smoothing bandwidth for computing an initial estimate of intensity using
density.ppp.

edge Logical value indicating whether to apply edge correction.
diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more

accurate but slower to compute than the default correction.

Details

This function selects an appropriate value of global bandwidth h0 for adaptive kernel estimation of
the intensity function for the point pattern X.

In adaptive estimation, each point in the point pattern is subjected to a different amount of smooth-
ing, controlled by data-dependent or spatially-varying bandwidths. The global bandwidth h0 is a
scale factor which is used to adjust all of the data-dependent bandwidths according to the Abramson
(1982) square-root rule.

This function considers each candidate value of bandwidth h, performs the smoothing steps de-
scribed above, extracts the adaptively-estimated intensity values λ̂(xi) at each data point xi, and
calculates the Cronie-Van Lieshout criterion

CvL(h) =
n∑

i=1

1

λ̂(xi)
.

bw.CvL.adaptive 51

The value of h which minimises the squared difference

LP2(h) = (CvL(h)− |W |)2

(where |W| is the area of the window of X) is selected as the optimal global bandwidth.

Bandwidths h are physical distance values expressed in the same units as the coordinates of X.

Value

A single numerical value giving the selected global bandwidth. The result also belongs to the
class "bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection
criterion as a function of sigma.

Author(s)

Marie-Colette Van Lieshout. Modified by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

Cronie, O and Van Lieshout, M N M (2018) A non-model-based approach to bandwidth selection
for kernel estimators of spatial intensity functions, Biometrika, 105, 455-462.

Van Lieshout, M.N.M. (2021) Infill asymptotics for adaptive kernel estimators of spatial intensity.
Australian and New Zealand Journal of Statistics 63 (1) 159–181.

See Also

bw.optim.object.

adaptive.density, densityAdaptiveKernel.ppp, bw.abram.ppp, density.ppp.

To select a fixed smoothing bandwidth using the Cronie-Van Lieshout criterion, use bw.CvL.

Examples

online <- interactive()
if(online) {

h0 <- bw.CvL.adaptive(redwood3)
} else {

faster computation for package checker
h0 <- bw.CvL.adaptive(redwood3, nh=8,

hrange=c(1/4, 4) * bw.diggle(redwood3))
}
plot(h0)
plot(as.fv(h0), CvL ~ h)
if(online) {
Z <- densityAdaptiveKernel(redwood3, h0)
plot(Z)

}

52 bw.CvLHeat

bw.CvLHeat Bandwidth Selection for Diffusion Smoother by Cronie-van Lieshout
Rule

Description

Selects an optimal bandwidth for diffusion smoothing using the Cronie-van Lieshout rule.

Usage

bw.CvLHeat(X, ..., srange=NULL, ns=16, sigma=NULL,
leaveoneout=TRUE, verbose = TRUE)

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to densityHeat.ppp.

srange Numeric vector of length 2 specifying a range of bandwidths to be considered.

ns Integer. Number of candidate bandwidths to be considered.

sigma Maximum smoothing bandwidth. A numeric value, or a pixel image, or a
function(x,y). Alternatively a numeric vector containing a sequence of can-
didate bandwidths.

leaveoneout Logical value specifying whether intensity values at data points should be esti-
mated using the leave-one-out rule.

verbose Logical value specifying whether to print progress reports.

Details

This algorithm selects the optimal global bandwidth for kernel estimation of intensity for the dataset
X using diffusion smoothing densityHeat.ppp.

If sigma is a numeric value, the algorithm finds the optimal bandwidth tau <= sigma.

If sigma is a pixel image or function, the algorithm finds the optimal fraction 0 < f <= 1 such that
smoothing with f * sigma would be optimal.

Value

A numerical value giving the selected bandwidth (if sigma was a numeric value) or the selected
fraction of the maximum bandwidth (if sigma was a pixel image or function). The result also
belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley.

bw.diggle 53

See Also

bw.pplHeat for an alternative method.

densityHeat.ppp

Examples

online <- interactive()
if(!online) op <- spatstat.options(npixel=32)
f <- function(x,y) { dnorm(x, 2.3, 0.1) * dnorm(y, 2.0, 0.2) }
X <- rpoint(15, f, win=letterR)
plot(X)
b <- bw.CvLHeat(X, sigma=0.25)
b
plot(b)
if(!online) spatstat.options(op)

bw.diggle Cross Validated Bandwidth Selection for Kernel Density

Description

Uses cross-validation to select a smoothing bandwidth for the kernel estimation of point process
intensity.

Usage

bw.diggle(X, ..., correction="good", hmax=NULL, nr=512, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

... Ignored.

correction Character string passed to Kest determining the edge correction to be used to
calculate the K function.

hmax Numeric. Maximum value of bandwidth that should be considered.

nr Integer. Number of steps in the distance value r to use in computing numerical
integrals.

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

54 bw.diggle

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is chosen to minimise the mean-square error criterion defined by Diggle (1985).
The algorithm uses the method of Berman and Diggle (1989) to compute the quantity

M(σ) =
MSE(σ)

λ2
− g(0)

as a function of bandwidth σ, where MSE(σ) is the mean squared error at bandwidth σ, while λ is
the mean intensity, and g is the pair correlation function. See Diggle (2003, pages 115-118) for a
summary of this method.

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Definition of bandwidth

The smoothing parameter sigma returned by bw.diggle (and displayed on the horizontal axis of
the plot) corresponds to h/2, where h is the smoothing parameter described in Diggle (2003, pages
116-118) and Berman and Diggle (1989). In those references, the smoothing kernel is the uniform
density on the disc of radius h. In density.ppp, the smoothing kernel is the isotropic Gaussian
density with standard deviation sigma. When replacing one kernel by another, the usual practice is
to adjust the bandwidths so that the kernels have equal variance (cf. Diggle 2003, page 118). This
implies that sigma = h/2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Berman, M. and Diggle, P. (1989) Estimating weighted integrals of the second-order intensity of a
spatial point process. Journal of the Royal Statistical Society, series B 51, 81–92.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Applied Statistics (Journal
of the Royal Statistical Society, Series C) 34 (1985) 138–147.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

See Also

density.ppp, bw.optim.object.

Alternative methods: bw.ppl, bw.scott, bw.CvL, bw.frac.

bw.frac 55

Examples

attach(split(lansing))
b <- bw.diggle(hickory)
plot(b, ylim=c(-2, 0), main="Cross validation for hickories")
if(interactive()) {
plot(density(hickory, b))
}

bw.frac Bandwidth Selection Based on Window Geometry

Description

Select a smoothing bandwidth for smoothing a point pattern, based only on the geometry of the
spatial window. The bandwidth is a specified quantile of the distance between two independent
random points in the window.

Usage

bw.frac(X, ..., f=1/4)

Arguments

X A window (object of class "owin") or point pattern (object of class "ppp") or
other data which can be converted to a window using as.owin.

... Arguments passed to distcdf.

f Probability value (between 0 and 1) determining the quantile of the distribution.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is computed as a quantile of the distance between two independent random points
in the window. The default is the lower quartile of this distribution.

If F (r) is the cumulative distribution function of the distance between two independent random
points uniformly distributed in the window, then the value returned is the quantile with probability
f . That is, the bandwidth is the value r such that F (r) = f .

The cumulative distribution function F (r) is computed using distcdf. We then we compute the
smallest number r such that F (r) ≥ f .

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.frac"
which can be plotted to show the cumulative distribution function and the selected quantile.

56 bw.optim.object

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

For estimating point process intensity, see density.ppp, bw.diggle, bw.ppl, bw.scott, bw.CvL.

For other smoothing purposes, see bw.stoyan, bw.smoothppp, bw.relrisk.

Examples

h <- bw.frac(letterR)
h
plot(h, main="bw.frac(letterR)")

bw.optim.object Class of Optimized Bandwidths

Description

An object of the class "bw.optim" represents a tuning parameter (usually a smoothing bandwidth)
that has been selected automatically. The object can be used as if it were a numerical value, but it
can also be plotted to show the optimality criterion.

Details

An object of the class "bw.optim" represents the numerical value of a smoothing bandwidth, a
threshold, or a similar tuning parameter, that has been selected by optimising a criterion such as
cross-validation.

The object is a numerical value, with some attributes that retain information about how the value
was selected.

Attributes include the vector of candidate values that were examined, the corresponding values of
the optimality criterion, the name of the parameter, the name of the optimality criterion, and the
units in which the parameter is measured.

There are methods for print, plot, summary, as.data.frame and as.fv for the class "bw.optim".

The print method simply prints the numerical value of the parameter. The summary method prints
this value, and states how this value was selected.

The plot method produces a plot of the optimisation criterion against the candidate value of the
parameter. The as.data.frame and as.fv methods extract this graphical information as a data
frame or function table, respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

bw.pcf 57

See Also

Functions which produce objects of class bw.optim include bw.CvL, bw.CvL.adaptive, bw.diggle,
bw.lppl, bw.pcf, bw.ppl, bw.relrisk, bw.relrisk.lpp, bw.smoothppp and bw.voronoi

Examples

Ns <- if(interactive()) 32 else 3
b <- bw.ppl(redwood, srange=c(0.02, 0.07), ns=Ns)
b
summary(b)
plot(b)

bw.pcf Cross Validated Bandwidth Selection for Pair Correlation Function

Description

Uses composite likelihood or generalized least squares cross-validation to select a smoothing band-
width for the kernel estimation of pair correlation function.

Usage

bw.pcf(X, rmax=NULL, lambda=NULL, divisor="r",
kernel="epanechnikov", nr=10000, bias.correct=TRUE,
cv.method=c("compLik", "leastSQ"), simple=TRUE, srange=NULL,

..., verbose=FALSE, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

rmax Numeric. Maximum value of the spatial lag distance r for which g(r) should be
evaluated.

lambda Optional. Values of the estimated intensity function. A vector giving the inten-
sity values at the points of the pattern X.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
pcf.ppp.

kernel Choice of smoothing kernel, passed to density; see pcf and pcfinhom.

nr Integer. Number of subintervals for discretization of [0, rmax] to use in comput-
ing numerical integrals.

bias.correct Logical. Whether to use bias corrected version of the kernel estimate. See
Details.

cv.method Choice of cross validation method: either "compLik" or "leastSQ" (partially
matched).

simple Logical. Whether to use simple removal of spatial lag distances. See Details.

58 bw.pcf

srange Optional. Numeric vector of length 2 giving the range of bandwidth values that
should be searched to find the optimum bandwidth.

... Other arguments, passed to pcf or pcfinhom.

verbose Logical value indicating whether to print progress reports during the optimiza-
tion procedure.

warn Logical. If TRUE, issue a warning if the optimum value of the cross-validation
criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth bw for the kernel estimator of the pair correlation
function of a point process intensity computed by pcf.ppp (homogeneous case) or pcfinhom (in-
homogeneous case).

With cv.method="leastSQ", the bandwidth h is chosen to minimise an unbiased estimate of the
integrated mean-square error criterion M(h) defined in equation (4) in Guan (2007a). The code
implements the fast algorithm of Jalilian and Waagepetersen (2018).

With cv.method="compLik", the bandwidth h is chosen to maximise a likelihood cross-validation
criterion CV (h) defined in equation (6) of Guan (2007b).

M(b) =
MSE(σ)

λ2
− g(0)

The result is a numerical value giving the selected bandwidth.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Definition of bandwidth

The bandwidth bw returned by bw.pcf is the standard deviation of the smoothing kernel, follow-
ing the standard convention in R. As mentioned in the documentation for density.default and
pcf.ppp, this differs from other definitions of bandwidth that can be found in the literature. The
scale parameter h, which is called the bandwidth in some literature, is defined differently. For
example for the Epanechnikov kernel, h is the half-width of the kernel, and bw=h/sqrt(5).

Author(s)

Rasmus Waagepetersen and Abdollah Jalilian. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

References

Guan, Y. (2007a). A composite likelihood cross-validation approach in selecting bandwidth for the
estimation of the pair correlation function. Scandinavian Journal of Statistics, 34(2), 336–346.

bw.ppl 59

Guan, Y. (2007b). A least-squares cross-validation bandwidth selection approach in pair correlation
function estimations. Statistics & Probability Letters, 77(18), 1722–1729.

Jalilian, A. and Waagepetersen, R. (2018) Fast bandwidth selection for estimation of the pair cor-
relation function. Journal of Statistical Computation and Simulation, 88(10), 2001–2011. https:
//www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606

See Also

pcf.ppp, pcfinhom, bw.optim.object

Examples

b <- bw.pcf(redwood)
plot(pcf(redwood, bw=b))

bw.ppl Likelihood Cross Validation Bandwidth Selection for Kernel Density

Description

Uses likelihood cross-validation to select a smoothing bandwidth for the kernel estimation of point
process intensity.

Usage

bw.ppl(X, ..., srange=NULL, ns=16, sigma=NULL, varcov1=NULL,
weights=NULL, shortcut=TRUE, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

srange Optional numeric vector of length 2 giving the range of values of bandwidth to
be searched.

ns Optional integer giving the number of values of bandwidth to search.

sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values
of ns and srange.

varcov1 Optional. Variance-covariance matrix matrix of the kernel with bandwidth h =
1. See section on Anisotropic Smoothing.

weights Optional. Numeric vector of weights for the points of X. Argument passed to
density.ppp.

... Additional arguments passed to density.ppp.

shortcut Logical value indicating whether to speed up the calculation by omitting the
integral term in the cross-validation criterion.

warn Logical. If TRUE, issue a warning if the maximum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606
https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606

60 bw.ppl

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is chosen to maximise the point process likelihood cross-validation criterion

LCV(σ) =
∑
i

log λ̂−i(xi)−
∫
W

λ̂(u) du

where the sum is taken over all the data points xi, where λ̂−i(xi) is the leave-one-out kernel-
smoothing estimate of the intensity at xi with smoothing bandwidth σ, and λ̂(u) is the kernel-
smoothing estimate of the intensity at a spatial location u with smoothing bandwidth σ. See
Loader(1999, Section 5.3).

The value of LCV(σ) is computed directly, using density.ppp, for ns different values of σ between
srange[1] and srange[2].

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

If shortcut=TRUE (the default), the computation is accelerated by omitting the integral term in the
equation above. This is valid because the integral is approximately constant.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Anisotropic Smoothing

Anisotropic kernel smoothing is available in density.ppp using the argument varcov to specify
the variance-covariance matrix of the anisotropic kernel. In order to choose the matrix varcov, the
user can call bw.ppl using the argument varcov1 to specify a ‘template’ matrix. Scalar multiples
of varcov1 will be considered and the optimal scale factor will be determined. That is, bw.ppl
will try smoothing the data using varcov = h^2 * varcov1 for different values of h. The result of
bw.ppl will be the optimal value of h.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Loader, C. (1999) Local Regression and Likelihood. Springer, New York.

See Also

density.ppp, bw.diggle, bw.scott, bw.CvL, bw.frac.

bw.pplHeat 61

Examples

if(interactive()) {
b <- bw.ppl(redwood)
plot(b, main="Likelihood cross validation for redwoods")
plot(density(redwood, b))

}

bw.pplHeat Bandwidth Selection for Diffusion Smoother by Likelihood Cross-
Validation

Description

Selects an optimal bandwidth for diffusion smoothing by point process likelihood cross-validation.

Usage

bw.pplHeat(X, ..., srange=NULL, ns=16, sigma=NULL,
leaveoneout=TRUE, verbose = TRUE)

Arguments

X Point pattern (object of class "ppp").
... Arguments passed to densityHeat.ppp.
srange Numeric vector of length 2 specifying a range of bandwidths to be considered.
ns Integer. Number of candidate bandwidths to be considered.
sigma Maximum smoothing bandwidth. A numeric value, or a pixel image, or a

function(x,y). Alternatively a numeric vector containing a sequence of can-
didate bandwidths.

leaveoneout Logical value specifying whether intensity values at data points should be esti-
mated using the leave-one-out rule.

verbose Logical value specifying whether to print progress reports.

Details

This algorithm selects the optimal global bandwidth for kernel estimation of intensity for the dataset
X using diffusion smoothing densityHeat.ppp.

If sigma is a numeric value, the algorithm finds the optimal bandwidth tau <= sigma.

If sigma is a pixel image or function, the algorithm finds the optimal fraction 0 < f <= 1 such that
smoothing with f * sigma would be optimal.

Value

A numerical value giving the selected bandwidth (if sigma was a numeric value) or the selected
fraction of the maximum bandwidth (if sigma was a pixel image or function). The result also
belongs to the class "bw.optim" which can be plotted.

62 bw.relrisk

Author(s)

Adrian Baddeley and Tilman Davies.

See Also

bw.CvLHeat for an alternative method.

densityHeat.ppp

Examples

online <- interactive()
if(!online) op <- spatstat.options(npixel=32)
f <- function(x,y) { dnorm(x, 2.3, 0.1) * dnorm(y, 2.0, 0.2) }
X <- rpoint(15, f, win=letterR)
plot(X)
b <- bw.pplHeat(X, sigma=0.25)
b
plot(b)
if(!online) spatstat.options(op)

bw.relrisk Cross Validated Bandwidth Selection for Relative Risk Estimation

Description

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk.

Usage

bw.relrisk(X, ...)

S3 method for class 'ppp'
bw.relrisk(X, method = "likelihood", ...,

nh = spatstat.options("n.bandwidth"),
hmin=NULL, hmax=NULL, warn=TRUE)

Arguments

X A multitype point pattern (object of class "ppp" which has factor valued marks).
method Character string determining the cross-validation method. Current options are

"likelihood", "leastsquares" or "weightedleastsquares".
nh Number of trial values of smoothing bandwith sigma to consider. The default is

32.
hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma

to consider. There is a sensible default.
warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-

rion occurs at one of the ends of the search interval.
... Additional arguments passed to density.ppp or to other methods for bw.relrisk.

bw.relrisk 63

Details

This function selects an appropriate bandwidth for the nonparametric estimation of relative risk
using relrisk.

Consider the indicators yij which equal 1 when data point xi belongs to type j, and equal 0 other-
wise. For a particular value of smoothing bandwidth, let p̂j(u) be the estimated probabilities that a
point at location u will belong to type j. Then the bandwidth is chosen to minimise either the nega-
tive likelihood, the squared error, or the approximately standardised squared error, of the indicators
yij relative to the fitted values p̂j(xi). See Diggle (2003) or Baddeley et al (2015).

The result is a numerical value giving the selected bandwidth sigma. The result also belongs to
the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation
criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There
is a sensible default, based on multiples of Stoyan’s rule of thumb bw.stoyan.

If the optimal bandwidth is achieved at an endpoint of the interval [hmin, hmax], the algorithm
will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin, hmax.

Computation time depends on the number nh of trial values considered, and also on the range
[hmin, hmax] of values considered, because larger values of sigma require calculations involving
more pairs of data points.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3–16.

See Also

relrisk, bw.stoyan.

bw.optim.object.

64 bw.relriskHeatppp

Examples

b <- bw.relrisk(urkiola)
b
plot(b)
b <- bw.relrisk(urkiola, hmax=20)
plot(b)

bw.relriskHeatppp Bandwidth Selection for Relative Risk using Diffusion

Description

Performs data-based bandwidth selection for the diffusion estimate of relative risk relriskHeat.ppp
using either likelihood cross-validation or least squares

Usage

bw.relriskHeatppp(X, ..., method = c("likelihood", "leastsquares"),
weights = NULL, srange = NULL, ns = 16, sigma = NULL,
leaveoneout = TRUE, verbose = TRUE)

Arguments

X A multitype point pattern (object of class "ppp").
... Arguments passed to relriskHeat.ppp.
method Character string specifying the cross-validation method. Partially matched to

"likelihood" for binary likelihood cross-validation or "leastsquares" for
least squares cross-validation.

weights Optional numeric vector of weights associated with each point of X.
srange Numeric vector of length 2 specifying a range of bandwidths to be considered.
ns Integer. Number of candidate bandwidths to be considered.
sigma Maximum smoothing bandwidth. A numeric value, or a pixel image, or a

function(x,y). Alternatively a numeric vector containing a sequence of can-
didate bandwidths.

leaveoneout Logical value specifying whether intensity values at data points should be esti-
mated using the leave-one-out rule.

verbose Logical value specifying whether to print progress reports.

Details

This algorithm selects the optimal global bandwidth for kernel estimation of relative risk for the
dataset X using diffusion smoothing relriskHeat.

If sigma is a numeric value, the algorithm finds the optimal bandwidth tau <= sigma.

If sigma is a pixel image or function, the algorithm finds the optimal fraction 0 < f <= 1 such that
smoothing with f * sigma would be optimal.

bw.scott 65

Value

A numerical value giving the selected bandwidth (if sigma was a numeric value) or the selected
fraction of the maximum bandwidth (if sigma was a pixel image or function). The result also
belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Tilman Davies <Tilman.Davies@otago.ac.nz>
and Suman Rakshit.

See Also

relriskHeat.ppp

Examples

bovine tuberculosis data
X <- subset(btb, select=spoligotype)
if(interactive()) {

smax <- 40
ns <- 16
dimyx <- NULL

} else {
reduce data and resolution to speed up
X <- X[c(TRUE, rep(FALSE, 7))]
smax <- 9
ns <- 8
dimyx <- 32

}
b <- bw.relriskHeatppp(X, sigma=smax, ns=ns, dimyx=dimyx)
b
plot(b)

bw.scott Scott’s Rule for Bandwidth Selection for Kernel Density

Description

Use Scott’s rule of thumb to determine the smoothing bandwidth for the kernel estimation of point
process intensity.

Usage

bw.scott(X, isotropic=FALSE, d=NULL)

bw.scott.iso(X)

66 bw.scott

Arguments

X A point pattern (object of class "ppp", "lpp", "pp3" or "ppx").

isotropic Logical value indicating whether to compute a single bandwidth for an isotropic
Gaussian kernel (isotropic=TRUE) or separate bandwidths for each coordinate
axis (isotropic=FALSE, the default).

d Advanced use only. An integer value that should be used in Scott’s formula
instead of the true number of spatial dimensions.

Details

These functions select a bandwidth sigma for the kernel estimator of point process intensity com-
puted by density.ppp or other appropriate functions. They can be applied to a point pattern be-
longing to any class "ppp", "lpp", "pp3" or "ppx".

The bandwidth σ is computed by the rule of thumb of Scott (1992, page 152, equation 6.42). The
bandwidth is proportional to n−1/(d+4) where n is the number of points and d is the number of
spatial dimensions.

This rule is very fast to compute. It typically produces a larger bandwidth than bw.diggle. It is
useful for estimating gradual trend.

If isotropic=FALSE (the default), bw.scott provides a separate bandwidth for each coordinate
axis, and the result of the function is a vector, of length equal to the number of coordinates. If
isotropic=TRUE, a single bandwidth value is computed and the result is a single numeric value.

bw.scott.iso(X) is equivalent to bw.scott(X, isotropic=TRUE).

The default value of d is as follows:

class dimension
"ppp" 2
"lpp" 1
"pp3" 3
"ppx" number of spatial coordinates

The use of d=1 for point patterns on a linear network (class "lpp") was proposed by McSwiggan et
al (2016) and Rakshit et al (2019).

Value

A numerical value giving the selected bandwidth, or a numerical vector giving the selected band-
widths for each coordinate.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Scott, D.W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New York:
Wiley.

bw.smoothppp 67

See Also

density.ppp, bw.diggle, bw.ppl, bw.CvL, bw.frac.

Examples

hickory <- split(lansing)[["hickory"]]
b <- bw.scott(hickory)
b
if(interactive()) {
plot(density(hickory, b))
}
bw.scott.iso(hickory)
bw.scott(osteo$pts[[1]])

bw.smoothppp Cross Validated Bandwidth Selection for Spatial Smoothing

Description

Uses least-squares cross-validation to select a smoothing bandwidth for spatial smoothing of marks.

Usage

bw.smoothppp(X, nh = spatstat.options("n.bandwidth"),
hmin=NULL, hmax=NULL, warn=TRUE, kernel="gaussian",
varcov1=NULL)

Arguments

X A marked point pattern with numeric marks.

nh Number of trial values of smoothing bandwith sigma to consider. The default is
32.

hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma
to consider. There is a sensible default.

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc").

varcov1 Optional. Variance-covariance matrix matrix of the kernel with bandwidth h =
1. See section on Anisotropic Smoothing.

68 bw.smoothppp

Details

This function selects an appropriate bandwidth for the nonparametric smoothing of mark values
using Smooth.ppp.

The argument X must be a marked point pattern with a vector or data frame of marks. All mark
values must be numeric.

The bandwidth is selected by least-squares cross-validation. Let yi be the mark value at the ith
data point. For a particular choice of smoothing bandwidth, let ŷi be the smoothed value at the ith
data point. Then the bandwidth is chosen to minimise the squared error of the smoothed values∑

i(yi − ŷi)
2.

The result of bw.smoothppp is a numerical value giving the selected bandwidth sigma. The result
also belongs to the class "bw.optim" allowing it to be printed and plotted. The plot shows the
cross-validation criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There
is a sensible default, based on the nearest neighbour distances.

If the optimal bandwidth is achieved at an endpoint of the interval [hmin, hmax], the algorithm
will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin, hmax.

Computation time depends on the number nh of trial values considered, and also on the range
[hmin, hmax] of values considered, because larger values of sigma require calculations involving
more pairs of data points.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Anisotropic Smoothing

Anisotropic smoothing is available in Smooth.ppp using the argument varcov to specify the variance-
covariance matrix of the anisotropic kernel. In order to choose the matrix varcov, the user can
call bw.smoothppp using the argument varcov1 to specify a ‘template’ matrix. Scalar multiples of
varcov1 will be considered and the optimal scale factor will be determined. That is, bw.smoothppp
will try smoothing the data using varcov = h^2 * varcov1 for different values of h ranging from
hmin to hmax. The result of bw.smoothppp will be the optimal value of the standard deviation scale
factor h.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Smooth.ppp, bw.optim.object

bw.stoyan 69

Examples

b <- bw.smoothppp(longleaf)
b
plot(b)

bw.stoyan Stoyan’s Rule of Thumb for Bandwidth Selection

Description

Computes a rough estimate of the appropriate bandwidth for kernel smoothing estimators of the
pair correlation function and other quantities.

Usage

bw.stoyan(X, co=0.15)

Arguments

X A point pattern (object of class "ppp").

co Coefficient appearing in the rule of thumb. See Details.

Details

Estimation of the pair correlation function and other quantities by smoothing methods requires a
choice of the smoothing bandwidth. Stoyan and Stoyan (1995, equation (15.16), page 285) proposed
a rule of thumb for choosing the smoothing bandwidth.

For the Epanechnikov kernel, the rule of thumb is to set the kernel’s half-width h to 0.15/
√
λ where

λ is the estimated intensity of the point pattern, typically computed as the number of points of X
divided by the area of the window containing X.

For a general kernel, the corresponding rule is to set the standard deviation of the kernel to σ =
0.15/

√
5λ.

The coefficient 0.15 can be tweaked using the argument co.

To ensure the bandwidth is finite, an empty point pattern is treated as if it contained 1 point.

Value

A finite positive numerical value giving the selected bandwidth (the standard deviation of the
smoothing kernel).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

70 cdf.test

References

Stoyan, D. and Stoyan, H. (1995) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf, bw.relrisk

Examples

bw.stoyan(shapley)

cdf.test Spatial Distribution Test for Point Pattern or Point Process Model

Description

Performs a test of goodness-of-fit of a point process model. The observed and predicted distribu-
tions of the values of a spatial covariate are compared using either the Kolmogorov-Smirnov test,
Cramér-von Mises test or Anderson-Darling test. For non-Poisson models, a Monte Carlo test is
used.

Usage

cdf.test(...)

S3 method for class 'ppp'
cdf.test(X, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE)

Arguments

X A point pattern (object of class "ppp" or "lpp").

covariate The spatial covariate on which the test will be based. A function, a pixel image
(object of class "im"), a list of pixel images, or one of the characters "x" or "y"
indicating the Cartesian coordinates.

test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
test.

... Arguments passed to ks.test (from the stats package) or cvm.test or ad.test
(from the goftest package) to control the test; and arguments passed to as.mask
to control the pixel resolution.

cdf.test 71

interpolate Logical flag indicating whether to interpolate pixel images. If interpolate=TRUE,
the value of the covariate at each point of X will be approximated by interpolat-
ing the nearby pixel values. If interpolate=FALSE, the nearest pixel value will
be used.

jitter Logical flag. If jitter=TRUE, values of the covariate will be slightly perturbed
at random, to avoid tied values in the test.

Details

These functions perform a goodness-of-fit test of a Poisson or Gibbs point process model fitted
to point pattern data. The observed distribution of the values of a spatial covariate at the data
points, and the predicted distribution of the same values under the model, are compared using the
Kolmogorov-Smirnov test, the Cramér-von Mises test or the Anderson-Darling test. For Gibbs
models, a Monte Carlo test is performed using these test statistics.

The function cdf.test is generic, with methods for point patterns ("ppp" or "lpp"), point process
models ("ppm" or "lppm") and spatial logistic regression models ("slrm").

• If X is a point pattern dataset (object of class "ppp"), then cdf.test(X, ...) performs a
goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness,
CSR) for this dataset. For a multitype point pattern, the uniform intensity is assumed to de-
pend on the type of point (sometimes called Complete Spatial Randomness and Independence,
CSRI).

• If model is a fitted point process model (object of class "ppm" or "lppm") then cdf.test(model,
...) performs a test of goodness-of-fit for this fitted model.

• If model is a fitted spatial logistic regression (object of class "slrm") then cdf.test(model,
...) performs a test of goodness-of-fit for this fitted model.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model, using a
classical goodness-of-fit test. Thus, you must nominate a spatial covariate for this test.

If X is a point pattern that does not have marks, the argument covariate should be either a
function(x,y) or a pixel image (object of class "im" containing the values of a spatial func-
tion, or one of the characters "x" or "y" indicating the Cartesian coordinates. If covariate is an
image, it should have numeric values, and its domain should cover the observation window of the
model. If covariate is a function, it should expect two arguments x and y which are vectors of
coordinates, and it should return a numeric vector of the same length as x and y.

If X is a multitype point pattern, the argument covariate can be either a function(x,y,marks),
or a pixel image, or a list of pixel images corresponding to each possible mark value, or one of the
characters "x" or "y" indicating the Cartesian coordinates.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F using ewcdf.

72 cdf.test

The probability integral transformation is then applied: the values of the covariate at the original
data points are transformed by the predicted cumulative distribution function F into numbers be-
tween 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The A
goodness-of-fit test of the uniform distribution is applied to these numbers using stats::ks.test,
goftest::cvm.test or goftest::ad.test.

This test was apparently first described (in the context of spatial data, and using Kolmogorov-
Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson process, then a Monte Carlo test is performed, by generating nsim point
patterns which are simulated realisations of the model, re-fitting the model to each simulated point
pattern, and calculating the test statistic for each fitted model. The Monte Carlo p value is deter-
mined by comparing the simulated values of the test statistic with the value for the original data.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

The return value also belongs to the class "cdftest" for which there is a plot method plot.cdftest.
The plot method displays the empirical cumulative distribution function of the covariate at the data
points, and the predicted cumulative distribution function of the covariate under the model, plotted
against the value of the covariate.

The argument jitter controls whether covariate values are randomly perturbed, in order to avoid
ties. If the original data contains any ties in the covariate (i.e. points with equal values of the
covariate), and if jitter=FALSE, then the Kolmogorov-Smirnov test implemented in ks.test will
issue a warning that it cannot calculate the exact p-value. To avoid this, if jitter=TRUE each value
of the covariate will be perturbed by adding a small random value. The perturbations are normally
distributed with standard deviation equal to one hundredth of the range of values of the covariate.
This prevents ties, and the p-value is still correct. There is a very slight loss of power.

Value

An object of class "htest" containing the results of the test. See ks.test for details. The return
value can be printed to give an informative summary of the test.

The value also belongs to the class "cdftest" for which there is a plot method.

Warning

The outcome of the test involves a small amount of random variability, because (by default) the
coordinates are randomly perturbed to avoid tied values. Hence, if cdf.test is executed twice, the
p-values will not be exactly the same. To avoid this behaviour, set jitter=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

circdensity 73

See Also

plot.cdftest, quadrat.test, berman.test, ks.test, cvm.test, ad.test, ppm

Examples

op <- options(useFancyQuotes=FALSE)

test of CSR using x coordinate
cdf.test(nztrees, "x")
cdf.test(nztrees, "x", "cvm")
cdf.test(nztrees, "x", "ad")

test of CSR using a function of x and y
fun <- function(x,y){2* x + y}
cdf.test(nztrees, fun)

test of CSR using an image covariate
funimage <- as.im(fun, W=Window(nztrees))
cdf.test(nztrees, funimage)

multitype point pattern
cdf.test(amacrine, "x")

options(op)

circdensity Density Estimation for Circular Data

Description

Computes a kernel smoothed estimate of the probability density for angular data.

Usage

circdensity(x, sigma = "nrd0", ...,
bw = NULL,
weights=NULL, unit = c("degree", "radian"))

Arguments

x Numeric vector, containing angular data.

sigma Smoothing bandwidth, or bandwidth selection rule, passed to density.default.

bw Alternative to sigma for consistency with other functions.

... Additional arguments passed to density.default, such as kernel and weights.

weights Optional numeric vector of weights for the data in x.

unit The unit of angle in which x is expressed.

74 clarkevans

Details

The angular values x are smoothed using (by default) the wrapped Gaussian kernel with standard
deviation sigma.

Value

An object of class "density" (produced by density.default) which can be plotted by plot or
by rose.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.default), rose.

Examples

ang <- runif(1000, max=360)
rose(circdensity(ang, 12))

clarkevans Clark and Evans Aggregation Index

Description

Computes the Clark and Evans aggregation index R for a spatial point pattern.

Usage

clarkevans(X, correction=c("none", "Donnelly", "cdf"),
clipregion=NULL)

Arguments

X A spatial point pattern (object of class "ppp").

correction Character vector. The type of edge correction(s) to be applied.

clipregion Clipping region for the guard area correction. A window (object of class "owin").
See Details.

clarkevans 75

Details

The Clark and Evans (1954) aggregation index R is a crude measure of clustering or ordering of a
point pattern. It is the ratio of the observed mean nearest neighbour distance in the pattern to that
expected for a Poisson point process of the same intensity. A value R > 1 suggests ordering, while
R < 1 suggests clustering.

Without correction for edge effects, the value of R will be positively biased. Edge effects arise
because, for a point of X close to the edge of the window, the true nearest neighbour may actually
lie outside the window. Hence observed nearest neighbour distances tend to be larger than the true
nearest neighbour distances.

The argument correction specifies an edge correction or several edge corrections to be applied.
It is a character vector containing one or more of the options "none", "Donnelly", "guard" and
"cdf" (which are recognised by partial matching). These edge corrections are:

"none": No edge correction is applied.

"Donnelly": Edge correction of Donnelly (1978), available for rectangular windows only. The
theoretical expected value of mean nearest neighbour distance under a Poisson process is
adjusted for edge effects by the edge correction of Donnelly (1978). The value of R is the
ratio of the observed mean nearest neighbour distance to this adjusted theoretical mean.

"guard": Guard region or buffer area method. The observed mean nearest neighbour distance for
the point pattern X is re-defined by averaging only over those points of X that fall inside the
sub-window clipregion.

"cdf": Cumulative Distribution Function method. The nearest neighbour distance distribution
function G(r) of the stationary point process is estimated by Gest using the Kaplan-Meier
type edge correction. Then the mean of the distribution is calculated from the cdf.

Alternatively correction="all" selects all options.

If the argument clipregion is given, then the selected edge corrections will be assumed to include
correction="guard".

To perform a test based on the Clark-Evans index, see clarkevans.test.

Value

A numeric value, or a numeric vector with named components

naive R without edge correction

Donnelly R using Donnelly edge correction

guard R using guard region

cdf R using cdf method

(as selected by correction). The value of the Donnelly component will be NA if the window of X
is not a rectangle.

Author(s)

John Rudge <rudge@esc.cam.ac.uk> with modifications by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

76 clarkevans.test

References

Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships
in populations Ecology 35, 445–453.

Donnelly, K. (1978) Simulations to determine the variance and edge-effect of total nearest neigh-
bour distance. In I. Hodder (ed.) Simulation studies in archaeology, Cambridge/New York: Cam-
bridge University Press, pp 91–95.

See Also

clarkevans.test, hopskel, nndist, Gest

Examples

Example of a clustered pattern
clarkevans(redwood)

Example of an ordered pattern
clarkevans(cells)

Random pattern
X <- rpoispp(100)
clarkevans(X)

How to specify a clipping region
clip1 <- owin(c(0.1,0.9),c(0.1,0.9))
clip2 <- erosion(Window(cells), 0.1)
clarkevans(cells, clipregion=clip1)
clarkevans(cells, clipregion=clip2)

clarkevans.test Clark and Evans Test

Description

Performs the Clark-Evans test of aggregation for a spatial point pattern.

Usage

clarkevans.test(X, ...,
correction,
clipregion=NULL,
alternative=c("two.sided", "less", "greater",

"clustered", "regular"),
method=c("asymptotic", "MonteCarlo"),
nsim=999)

clarkevans.test 77

Arguments

X A spatial point pattern (object of class "ppp").

... Ignored.

correction Character string. The type of edge correction to be applied. See clarkevans
and Details below.

clipregion Clipping region for the guard area correction. A window (object of class "owin").
See clarkevans

alternative String indicating the type of alternative for the hypothesis test. Partially matched.

method Character string (partially matched) specifying how to calculate the p-value of
the test. See Details.

nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is
required.

Details

This command uses the Clark and Evans (1954) aggregation index R as the basis for a crude test of
clustering or ordering of a point pattern.

The Clark-Evans aggregation index R is computed by the separate function clarkevans.

This command clarkevans.text performs a hypothesis test of clustering or ordering of the point
pattern X based on the Clark-Evans index R. The null hypothesis is Complete Spatial Random-
ness, i.e.\ a uniform Poisson process. The alternative hypothesis is specified by the argument
alternative:

• alternative="less" or alternative="clustered": the alternative hypothesis is that R <
1 corresponding to a clustered point pattern;

• alternative="greater" or alternative="regular": the alternative hypothesis is that R >
1 corresponding to a regular or ordered point pattern;

• alternative="two.sided": the alternative hypothesis is that R ̸= 1 corresponding to a
clustered or regular pattern.

The Clark-Evans index R is first computed for the point pattern dataset X using the edge correction
determined by the arguments correction and clipregion. These arguments are documented in
the help file for clarkevans.

If method="asymptotic" (the default), the p-value for the test is computed by standardising R as
proposed by Clark and Evans (1954) and referring the standardised statistic to the standard Normal
distribution. For this asymptotic test, the default edge correction is correction="Donnelly" if the
window of X is a rectangle, and correction="cdf" otherwise. It is strongly recommended to avoid
using correction="none" which would lead to a severely biased test.

If method="MonteCarlo", the p-value for the test is computed by comparing the observed value
of R to the results obtained from nsim simulated realisations of Complete Spatial Randomness
conditional on the observed number of points. This test is theoretically exact for any choice of
edge correction, but may have lower power than the asymptotic test. For this Monte Carlo test, the
default edge correction is correction="none" for computational efficiency.

78 clusterset

Value

An object of class "htest" representing the result of the test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships
in populations. Ecology 35, 445–453.

Donnelly, K. (1978) Simulations to determine the variance and edge-effect of total nearest neigh-
bour distance. In Simulation methods in archaeology, Cambridge University Press, pp 91–95.

See Also

clarkevans, hopskel.test

Examples

Redwood data - clustered
clarkevans.test(redwood)
clarkevans.test(redwood, alternative="clustered")
clarkevans.test(redwood, correction="cdf", method="MonteCarlo", nsim=39)

clusterset Allard-Fraley Estimator of Cluster Feature

Description

Detect high-density features in a spatial point pattern using the (unrestricted) Allard-Fraley estima-
tor.

Usage

clusterset(X, what=c("marks", "domain"),
..., verbose=TRUE,
fast=FALSE,
exact=!fast)

Arguments

X A dimensional spatial point pattern (object of class "ppp").

what Character string or character vector specifying the type of result. See Details.

verbose Logical value indicating whether to print progress reports.

clusterset 79

fast Logical. If FALSE (the default), the Dirichlet tile areas will be computed exactly
using polygonal geometry, so that the optimal choice of tiles will be computed
exactly. If TRUE, the Dirichlet tile areas will be approximated using pixel count-
ing, so the optimal choice will be approximate.

exact Logical. If TRUE, the Allard-Fraley estimator of the domain will be computed
exactly using polygonal geometry. If FALSE, the Allard-Fraley estimator of the
domain will be approximated by a binary pixel mask. The default is initially set
to FALSE.

... Optional arguments passed to as.mask to control the pixel resolution if exact=FALSE.

Details

Allard and Fraley (1997) developed a technique for recognising features of high density in a spatial
point pattern in the presence of random clutter.

This algorithm computes the unrestricted Allard-Fraley estimator. The Dirichlet (Voronoi) tessel-
lation of the point pattern X is computed. The smallest m Dirichlet cells are selected, where the
number m is determined by a maximum likelihood criterion.

• If fast=FALSE (the default), the areas of the tiles of the Dirichlet tessellation will be computed
exactly using polygonal geometry. This ensures that the optimal selection of tiles is computed
exactly.

• If fast=TRUE, the Dirichlet tile areas will be approximated by counting pixels. This is faster,
and is usually correct (depending on the pixel resolution, which is controlled by the arguments
...).

The type of result depends on the character vector what.

• If what="marks" the result is the point pattern X with a vector of marks labelling each point
with a value yes or no depending on whether the corresponding Dirichlet cell is selected by
the Allard-Fraley estimator. In other words each point of X is labelled as either a cluster point
or a non-cluster point.

• If what="domain", the result is the Allard-Fraley estimator of the cluster feature set, which is
the union of all the selected Dirichlet cells, represented as a window (object of class "owin").

• If what=c("marks", "domain") the result is a list containing both of the results described
above.

Computation of the Allard-Fraley set estimator depends on the argument exact.

• If exact=TRUE (the default), the Allard-Fraley set estimator will be computed exactly using
polygonal geometry. The result is a polygonal window.

• If exact=FALSE, the Allard-Fraley set estimator will be approximated by a binary pixel mask.
This is faster than the exact computation. The result is a binary mask.

Value

If what="marks", a multitype point pattern (object of class "ppp").

If what="domain", a window (object of class "owin").

If what=c("marks", "domain") (the default), a list consisting of a multitype point pattern and a
window.

80 collapse.fv

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Allard, D. and Fraley, C. (1997) Nonparametric maximum likelihood estimation of features in spa-
tial point processes using Voronoi tessellation. Journal of the American Statistical Association 92,
1485–1493.

See Also

nnclean, sharpen

Examples

opa <- par(mfrow=c(1,2))
W <- grow.rectangle(as.rectangle(letterR), 1)
X <- superimpose(runifpoint(300, letterR),

runifpoint(50, W), W=W)
plot(W, main="clusterset(X, 'm')")
plot(clusterset(X, "marks", fast=TRUE), add=TRUE, chars=c(1, 3), cols=1:2)
plot(letterR, add=TRUE)
plot(W, main="clusterset(X, 'd')")
plot(clusterset(X, "domain", exact=FALSE), add=TRUE)
plot(letterR, add=TRUE)
par(opa)

collapse.fv Collapse Several Function Tables into One

Description

Combines several function tables (objects of class "fv") into a single function table, merging
columns that are identical and relabelling columns that are different.

Usage

S3 method for class 'fv'
collapse(object, ..., same = NULL, different = NULL)

S3 method for class 'anylist'
collapse(object, ..., same = NULL, different = NULL)

collapse.fv 81

Arguments

object An object of class "fv", or a list of such objects.

... Additional objects of class "fv".

same Character string or character vector specifying a column or columns of func-
tion values that are identical in different "fv" objects. These columns will be
included only once in the result.

different Character string or character vector specifying a column or columns of function
values, that are different in different "fv" objects. Each of these columns of data
will be included, with labels that distinguish them from each other.

Details

This is a method for the generic function collapse.

It combines the data in several function tables (objects of class "fv", see fv.object) to make a
single function table. It is essentially a smart wrapper for cbind.fv.

A typical application is to calculate the same summary statistic (such as the K function) for different
point patterns, and then to use collapse.fv to combine the results into a single object that can
easily be plotted. See the Examples.

The arguments object and ... should be function tables (objects of class "fv", see fv.object)
that are compatible in the sense that they have the same values of the function argument. (This can
be ensured by applying harmonise.fv to them.)

The argument same identifies any columns that are present in some or all of the function tables, and
which are known to contain exactly the same values in each table that includes them. This column
or columns will be included only once in the result.

The argument different identifies any columns that are present in some or all of the function
tables, and which may contain different numerical values in different tables. Each of these columns
will be included, with labels to distinguish them.

Columns that are not named in same or different will not be included.

The function argument is always included and does not need to be specified.

The arguments same and different can be NULL, or they can be character vectors containing the
names of columns of object. The argument different can be one of the abbreviations recognised
by fvnames.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

fv.object, cbind.fv

82 compatible.fasp

Examples

generate simulated data
X <- replicate(3, rpoispp(100), simplify=FALSE)
names(X) <- paste("Simulation", 1:3)
compute K function estimates
Klist <- anylapply(X, Kest)
collapse
K <- collapse(Klist, same="theo", different="iso")
K

compatible.fasp Test Whether Function Arrays Are Compatible

Description

Tests whether two or more function arrays (class "fasp") are compatible.

Usage

S3 method for class 'fasp'
compatible(A, B, ...)

Arguments

A, B, ... Two or more function arrays (object of class "fasp").

Details

An object of class "fasp" can be regarded as an array of functions. Such objects are returned by
the command alltypes.

This command tests whether such objects are compatible (so that, for example, they could be added
or subtracted). It is a method for the generic command compatible.

The function arrays are compatible if the arrays have the same dimensions, and the corresponding
elements in each cell of the array are compatible as defined by compatible.fv.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

eval.fasp

compatible.fv 83

compatible.fv Test Whether Function Objects Are Compatible

Description

Tests whether two or more function objects (class "fv") are compatible.

Usage

S3 method for class 'fv'
compatible(A, B, ..., samenames=TRUE)

Arguments

A, B, ... Two or more function value objects (class "fv").

samenames Logical value indicating whether to check for complete agreement between the
column names of the objects (samenames=TRUE, the default) or just to check that
the name of the function argument is the same (samenames=FALSE).

Details

An object of class "fv" is essentially a data frame containing several different statistical estimates
of the same function. Such objects are returned by Kest and its relatives.

This command tests whether such objects are compatible (so that, for example, they could be added
or subtracted). It is a method for the generic command compatible.

The functions are compatible if they have been evaluated at the same sequence of values of the
argument r, and if the statistical estimates have the same names.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

eval.fv

84 compileCDF

compileCDF Generic Calculation of Cumulative Distribution Function of Distances

Description

A low-level function which calculates the estimated cumulative distribution function of a distance
variable.

Usage

compileCDF(D, B, r, ..., han.denom=NULL, check=TRUE)

Arguments

D A vector giving the distances from each data point to the target.
B A vector giving the distances from each data point to the window boundary, or

censoring distances.
r An equally spaced, finely spaced sequence of distance values at which the CDF

should be estimated.
... Ignored.
han.denom Denominator for the Hanisch-Chiu-Stoyan estimator. A single number, or a

numeric vector with the same length as r.
check Logical value specifying whether to check validity of the data, for example, that

the vectors D and B have the same length, and contain non-negative numbers.

Details

This low-level function calculates estimates of the cumulative distribution function

F (r) = P (D ≤ r)

of a distance variable D, given a vector of observed values of D and other information. Examples of
this concept include the empty space distance function computed by Fest and the nearest-neighbour
distance distribution function Gest.

This function compileCDF and its siblings compileK and compilepcf are useful for code devel-
opment and for teaching, because they perform a common task, and do the housekeeping required
to make an object of class "fv" that represents the estimated function. However, they are not very
efficient.

The argument D should be a numeric vector of shortest distances measured from each ‘query’ point
to the ‘target’ set. The argument B should be a numeric vector of shortest distances measured from
each ‘query’ point to the boundary of the window of observation. All entries of D and B should be
non-negative.

compileCDF calculates estimates of the cumulative distribution function F (r) using the border
method (reduced sample estimator), the Kaplan-Meier estimator and, if han.denom is given, the
Hanisch-Chiu-Stoyan estimator. See Chapter 8 of Baddeley, Rubak and Turner (2015).

The result is an object of class "fv" representing the estimated function. Additional columns (such
as a column giving the theoretical value) must be added by the user, with the aid of bind.fv.

compileK 85

Value

An object of class "fv" representing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

compileK.

bind.fv to add more columns.

Examples

Equivalent to Gest(japanesepines)
X <- japanesepines
D <- nndist(X)
B <- bdist.points(X)
r <- seq(0, 0.25, by=0.01)
H <- eroded.areas(Window(X), r)
G <- compileCDF(D=D, B=B, r=r, han.denom=H)
G <- rebadge.fv(G, new.fname="G", new.ylab=quote(G(r)))
plot(G)

compileK Generic Calculation of K Function and Pair Correlation Function

Description

Low-level functions which calculate the estimated K function and estimated pair correlation func-
tion (or any similar functions) from a matrix of pairwise distances and optional weights.

Usage

compileK(D, r, weights = NULL, denom = 1,
check = TRUE, ratio = FALSE, fname = "K",
samplesize=denom)

compilepcf(D, r, weights = NULL, denom = 1,
check = TRUE, endcorrect = TRUE, ratio=FALSE,

..., fname = "g", samplesize=denom)

86 compileK

Arguments

D A square matrix giving the distances between all pairs of points.

r An equally spaced, finely spaced sequence of distance values.

weights Optional numerical weights for the pairwise distances. A numeric matrix with
the same dimensions as D. If absent, the weights are taken to equal 1.

denom Denominator for the estimator. A single number, or a numeric vector with the
same length as r. See Details.

check Logical value specifying whether to check that D is a valid matrix of pairwise
distances.

ratio Logical value indicating whether to store ratio information. See Details.

... Optional arguments passed to density.default controlling the kernel smooth-
ing.

endcorrect Logical value indicating whether to apply End Correction of the pair correlation
estimate at r=0.

fname Character string giving the name of the function being estimated.

samplesize The sample size that should be used as the denominator when ratio=TRUE.

Details

These low-level functions construct estimates of the K function or pair correlation function, or any
similar functions, given only the matrix of pairwise distances and optional weights associated with
these distances.

These functions are useful for code development and for teaching, because they perform a common
task, and do the housekeeping required to make an object of class "fv" that represents the estimated
function. However, they are not very efficient.

compileK calculates the weighted estimate of the K function,

K̂(r) = (1/v(r))
∑
i

∑
j

1{dij ≤ r}wij

and compilepcf calculates the weighted estimate of the pair correlation function,

ĝ(r) = (1/v(r))
∑
i

∑
j

κ(dij − r)wij

where dij is the distance between spatial points i and j, with corresponding weight wij , and v(r) is
a specified denominator. Here κ is a fixed-bandwidth smoothing kernel.

For a point pattern in two dimensions, the usual denominator v(r) is constant for the K function,
and proportional to r for the pair correlation function. See the Examples.

The result is an object of class "fv" representing the estimated function. This object has only one
column of function values. Additional columns (such as a column giving the theoretical value) must
be added by the user, with the aid of bind.fv.

If ratio=TRUE, the result also belongs to class "rat" and has attributes containing the numerator
and denominator of the function estimate. (If samplesize is given, the numerator and denominator
are rescaled by a common factor so that the denominator is equal to samplesize.) This allows
function estimates from several datasets to be pooled using pool.

cov.im 87

Value

An object of class "fv" representing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

Kest, pcf for definitions of the K function and pair correlation function.

bind.fv to add more columns.

compileCDF for the corresponding low-level utility for estimating a cumulative distribution func-
tion.

Examples

Equivalent to Kest(japanesepines) and pcf(japanesepines)
X <- japanesepines
D <- pairdist(X)
Wt <- edge.Ripley(X, D)
lambda <- intensity(X)
a <- (npoints(X)-1) * lambda
r <- seq(0, 0.25, by=0.01)
K <- compileK(D=D, r=r, weights=Wt, denom=a)
g <- compilepcf(D=D, r=r, weights=Wt, denom= a * 2 * pi * r)

cov.im Covariance and Correlation between Images

Description

Compute the covariance or correlation between (the corresponding pixel values in) several images.

Usage

cov.im(..., use = "everything", method = c("pearson", "kendall", "spearman"))

Arguments

... Any number of arguments, each of which is a pixel image (object of class "im").
Alternatively, a single argument which is a list of pixel images.

use Argument passed to cov or cor determining how to handle NA values in the data.

method Argument passed to cov or cor determining the type of correlation that will be
computed.

88 dclf.progress

Details

The arguments ... should be pixel images (objects of class "im"). Their spatial domains must
overlap, but need not have the same pixel dimensions.

These functions compute the covariance or correlation between the corresponding pixel values in
the images given.

The pixel image domains are intersected, and converted to a common pixel resolution. Then the cor-
responding pixel values of each image are extracted. Finally the correlation or covariance between
the pixel values of each pair of images, at corresponding pixels, is computed.

The result is a symmetric matrix with one row and column for each image. The [i,j] entry is the
correlation or covariance between the ith and jth images in the argument list. The row names and
column names of the matrix are copied from the argument names if they were given (i.e. if the
arguments were given as name=value).

Note that cor and cov are not generic, so you have to type cor.im, cov.im.

Value

A symmetric matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

cor, cov

pairs.im

Examples

cor.im(bei.extra)

dclf.progress Progress Plot of Test of Spatial Pattern

Description

Generates a progress plot (envelope representation) of the Diggle-Cressie-Loosmore-Ford test or
the Maximum Absolute Deviation test for a spatial point pattern.

Usage

dclf.progress(X, ...)
mad.progress(X, ...)
mctest.progress(X, fun = Lest, ...,

exponent = 1, nrank = 1,
interpolate = FALSE, alpha, rmin=0)

dclf.progress 89

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

... Arguments passed to mctest.progress or to envelope. Useful arguments in-
clude fun to determine the summary function, nsim to specify the number of
Monte Carlo simulations, alternative to specify one-sided or two-sided en-
velopes, and verbose=FALSE to turn off the messages.

fun Function that computes the desired summary statistic for a point pattern.

exponent Positive number. The exponent of the Lp distance. See Details.

nrank Integer. The rank of the critical value of the Monte Carlo test, amongst the nsim
simulated values. A rank of 1 means that the minimum and maximum simulated
values will become the critical values for the test.

interpolate Logical value indicating how to compute the critical value. If interpolate=FALSE
(the default), a standard Monte Carlo test is performed, and the critical value
is the largest simulated value of the test statistic (if nrank=1) or the nrank-th
largest (if nrank is another number). If interpolate=TRUE, kernel density es-
timation is applied to the simulated values, and the critical value is the upper
alpha quantile of this estimated distribution.

alpha Optional. The significance level of the test. Equivalent to nrank/(nsim+1)
where nsim is the number of simulations.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

Details

The Diggle-Cressie-Loosmore-Ford test and the Maximum Absolute Deviation test for a spatial
point pattern are described in dclf.test. These tests depend on the choice of an interval of distance
values (the argument rinterval). A progress plot or envelope representation of the test (Baddeley
et al, 2014) is a plot of the test statistic (and the corresponding critical value) against the length of
the interval rinterval.

The command dclf.progress performs dclf.test on X using all possible intervals of the form
[0, R], and returns the resulting values of the test statistic, and the corresponding critical values of
the test, as a function of R.

Similarly mad.progress performs mad.test using all possible intervals and returns the test statistic
and critical value.

More generally, mctest.progress performs a test based on the Lp discrepancy between the curves.
The deviation between two curves is measured by the pth root of the integral of the pth power of the
absolute value of the difference between the two curves. The exponent p is given by the argument
exponent. The case exponent=2 is the Cressie-Loosmore-Ford test, while exponent=Inf is the
MAD test.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

90 dclf.sigtrace

The result of each command is an object of class "fv" that can be plotted to obtain the progress
plot. The display shows the test statistic (solid black line) and the Monte Carlo acceptance region
(grey shading).

The significance level for the Monte Carlo test is nrank/(nsim+1). Note that nsim defaults to 99,
so if the values of nrank and nsim are not given, the default is a test with significance level 0.01.

If X is an envelope object, then some of the data stored in X may be re-used:

• If X is an envelope object containing simulated functions, and fun=NULL, then the code will
re-use the simulated functions stored in X.

• If X is an envelope object containing simulated point patterns, then fun will be applied to the
stored point patterns to obtain the simulated functions. If fun is not specified, it defaults to
Lest.

• Otherwise, new simulations will be performed, and fun defaults to Lest.

Value

An object of class "fv" that can be plotted to obtain the progress plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Andrew Hardegen, Tom Lawrence, Gopal Nair and Robin Milne.

References

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

See Also

dclf.test and mad.test for the tests.

See plot.fv for information on plotting objects of class "fv".

Examples

plot(dclf.progress(cells, nsim=19))

dclf.sigtrace Significance Trace of Cressie-Loosmore-Ford or Maximum Absolute
Deviation Test

Description

Generates a Significance Trace of the Diggle(1986)/ Cressie (1991)/ Loosmore and Ford (2006) test
or the Maximum Absolute Deviation test for a spatial point pattern.

dclf.sigtrace 91

Usage

dclf.sigtrace(X, ...)
mad.sigtrace(X, ...)
mctest.sigtrace(X, fun=Lest, ...,

exponent=1, interpolate=FALSE, alpha=0.05,
confint=TRUE, rmin=0)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

... Arguments passed to envelope or mctest.progress. Useful arguments in-
clude fun to determine the summary function, nsim to specify the number of
Monte Carlo simulations, alternative to specify a one-sided test, and verbose=FALSE
to turn off the messages.

fun Function that computes the desired summary statistic for a point pattern.

exponent Positive number. The exponent of the Lp distance. See Details.

interpolate Logical value specifying whether to calculate the p-value by interpolation. If
interpolate=FALSE (the default), a standard Monte Carlo test is performed,
yielding a p-value of the form (k + 1)/(n + 1) where n is the number of sim-
ulations and k is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the p-value is calculated by apply-
ing kernel density estimation to the simulated values, and computing the tail
probability for this estimated distribution.

alpha Significance level to be plotted (this has no effect on the calculation but is simply
plotted as a reference value).

confint Logical value indicating whether to compute a confidence interval for the ‘true’
p-value.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

Details

The Diggle (1986)/ Cressie (1991)/Loosmore and Ford (2006) test and the Maximum Absolute
Deviation test for a spatial point pattern are described in dclf.test. These tests depend on the
choice of an interval of distance values (the argument rinterval). A significance trace (Bowman
and Azzalini, 1997; Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015) of the test is a
plot of the p-value obtained from the test against the length of the interval rinterval.

The command dclf.sigtrace performs dclf.test on X using all possible intervals of the form
[0, R], and returns the resulting p-values as a function of R.

Similarly mad.sigtrace performs mad.test using all possible intervals and returns the p-values.

More generally, mctest.sigtrace performs a test based on the Lp discrepancy between the curves.
The deviation between two curves is measured by the pth root of the integral of the pth power of the
absolute value of the difference between the two curves. The exponent p is given by the argument

92 dclf.sigtrace

exponent. The case exponent=2 is the Cressie-Loosmore-Ford test, while exponent=Inf is the
MAD test.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The result of each command is an object of class "fv" that can be plotted to obtain the significance
trace. The plot shows the Monte Carlo p-value (solid black line), the critical value 0.05 (dashed
red line), and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson)
p-value. The confidence band is based on the Agresti-Coull (1998) confidence interval for a bino-
mial proportion (when interpolate=FALSE) or the delta method and normal approximation (when
interpolate=TRUE).

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in
X.

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Agresti, A. and Coull, B.A. (1998) Approximate is better than “Exact” for interval estimation of
binomial proportions. American Statistician 52, 119–126.

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Bowman, A.W. and Azzalini, A. (1997) Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. Oxford University Press, Oxford.

See Also

dclf.test for the tests; dclf.progress for progress plots.

See plot.fv for information on plotting objects of class "fv".

See also dg.sigtrace.

Examples

plot(dclf.sigtrace(cells, Lest, nsim=19))

dclf.test 93

dclf.test Diggle-Cressie-Loosmore-Ford and Maximum Absolute Deviation
Tests

Description

Perform the Diggle (1986) / Cressie (1991) / Loosmore and Ford (2006) test or the Maximum
Absolute Deviation test for a spatial point pattern.

Usage

dclf.test(X, ..., alternative=c("two.sided", "less", "greater"),
rinterval = NULL, leaveout=1,
scale=NULL, clamp=FALSE, interpolate=FALSE)

mad.test(X, ..., alternative=c("two.sided", "less", "greater"),
rinterval = NULL, leaveout=1,
scale=NULL, clamp=FALSE, interpolate=FALSE)

Arguments

X Data for the test. Either a point pattern (object of class "ppp", "lpp" or other
class), a fitted point process model (object of class "ppm", "kppm" or other
class), a simulation envelope (object of class "envelope") or a previous result
of dclf.test or mad.test.

... Arguments passed to envelope. Useful arguments include fun to determine
the summary function, nsim to specify the number of Monte Carlo simulations,
verbose=FALSE to turn off the messages, savefuns or savepatterns to save
the simulation results, and use.theory described under Details.

alternative The alternative hypothesis. A character string. The default is a two-sided alter-
native. See Details.

rinterval Interval of values of the summary function argument r over which the maximum
absolute deviation, or the integral, will be computed for the test. A numeric
vector of length 2.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

scale Optional. A function in the R language which determines the relative scale of
deviations, as a function of distance r. Summary function values for distance r
will be divided by scale(r) before the test statistic is computed.

clamp Logical value indicating how to compute deviations in a one-sided test. Devia-
tions of the observed summary function from the theoretical summary function
are initially evaluated as signed real numbers, with large positive values indicat-
ing consistency with the alternative hypothesis. If clamp=FALSE (the default),
these values are not changed. If clamp=TRUE, any negative values are replaced
by zero.

94 dclf.test

interpolate Logical value specifying whether to calculate the p-value by interpolation. If
interpolate=FALSE (the default), a standard Monte Carlo test is performed,
yielding a p-value of the form (k + 1)/(n + 1) where n is the number of sim-
ulations and k is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the p-value is calculated by apply-
ing kernel density estimation to the simulated values, and computing the tail
probability for this estimated distribution.

Details

These functions perform hypothesis tests for goodness-of-fit of a point pattern dataset to a point
process model, based on Monte Carlo simulation from the model.

dclf.test performs the test advocated by Loosmore and Ford (2006) which is also described
in Diggle (1986), Cressie (1991, page 667, equation (8.5.42)) and Diggle (2003, page 14). See
Baddeley et al (2014) for detailed discussion.

mad.test performs the ‘global’ or ‘Maximum Absolute Deviation’ test described by Ripley (1977,
1981). See Baddeley et al (2014).

The type of test depends on the type of argument X.

• If X is some kind of point pattern, then a test of Complete Spatial Randomness (CSR) will be
performed. That is, the null hypothesis is that the point pattern is completely random.

• If X is a fitted point process model, then a test of goodness-of-fit for the fitted model will be
performed. The model object contains the data point pattern to which it was originally fitted.
The null hypothesis is that the data point pattern is a realisation of the model.

• If X is an envelope object generated by envelope, then it should have been generated with
savefuns=TRUE or savepatterns=TRUE so that it contains simulation results. These simula-
tions will be treated as realisations from the null hypothesis.

• Alternatively X could be a previously-performed test of the same kind (i.e. the result of calling
dclf.test or mad.test). The simulations used to perform the original test will be re-used
to perform the new test (provided these simulations were saved in the original test, by setting
savefuns=TRUE or savepatterns=TRUE).

The argument alternative specifies the alternative hypothesis, that is, the direction of deviation
that will be considered statistically significant. If alternative="two.sided" (the default), both
positive and negative deviations (between the observed summary function and the theoretical func-
tion) are significant. If alternative="less", then only negative deviations (where the observed
summary function is lower than the theoretical function) are considered. If alternative="greater",
then only positive deviations (where the observed summary function is higher than the theoretical
function) are considered.

In all cases, the algorithm will first call envelope to generate or extract the simulated summary
functions. The number of simulations that will be generated or extracted, is determined by the
argument nsim, and defaults to 99. The summary function that will be computed is determined by
the argument fun (or the first unnamed argument in the list ...) and defaults to Kest (except when
X is an envelope object generated with savefuns=TRUE, when these functions will be taken).

The choice of summary function fun affects the power of the test. It is normally recommended
to apply a variance-stabilising transformation (Ripley, 1981). If you are using the K function,
the normal practice is to replace this by the L function (Besag, 1977) computed by Lest. If you

dclf.test 95

are using the F or G functions, the recommended practice is to apply Fisher’s variance-stabilising
transformation sin−1 √x using the argument transform. See the Examples.

The argument rinterval specifies the interval of distance values r which will contribute to the test
statistic (either maximising over this range of values for mad.test, or integrating over this range
of values for dclf.test). This affects the power of the test. General advice and experiments in
Baddeley et al (2014) suggest that the maximum r value should be slightly larger than the maximum
possible range of interaction between points. The dclf.test is quite sensitive to this choice, while
the mad.test is relatively insensitive.

It is also possible to specify a pointwise test (i.e. taking a single, fixed value of distance r) by
specifing rinterval = c(r,r).

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE). The test statistic T is defined in equations (10.21)
and (10.22) respectively on page 394 of Baddeley, Rubak and Turner (2015).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "htest". Printing this object gives a report on the result of the test. The p-value
is contained in the component p.value.

Handling Ties

If the observed value of the test statistic is equal to one or more of the simulated values (called a
tied value), then the tied values will be assigned a random ordering, and a message will be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen and Suman Rakshit.

References

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Besag, J. (1977) Discussion of Dr Ripley’s paper. Journal of the Royal Statistical Society, Series B,
39, 193–195.

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

96 density.ppp

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neuroscience Methods 18, 115–125.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Loosmore, N.B. and Ford, E.D. (2006) Statistical inference using the G or K point pattern spatial
statistics. Ecology 87, 1925–1931.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

See Also

envelope, dclf.progress

Examples

dclf.test(cells, Lest, nsim=39)
m <- mad.test(cells, Lest, verbose=FALSE, rinterval=c(0, 0.1), nsim=19)
m
extract the p-value
m$p.value
variance stabilised G function
dclf.test(cells, Gest, transform=expression(asin(sqrt(.))),

verbose=FALSE, nsim=19)

one-sided test
ml <- mad.test(cells, Lest, verbose=FALSE, nsim=19, alternative="less")

scaled
mad.test(cells, Kest, verbose=FALSE, nsim=19,

rinterval=c(0.05, 0.2),
scale=function(r) { r })

density.ppp Kernel Smoothed Intensity of Point Pattern

Description

Compute a kernel smoothed intensity function from a point pattern.

Usage

S3 method for class 'ppp'
density(x, sigma=NULL, ...,

weights=NULL, edge=TRUE, varcov=NULL,
at="pixels", leaveoneout=TRUE,
adjust=1, diggle=FALSE,
se=FALSE, wtype=c("value", "multiplicity"),

density.ppp 97

kernel="gaussian",
scalekernel=is.character(kernel),
positive=FALSE, verbose=TRUE, sameas)

Arguments

x Point pattern (object of class "ppp").

sigma The smoothing bandwidth (the amount of smoothing). The standard deviation
of the isotropic smoothing kernel. Either a numerical value, or a function that
computes an appropriate value of sigma.

weights Optional weights to be attached to the points. A numeric vector, numeric matrix,
an expression, or a pixel image.

... Additional arguments passed to pixellate.ppp and as.mask to determine the
pixel resolution, or passed to sigma if it is a function.

edge Logical value indicating whether to apply edge correction.

varcov Variance-covariance matrix of anisotropic smoothing kernel. Incompatible with
sigma.

at String specifying whether to compute the intensity values at a grid of pixel lo-
cations (at="pixels") or only at the points of x (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

adjust Optional. Adjustment factor for the smoothing parameter.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more
accurate but slower to compute than the default correction.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc"), or a
pixel image (object of class "im") containing values of the kernel, or a function(x,y)
which yields values of the kernel.

scalekernel Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the
bandwidth determined by sigma and varcov: this is the default behaviour when
kernel is a character string. If scalekernel=FALSE, then sigma and varcov
will be ignored: this is the default behaviour when kernel is a function or a
pixel image.

se Logical value indicating whether to compute standard errors as well.

wtype Character string (partially matched) specifying how the weights should be inter-
preted for the calculation of standard error. See Details.

positive Logical value indicating whether to force all density values to be positive num-
bers. Default is FALSE.

verbose Logical value indicating whether to issue warnings about numerical problems
and conditions.

sameas Optional. The result of a previous evaluation of density.ppp. Smoothing
will be performed using the same kernel and bandwidth that were used to pro-
duce sameas. Namely the values of the arguments kernel, sigma, varcov,
scalekernel and adjust will be overwritten by the values that were used to
produce sameas.

98 density.ppp

Details

This is a method for the generic function density.

It computes a fixed-bandwidth kernel estimate (Diggle, 1985) of the intensity function of the point
process that generated the point pattern x.

The amount of smoothing is controlled by sigma if it is specified.

By default, smoothing is performed using a Gaussian kernel. The resulting density estimate is the
convolution of the isotropic Gaussian kernel, of standard deviation sigma, with point masses at each
of the data points in x.

Anisotropic kernels, and non-Gaussian kernels, are also supported. Each point has unit weight,
unless the argument weights is given.

If edge=TRUE (the default), the intensity estimate is corrected for edge effect bias.

If at="pixels" (the default), the result is a pixel image giving the estimated intensity at each pixel
in a grid. If at="points", the result is a numeric vector giving the estimated intensity at each of
the original data points in x.

Value

By default, the result is a pixel image (object of class "im"). Pixel values are estimated intensity
values, expressed in “points per unit area”.

If at="points", the result is a numeric vector of length equal to the number of points in x. Values
are estimated intensity values at the points of x.

In either case, the return value has attributes "sigma" and "varcov" which report the smoothing
bandwidth that was used.

If weights is a matrix with more than one column, then the result is a list of images (if at="pixels")
or a matrix of numerical values (if at="points").

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

Amount of smoothing

The amount of smoothing is determined by the arguments sigma, varcov and adjust.

• if sigma is a single numerical value, this is taken as the standard deviation of the isotropic
Gaussian kernel.

• alternatively sigma may be a function that computes an appropriate bandwidth from the data
point pattern by calling sigma(x). To perform automatic bandwidth selection using cross-
validation, it is recommended to use the functions bw.diggle, bw.CvL, bw.scott or bw.ppl.

• The smoothing kernel may be made anisotropic by giving the variance-covariance matrix
varcov. The arguments sigma and varcov are incompatible.

• Alternatively sigma may be a vector of length 2 giving the standard deviations of the x and y
coordinates, thus equivalent to varcov = diag(rep(sigma^2, 2)).

• if neither sigma nor varcov is specified, an isotropic Gaussian kernel will be used, with a
default value of sigma calculated by a simple rule of thumb that depends only on the size of
the window.

density.ppp 99

• The argument adjust makes it easy for the user to change the bandwidth specified by any
of the rules above. The value of sigma will be multiplied by the factor adjust. The matrix
varcov will be multiplied by adjust^2. To double the smoothing bandwidth, set adjust=2.

• An infinite bandwidth, sigma=Inf or adjust=Inf, is permitted, and yields an intensity esti-
mate which is constant over the spatial domain.

Edge correction

If edge=TRUE, the intensity estimate is corrected for edge effect bias in one of two ways:

• If diggle=FALSE (the default) the intensity estimate is correted by dividing it by the convolu-
tion of the Gaussian kernel with the window of observation. This is the approach originally
described in Diggle (1985). Thus the intensity value at a point u is

λ̂(u) = e(u)
∑
i

k(xi − u)wi

where k is the Gaussian smoothing kernel, e(u) is an edge correction factor, and wi are the
weights.

• If diggle=TRUE then the code uses the improved edge correction described by Jones (1993)
and Diggle (2010, equation 18.9). This has been shown to have better performance (Jones,
1993) but is slightly slower to compute. The intensity value at a point u is

λ̂(u) =
∑
i

k(xi − u)wie(xi)

where again k is the Gaussian smoothing kernel, e(xi) is an edge correction factor, and wi are
the weights.

In both cases, the edge correction term e(u) is the reciprocal of the kernel mass inside the window:

1

e(u)
=

∫
W

k(v − u) dv

where W is the observation window.

Smoothing kernel

By default, smoothing is performed using a Gaussian kernel.

The choice of smoothing kernel is determined by the argument kernel. This should be a character
string giving the name of a recognised two-dimensional kernel (current options are "gaussian",
"epanechnikov", "quartic" or "disc"), or a pixel image (object of class "im") containing values
of the kernel, or a function(x,y) which yields values of the kernel. The default is a Gaussian
kernel.

If scalekernel=TRUE then the kernel values will be rescaled according to the arguments sigma,
varcov and adjust as explained above, effectively treating kernel as the template kernel with
standard deviation equal to 1. This is the default behaviour when kernel is a character string. If
scalekernel=FALSE, the kernel values will not be altered, and the arguments sigma, varcov and
adjust are ignored. This is the default behaviour when kernel is a pixel image or a function.

100 density.ppp

Desired output

If at="pixels" (the default), intensity values are computed at every location u in a fine grid,
and are returned as a pixel image. The point pattern is first discretised using pixellate.ppp,
then the intensity is computed using the Fast Fourier Transform. Accuracy depends on the pixel
resolution and the discretisation rule. The pixel resolution is controlled by the arguments ... passed
to as.mask (specify the number of pixels by dimyx or the pixel size by eps). The discretisation rule
is controlled by the arguments ... passed to pixellate.ppp (the default rule is that each point
is allocated to the nearest pixel centre; this can be modified using the arguments fractional and
preserve).

If at="points", the intensity values are computed to high accuracy at the points of x only. Compu-
tation is performed by directly evaluating and summing the kernel contributions without discretising
the data. The result is a numeric vector giving the density values. The intensity value at a point xi

is (if diggle=FALSE)
λ̂(xi) = e(xi)

∑
j

k(xj − xi)wj

or (if diggle=TRUE)
λ̂(xi) =

∑
j

k(xj − xi)wje(xj)

If leaveoneout=TRUE (the default), then the sum in the equation is taken over all j not equal to i, so
that the intensity value at a data point is the sum of kernel contributions from all other data points.
If leaveoneout=FALSE then the sum is taken over all j, so that the intensity value at a data point
includes a contribution from the same point.

Weights

If weights is a matrix with more than one column, then the calculation is effectively repeated for
each column of weights. The result is a list of images (if at="pixels") or a matrix of numerical
values (if at="points").

The argument weights can also be an expression. It will be evaluated in the data frame as.data.frame(x)
to obtain a vector or matrix of weights. The expression may involve the symbols x and y represent-
ing the Cartesian coordinates, the symbol marks representing the mark values if there is only one
column of marks, and the names of the columns of marks if there are several columns.

The argument weights can also be a pixel image (object of class "im"). numerical weights for the
data points will be extracted from this image (by looking up the pixel values at the locations of the
data points in x).

Standard error

If se=TRUE, the standard error of the estimate will also be calculated. The calculation assumes a
Poisson point process.

If weights are given, then the calculation of standard error depends on the interpretation of the
weights. This is controlled by the argument wtype.

• If wtype="value" (the default), the weights are interpreted as numerical values observed at
the data locations. Roughly speaking, standard errors are proportional to the absolute values
of the weights.

density.ppp 101

• If wtype="multiplicity" the weights are interpreted as multiplicities so that a weight of
2 is equivalent to having a pair of duplicated points at the data location. Roughly speaking,
standard errors are proportional to the square roots of the weights. Negative weights are not
permitted.

The default rule is now wtype="value" but previous versions of density.ppp (in spatstat.explore
versions 3.1-0 and earlier) effectively used wtype="multiplicity".

The meaning of density.ppp

This function is often misunderstood.

The result of density.ppp is not a spatial smoothing of the marks or weights attached to the point
pattern. To perform spatial interpolation of values that were observed at the points of a point pattern,
use Smooth.ppp.

The result of density.ppp is not a probability density. It is an estimate of the intensity function of
the point process that generated the point pattern data. Intensity is the expected number of random
points per unit area. The units of intensity are “points per unit area”. Intensity is usually a function
of spatial location, and it is this function which is estimated by density.ppp. The integral of the
intensity function over a spatial region gives the expected number of points falling in this region.

Inspecting an estimate of the intensity function is usually the first step in exploring a spatial point
pattern dataset. For more explanation, see Baddeley, Rubak and Turner (2015) or Diggle (2003,
2010).

If you have two (or more) types of points, and you want a probability map or relative risk surface
(the spatially-varying probability of a given type), use relrisk.

Technical issue: Negative Values

Negative and zero values of the density estimate are possible when at="pixels" because of nu-
merical errors in finite-precision arithmetic.

By default, density.ppp does not try to repair such errors. This would take more computation time
and is not always needed. (Also it would not be appropriate if weights include negative values.)

To ensure that the resulting density values are always positive, set positive=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Applied Statistics (Journal
of the Royal Statistical Society, Series C) 34 (1985) 138–147.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Diggle, P.J. (2010) Nonparametric methods. Chapter 18, pp. 299–316 in A.E. Gelfand, P.J. Diggle,
M. Fuentes and P. Guttorp (eds.) Handbook of Spatial Statistics, CRC Press, Boca Raton, FL.

102 density.ppp

Jones, M.C. (1993) Simple boundary corrections for kernel density estimation. Statistics and Com-
puting 3, 135–146.

See Also

To select the bandwidth sigma automatically by cross-validation, use bw.diggle, bw.CvL, bw.scott
or bw.ppl.

To perform spatial interpolation of values that were observed at the points of a point pattern, use
Smooth.ppp.

For adaptive nonparametric estimation, see adaptive.density. For data sharpening, see sharpen.ppp.

To compute a relative risk surface or probability map for two (or more) types of points, use relrisk.

For information about the data structures, see ppp.object, im.object.

Examples

if(interactive()) {
opa <- par(mfrow=c(1,2))
plot(density(cells, 0.05))
plot(density(cells, 0.05, diggle=TRUE))
par(opa)
v <- diag(c(0.05, 0.07)^2)
plot(density(cells, varcov=v))

}
automatic bandwidth selection
plot(density(cells, sigma=bw.diggle(cells)))
equivalent:
plot(density(cells, bw.diggle))
evaluate intensity at points
density(cells, 0.05, at="points")

non-Gaussian kernel
plot(density(cells, sigma=0.4, kernel="epanechnikov"))

if(interactive()) {
see effect of changing pixel resolution
opa <- par(mfrow=c(1,2))
plot(density(cells, sigma=0.4))
plot(density(cells, sigma=0.4, eps=0.05))
par(opa)

}

relative risk calculation by hand (see relrisk.ppp)
lung <- split(chorley)$lung
larynx <- split(chorley)$larynx
D <- density(lung, sigma=2)
plot(density(larynx, sigma=2, weights=1/D))

density.psp 103

density.psp Kernel Smoothing of Line Segment Pattern

Description

Compute a kernel smoothed intensity function from a line segment pattern.

Usage

S3 method for class 'psp'
density(x, sigma, ..., weights=NULL, edge=TRUE,

method=c("FFT", "C", "interpreted"),
at=NULL)

Arguments

x Line segment pattern (object of class "psp") to be smoothed.

sigma Standard deviation of isotropic Gaussian smoothing kernel.

... Extra arguments, including arguments passed to as.mask to determine the reso-
lution of the resulting image.

weights Optional. Numerical weights for each line segment. A numeric vector, of length
equal to the number of segments in x.

edge Logical flag indicating whether to apply edge correction.

method Character string (partially matched) specifying the method of computation. Op-
tion "FFT" is the fastest, while "C" is the most accurate.

at Optional. An object specifying the locations where density values should be
computed. Either a window (object of class "owin") or a point pattern (object
of class "ppp" or "lpp").

Details

This is the method for the generic function density for the class "psp" (line segment patterns).

A kernel estimate of the intensity of the line segment pattern is computed. The result is the convo-
lution of the isotropic Gaussian kernel, of standard deviation sigma, with the line segments. The
result is computed as follows:

• if method="FFT" (the default), the line segments are discretised using pixellate.psp, then
the Fast Fourier Transform is used to calculate the convolution. This method is the fastest, but
is slightly less accurate. Accuracy can be improved by increasing pixel resolution.

• if method="C" the exact value of the convolution at the centre of each pixel is computed
analytically using C code;

• if method="interpreted", the exact value of the convolution at the centre of each pixel is
computed analytically using R code. This method is the slowest.

104 density.splitppp

If edge=TRUE this result is adjusted for edge effects by dividing it by the convolution of the same
Gaussian kernel with the observation window.

If weights are given, then the contribution from line segment i is multiplied by the value of
weights[i].

If the argument at is given, then it specifies the locations where density values should be computed.

• If at is a window, then the window is converted to a binary mask using the arguments ...,
and density values are computed at the centre of each pixel in this mask. The result is a pixel
image.

• If at is a point pattern, then density values are computed at each point location, and the result
is a numeric vector.

Value

A pixel image (object of class "im") or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp.object, im.object, density

Examples

L <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())
D <- density(L, sigma=0.03)
plot(D, main="density(L)")
plot(L, add=TRUE)

density.splitppp Kernel Smoothed Intensity of Split Point Pattern

Description

Compute a kernel smoothed intensity function for each of the components of a split point pattern,
or each of the point patterns in a list.

Usage

S3 method for class 'splitppp'
density(x, ..., weights=NULL, se=FALSE)

S3 method for class 'ppplist'
density(x, ..., weights=NULL, se=FALSE)

density.splitppp 105

Arguments

x Split point pattern (object of class "splitppp" created by split.ppp) to be
smoothed. Alternatively a list of point patterns, of class "ppplist".

... Arguments passed to density.ppp to control the smoothing, pixel resolution,
edge correction etc.

weights Numerical weights for the points. See Details.
se Logical value indicating whether to compute standard errors as well.

Details

This is a method for the generic function density.

The argument x should be a list of point patterns, and should belong to one of the classes "ppplist"
or "splitppp".

Typically x is obtained by applying the function split.ppp to a point pattern y by calling split(y).
This splits the points of y into several sub-patterns.

A kernel estimate of the intensity function of each of the point patterns is computed using density.ppp.

The return value is usually a list, each of whose entries is a pixel image (object of class "im"). The
return value also belongs to the class "solist" and can be plotted or printed.

If the argument at="points" is given, the result is a list of numeric vectors giving the intensity
values at the data points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

The argument weights specifies numerical case weights for the data points. Normally it should
be a list, with the same length as x. The entry weights[[i]] will determine the case weights for
the pattern x[[i]], and may be given in any format acceptable to density.ppp. For example,
weights[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric
value, a numeric matrix, a pixel image (object of class "im"), an expression, or a function of class
"funxy".

For convenience, weights can also be a single expression, or a single pixel image (object of class
"im"), or a single function of class "funxy".

Value

A list of pixel images (objects of class "im") which can be plotted or printed; or a list of numeric
vectors giving the values at specified points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, im.object

106 densityAdaptiveKernel.ppp

Examples

Z <- density(split(amacrine), 0.05)
plot(Z)

densityAdaptiveKernel.ppp

Adaptive Kernel Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern using a variable-bandwidth
smoothing kernel.

Usage

S3 method for class 'ppp'
densityAdaptiveKernel(X, bw, ...,

weights=NULL,
at=c("pixels", "points"),
edge=TRUE, ngroups)

Arguments

X Point pattern (object of class "ppp").

bw Numeric vector of smoothing bandwidths for each point in X, or a pixel image
giving the smoothing bandwidth at each spatial location, or a spatial function of
class "funxy" giving the smoothing bandwidth at each location. The default is
to compute bandwidths using bw.abram.ppp.

... Arguments passed to bw.abram.ppp to compute the smoothing bandwidths if bw
is missing, or passed to as.mask to control the spatial resolution of the result.

weights Optional vector of numeric weights for the points of X.

at String specifying whether to compute the intensity values at a grid of pixel lo-
cations (at="pixels") or only at the points of x (at="points").

edge Logical value indicating whether to perform edge correction.

ngroups Number of groups into which the bandwidth values should be partitioned and
discretised.

Details

This function computes a spatially-adaptive kernel estimate of the spatially-varying intensity from
the point pattern X using the partitioning technique of Davies and Baddeley (2018).

The function densityAdaptiveKernel is generic. This file documents the method for point pat-
terns, densityAdaptiveKernel.ppp.

densityAdaptiveKernel.ppp 107

The argument bw specifies the smoothing bandwidths to be applied to each of the points in X. It
may be a numeric vector of bandwidth values, or a pixel image or function yielding the bandwidth
values.

If the points of X are x1, . . . , xn and the corresponding bandwidths are σ1, . . . , σn then the adaptive
kernel estimate of intensity at a location u is

λ̂(u) =

n∑
i=1

k(u, xi, σi)

where k(u, v, σ) is the value at u of the (possibly edge-corrected) smoothing kernel with bandwidth
σ induced by a data point at v.

Exact computation of the estimate above can be time-consuming: it takes n times longer than fixed-
bandwidth smoothing.

The partitioning method of Davies and Baddeley (2018) accelerates this computation by partitioning
the range of bandwidths into ngroups intervals, correspondingly subdividing the points of the pat-
tern X into ngroups sub-patterns according to bandwidth, and applying fixed-bandwidth smoothing
to each sub-pattern.

The default value of ngroups is the integer part of the square root of the number of points in
X, so that the computation time is only about

√
n times slower than fixed-bandwidth smoothing.

Any positive value of ngroups can be specified by the user. Specifying ngroups=Inf enforces
exact computation of the estimate without partitioning. Specifying ngroups=1 is the same as fixed-
bandwidth smoothing with bandwidth sigma=median(bw).

Value

If at="pixels" (the default), the result is a pixel image. If at="points", the result is a numeric
vector with one entry for each data point in X.

Bandwidths and Bandwidth Selection

The function densityAdaptiveKernel computes one adaptive estimate of the intensity, determined
by the smoothing bandwidth values bw.

Typically the bandwidth values are computed by first computing a pilot estimate of the intensity,
then using bw.abram.ppp to compute the vector of bandwidths according to Abramson’s rule. This
involves specifying a global bandwidth h0.

The default bandwidths may work well in many contexts, but for optimal bandwidth selection, this
calculation should be performed repeatedly with different values of h0 to optimise the value of h0.
This can be computationally demanding; we recommend the function multiscale.density in the
sparr package which supports much faster bandwidth selection, using the FFT method of Davies
and Baddeley (2018).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies.

108 densityAdaptiveKernel.splitppp

References

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability
densities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

bw.abram.ppp, density.ppp, adaptive.density, densityVoronoi, im.object.

See the function bivariate.density in the sparr package for a more flexible implementation, and
multiscale.density for an implementation that is more efficient for bandwidth selection.

Examples

Z <- densityAdaptiveKernel(redwood, h0=0.1)
plot(Z, main="Adaptive kernel estimate")
points(redwood, col="white")

densityAdaptiveKernel.splitppp

Adaptive Kernel Estimate of Intensity for Split Point Pattern

Description

Computes an adaptive estimate of the intensity function (using a variable-bandwidth smoothing
kernel) for each of the components of a split point pattern, or each of the point patterns in a list.

Usage

S3 method for class 'splitppp'
densityAdaptiveKernel(X, bw=NULL, ..., weights=NULL)

S3 method for class 'ppplist'
densityAdaptiveKernel(X, bw=NULL, ..., weights=NULL)

Arguments

X Split point pattern (object of class "splitppp" created by split.ppp) to be
smoothed. Alternatively a list of point patterns, of class "ppplist".

bw Smoothing bandwidths. See Details.
... Additional arguments passed to densityAdaptiveKernel.ppp. These may in-

clude arguments that will be passed to bw.abram.ppp to compute the smoothing
bandwidths if bw is missing, and arguments passed to as.mask to control the
spatial resolution of the result.

weights Numerical weights for the points. See Details.

densityfun.ppp 109

Details

This function computes a spatially-adaptive kernel estimate of the spatially-varying intensity for
each of the point patterns in the list X, using densityAdaptiveKernel.ppp.

The argument bw specifies smoothing bandwidths for the data points. Normally it should be a list,
with the same length as x. The entry bw[[i]] will determine the smoothing bandwidths for the
pattern x[[i]], and may be given in any format acceptable to densityAdaptiveKernel.ppp. For
example, bw[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric
value, a pixel image (object of class "im"), an expression, or a function of class "funxy". For
convenience, bw can also be a single expression, or a single pixel image, or a single function. If
bw is missing or NULL, the default is to compute bandwidths using bw.abram.ppp.

The argument weights specifies numerical case weights for the data points. Normally it should
be a list, with the same length as x. The entry weights[[i]] will determine the case weights for
the pattern x[[i]], and may be given in any format acceptable to density.ppp. For example,
weights[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric
value, a numeric matrix, a pixel image (object of class "im"), an expression, or a function of
class "funxy". For convenience, weights can also be a single expression, or a single pixel image
(object of class "im"), or a single function of class "funxy". If weights is missing or NULL, all
weights are assumed to be equal to 1.

Value

A list of pixel images (objects of class "im") which can be plotted or printed; or a list of numeric
vectors giving the values at specified points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

densityAdaptiveKernel.ppp, bw.abram.ppp.

Examples

X <- amacrine
if(!interactive()) X <- X[c(TRUE,FALSE,FALSE,FALSE)]
Z <- densityAdaptiveKernel(split(X), h0=0.15)
plot(Z, main="Adaptive kernel estimate")

densityfun.ppp Kernel Estimate of Intensity as a Spatial Function

Description

Compute a kernel estimate of intensity for a point pattern, and return the result as a function of
spatial location.

110 densityfun.ppp

Usage

densityfun(X, ...)

S3 method for class 'ppp'
densityfun(X, sigma = NULL, ...,

weights = NULL, edge = TRUE, diggle = FALSE)

Arguments

X Point pattern (object of class "ppp").

sigma Smoothing bandwidth, or bandwidth selection function, passed to density.ppp.

... Additional arguments passed to density.ppp.

weights Optional vector of weights associated with the points of X.

edge, diggle Logical arguments controlling the edge correction. Arguments passed to density.ppp.

Details

The commands densityfun and density both perform kernel estimation of the intensity of a point
pattern. The difference is that density returns a pixel image, containing the estimated intensity
values at a grid of locations, while densityfun returns a function(x,y) which can be used to
compute the intensity estimate at any spatial locations with coordinates x,y. For purposes such as
model-fitting it is more accurate to use densityfun.

Value

A function with arguments x,y,drop. The function also belongs to the class "densityfun"
which has methods for print and as.im. It also belongs to the class "funxy" which has methods
for plot, contour and persp.

Using the result of densityfun

If f <- densityfun(X), where X is a two-dimensional point pattern, the resulting object f is a
function in the R language.

By calling this function, the user can evaluate the estimated intensity at any desired spatial locations.

Additionally f belongs to other classes which allow it to be printed and plotted easily.

The function f has arguments x,y,drop.

• The arguments x,y of f specify the query locations. They can be numeric vectors of coordi-
nates. Alternatively x can be a point pattern (or data acceptable to as.ppp) and y is omitted.
The result of f(x,y) is a numeric vector giving the values of the intensity.

• The argument drop of f specifies how to handle query locations which are outside the window
of the original data. If drop=TRUE (the default), such locations are ignored. If drop=FALSE, a
value of NA is returned for each such location.

Note that the smoothing parameters, such as the bandwidth sigma, are assigned when densityfun
is executed. Smoothing parameters are fixed inside the function f and cannot be changed by argu-
ments of f.

densityHeat 111

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.

To interpolate values observed at the points, use Smoothfun.

Examples

f <- densityfun(swedishpines)
f
f(42, 60)
X <- runifpoint(2, Window(swedishpines))
f(X)
plot(f)

densityHeat Diffusion Estimate of Point Pattern Intensity

Description

Computes a diffusion estimate of intensity for a point pattern.

Usage

densityHeat(x, sigma, ...)

Arguments

x Point pattern (object of class "ppp" or another class).

sigma Smoothing bandwidth. Usually a single number giving the equivalent standard
deviation of the smoother.

... Additional arguments depending on the method.

Details

The generic function densityHeat computes an estimate of point process intensity using a diffusion
kernel method.

Further details depend on the class of point pattern x. See the help file for the appropriate method.

Value

Depends on the class of x.

112 densityHeat.ppp

Author(s)

Adrian Baddeley and Tilman Davies.

See Also

For two-dimensional point patterns (objects of class "ppp"), the diffusion kernel estimator is densityHeat.ppp.
The usual kernel estimator is density.ppp, and the tessellation-based estimator is adaptive.density.

densityHeat.ppp Diffusion Estimate of Point Pattern Intensity

Description

Computes the diffusion estimate of the intensity of a point pattern.

Usage

S3 method for class 'ppp'
densityHeat(x, sigma, ..., weights=NULL,

connect=8, symmetric=FALSE,
sigmaX=NULL, k=1, show=FALSE, se=FALSE,
at=c("pixels", "points"),
leaveoneout = TRUE,
extrapolate = FALSE, coarsen = TRUE,
verbose=TRUE, internal=NULL)

Arguments

x Point pattern (object of class "ppp").

sigma Smoothing bandwidth. A single number giving the equivalent standard deviation
of the smoother. Alternatively, a pixel image (class "im") or a function(x,y)
giving the spatially-varying bandwidth.

... Arguments passed to pixellate.ppp controlling the pixel resolution.

weights Optional numeric vector of weights associated with each point of x.

connect Grid connectivity: either 4 or 8.

symmetric Logical value indicating whether to force the algorithm to use a symmetric ran-
dom walk.

sigmaX Numeric vector of bandwidths, one associated with each data point in x. See
Details.

k Integer. Calculations will be performed by repeatedly multiplying the current
state by the k-step transition matrix.

show Logical value indicating whether to plot successive iterations.

se Logical value indicating whether to compute standard errors.

densityHeat.ppp 113

at Character string specifying whether to compute values at a grid of pixels (at="pixels",
the default) or at the data points of x (at="points").

leaveoneout Logical value specifying whether to compute a leave-one-out estimate at each
data point, when at="points".

extrapolate Logical value specifying whether to use Richardson extrapolation to improve
the accuracy of the computation.

coarsen Logical value, controlling the calculation performed when extrapolate=TRUE.
See Details.

verbose Logical value specifying whether to print progress reports.

internal Developer use only.

Details

This command computes a diffusion kernel estimate of point process intensity from the observed
point pattern x.

The function densityHeat is generic, with methods for point patterns in two dimensions (class
"ppp") and point patterns on a linear network (class "lpp"). The function densityHeat.ppp de-
scribed here is the method for class "ppp". Given a two-dimensional point pattern x, it computes a
diffusion kernel estimate of the intensity of the point process which generated x.

Diffusion kernel estimates were developed by Botev et al (2010), Barry and McIntyre (2011) and
Baddeley et al (2022).

Barry and McIntyre (2011) proposed an estimator for point process intensity based on a random
walk on the pixel grid inside the observation window. Baddeley et al (2022) showed that the Barry-
McIntyre method is a special case of the diffusion estimator proposed by Botev et al (2010).

The original Barry-McIntyre algorithm assumes a symmetric random walk (i.e. each possible tran-
sition has the same probability p) and requires a square pixel grid (i.e. equal spacing in the x and y
directions). Their original algorithm is used if symmetric=TRUE. Use the ... arguments to ensure
a square grid: for example, the argument eps specifies a square grid with spacing eps units.

The more general algorithm used here (Baddeley et al, 2022) does not require a square grid of
pixels. If the pixel grid is not square, and if symmetric=FALSE (the default), then the random walk
is not symmetric, in the sense that the probabilities of different jumps will be different, in order to
ensure that the smoothing is isotropic.

This implementation also includes two generalizations to the case of adaptive smoothing (Baddeley
et al, 2022).

In the first version of adaptive smoothing, the bandwidth is spatially-varying. The argument sigma
should be a pixel image (class "im") or a function(x,y) specifying the bandwidth at each spatial
location. The smoothing is performed by solving the heat equation with spatially-varying parame-
ters.

In the second version of adaptive smoothing, each data point in x is smoothed using a separate
bandwidth. The argument sigmaX should be a numeric vector specifying the bandwidth for each
point of x. The smoothing is performed using the lagged arrival algorithm. The argument sigma
can be omitted.

If extrapolate=FALSE (the default), calculations are performed using the Euler scheme for the
heat equation. If extrapolate=TRUE, the accuracy of the result will be improved by applying

114 densityHeat.ppp

Richardson extrapolation (Baddeley et al, 2022, Section 4). After computing the intensity estimate
using the Euler scheme on the desired pixel grid, another estimate is computed using the same
method on another pixel grid, and the two estimates are combined by Richardson extrapolation to
obtain a more accurate result. The second grid is coarser than the original grid if coarsen=TRUE (the
default), and finer than the original grid if coarsen=FALSE. Setting extrapolate=TRUE increases
computation time by 35% if coarsen=TRUE and by 400% if coarsen=FALSE.

Value

Pixel image (object of class "im") giving the estimated intensity of the point process.

If se=TRUE, the result has an attribute "se" which is another pixel image giving the estimated
standard error.

If at="points" then the result is a numeric vector with one entry for each point of x.

Author(s)

Adrian Baddeley and Tilman Davies.

References

Baddeley, A., Davies, T., Rakshit, S., Nair, G. and McSwiggan, G. (2022) Diffusion smoothing for
spatial point patterns. Statistical Science 37 (1) 123–142.

Barry, R.P. and McIntyre, J. (2011) Estimating animal densities and home range in regions with
irregular boundaries and holes: a lattice-based alternative to the kernel density estimator. Ecological
Modelling 222, 1666–1672.

Botev, Z.I., Grotowski, J.F. and Kroese, D.P. (2010) Kernel density estimation via diffusion. Annals
of Statistics 38, 2916–2957.

See Also

density.ppp for the usual kernel estimator, and adaptive.density for the tessellation-based es-
timator.

Examples

online <- interactive()
if(!online) op <- spatstat.options(npixel=32)

X <- runifpoint(25, letterR)
Z <- densityHeat(X, 0.2)
if(online) {

plot(Z, main="Diffusion estimator")
plot(X, add=TRUE, pch=16)
integral(Z) # should equal 25

}

Z <- densityHeat(X, 0.2, se=TRUE)
Zse <- attr(Z, "se")
if(online) plot(solist(estimate=Z, SE=Zse), main="")

densityVoronoi 115

Zex <- densityHeat(X, 0.2, extrapolate=TRUE)

ZS <- densityHeat(X, 0.2, symmetric=TRUE, eps=0.125)
if(online) {

plot(ZS, main="fixed bandwidth")
plot(X, add=TRUE, pch=16)

}

sig <- function(x,y) { (x-1.5)/10 }
ZZ <- densityHeat(X, sig)
if(online) {

plot(ZZ, main="adaptive (I)")
plot(X, add=TRUE, pch=16)

}

sigX <- sig(Xx, Xy)
AA <- densityHeat(X, sigmaX=sigX)
if(online) {

plot(AA, main="adaptive (II)")
plot(X, add=TRUE, pch=16)

}
if(!online) spatstat.options(op)

densityVoronoi Intensity Estimate of Point Pattern Using Voronoi-Dirichlet Tessella-
tion

Description

Computes an adaptive estimate of the intensity function of a point pattern using the Dirichlet-
Voronoi tessellation.

Usage

densityVoronoi(X, ...)

S3 method for class 'ppp'
densityVoronoi(X, f = 1, ...,

counting=FALSE,
fixed=FALSE,
nrep = 1, verbose=TRUE)

Arguments

X Point pattern dataset (object of class "ppp").

f Fraction (between 0 and 1 inclusive) of the data points that will be used to build
a tessellation for the intensity estimate.

... Arguments passed to as.im determining the pixel resolution of the result.

116 densityVoronoi

counting Logical value specifying the choice of estimation method. See Details.
fixed Logical. If FALSE (the default), the data points are independently randomly

thinned, so the number of data points that are retained is random. If TRUE, the
number of data points retained is fixed. See Details.

nrep Number of independent repetitions of the randomised procedure.
verbose Logical value indicating whether to print progress reports.

Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of
a point pattern dataset. The result is a pixel image giving the estimated intensity.

If f=1 (the default), the Voronoi estimate (Barr and Schoenberg, 2010) is computed: the point
pattern X is used to construct a Voronoi/Dirichlet tessellation (see dirichlet); the areas of the
Dirichlet tiles are computed; the estimated intensity in each tile is the reciprocal of the tile area.
The result is a pixel image of intensity estimates which are constant on each tile of the tessellation.

If f=0, the intensity estimate at every location is equal to the average intensity (number of points
divided by window area). The result is a pixel image of intensity estimates which are constant.

If f is strictly between 0 and 1, the estimation method is applied to a random subset of X. This
randomised procedure is repeated nrep times, and the results are averaged. The subset is selected
as follows:

• if fixed=FALSE, the dataset X is randomly thinned by deleting or retaining each point inde-
pendently, with probability f of retaining a point.

• if fixed=TRUE, a random sample of fixed size m is taken from the dataset X, where m is the
largest integer less than or equal to f*n and n is the number of points in X.

Then the intensity estimate is calculated as follows:

• if counting = FALSE (the default), the thinned pattern is used to construct a Dirichlet tessella-
tion and form the Voronoi estimate (Barr and Schoenberg, 2010) which is then adjusted by a
factor 1/f or n/m as appropriate. to obtain an estimate of the intensity of X in the tile.

• if counting = TRUE, the randomly selected subset A is used to construct a Dirichlet tessellation,
while the complementary subset B (consisting of points that were not selected in the sample)
is used for counting to calculate a quadrat count estimate of intensity. For each tile of the
Dirichlet tessellation formed by A, we count the number of points of B falling in the tile, and
divide by the area of the same tile, to obtain an estimate of the intensity of the pattern B in the
tile. This estimate is adjusted by 1/(1-f) or n/(n-m) as appropriate to obtain an estimate of
the intensity of X in the tile.

Ogata et al. (2003) and Ogata (2004) estimated intensity using the Dirichlet-Voronoi tessellation
in a modelling context. Baddeley (2007) proposed intensity estimation by subsampling with 0 <
f < 1, and used the technique described above with fixed=TRUE and counting=TRUE. Barr and
Schoenberg (2010) described and analysed the Voronoi estimator (corresponding to f=1). Moradi
et al (2019) developed the subsampling technique with fixed=FALSE and counting=FALSE and
called it the smoothed Voronoi estimator.

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

deriv.fv 117

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi <m2.moradi@yahoo.com>.

References

Baddeley, A. (2007) Validation of statistical models for spatial point patterns. In J.G. Babu and
E.D. Feigelson (eds.) SCMA IV: Statistical Challenges in Modern Astronomy IV, volume 317 of
Astronomical Society of the Pacific Conference Series, San Francisco, California USA, 2007. Pages
22–38.

Barr, C., and Schoenberg, F.P. (2010). On the Voronoi estimator for the intensity of an inhomoge-
neous planar Poisson process. Biometrika 97 (4), 977–984.

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing 29 (5) 995–1010.

Ogata, Y. (2004) Space-time model for regional seismicity and detection of crustal stress changes.
Journal of Geophysical Research, 109, 2004.

Ogata, Y., Katsura, K. and Tanemura, M. (2003). Modelling heterogeneous space-time occurrences
of earthquakes and its residual analysis. Applied Statistics 52 499–509.

See Also

adaptive.density, density.ppp, dirichlet, im.object.

Examples

plot(densityVoronoi(nztrees, 1, f=1), main="Voronoi estimate")
nr <- if(interactive()) 100 else 5
plot(densityVoronoi(nztrees, f=0.5, nrep=nr), main="smoothed Voronoi estimate")

deriv.fv Calculate Derivative of Function Values

Description

Applies numerical differentiation to the values in selected columns of a function value table.

Usage

S3 method for class 'fv'
deriv(expr, which = "*", ...,

method=c("spline", "numeric"),
kinks=NULL,
periodic=FALSE,
Dperiodic=periodic)

118 deriv.fv

Arguments

expr Function values to be differentiated. A function value table (object of class "fv",
see fv.object).

which Character vector identifying which columns of the table should be differentiated.
Either a vector containing names of columns, or one of the wildcard strings "*"
or "." explained below.

... Extra arguments passed to smooth.spline to control the differentiation algo-
rithm, if method="spline".

method Differentiation method. A character string, partially matched to either "spline"
or "numeric".

kinks Optional vector of x values where the derivative is allowed to be discontinuous.

periodic Logical value indicating whether the function expr is periodic.

Dperiodic Logical value indicating whether the resulting derivative should be a periodic
function.

Details

This command performs numerical differentiation on the function values in a function value table
(object of class "fv"). The differentiation is performed either by smooth.spline or by a naive
numerical difference algorithm.

The command deriv is generic. This is the method for objects of class "fv".

Differentiation is applied to every column (or to each of the selected columns) of function values in
turn, using the function argument as the x coordinate and the selected column as the y coordinate.
The original function values are then replaced by the corresponding derivatives.

The optional argument which specifies which of the columns of function values in expr will be
differentiated. The default (indicated by the wildcard which="*") is to differentiate all function
values, i.e.\ all columns except the function argument. Alternatively which="." designates the sub-
set of function values that are displayed in the default plot. Alternatively which can be a character
vector containing the names of columns of expr.

If the argument kinks is given, it should be a numeric vector giving the discontinuity points of the
function: the value or values of the function argument at which the function is not differentiable.
Differentiation will be performed separately on intervals between the discontinuity points.

If periodic=TRUE then the function expr is taken to be periodic, with period equal to the range of
the function argument in expr. The resulting derivative is periodic.

If periodic=FALSE but Dperiodic=TRUE, then the derivative is assumed to be periodic. This would
be appropriate if expr is the cumulative distribution function of an angular variable, for example.

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

dg.envelope 119

See Also

with.fv, fv.object, smooth.spline

Examples

G <- Gest(cells)
plot(deriv(G, which=".", spar=0.5))
A <- pairorient(redwood, 0.05, 0.15)
DA <- deriv(A, spar=0.6, Dperiodic=TRUE)

dg.envelope Global Envelopes for Dao-Genton Test

Description

Computes the global envelopes corresponding to the Dao-Genton test of goodness-of-fit.

Usage

dg.envelope(X, ...,
nsim = 19, nsimsub=nsim-1, nrank = 1,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm" or "slrm").

... Arguments passed to mad.test or envelope to control the conduct of the test.
Useful arguments include fun to determine the summary function, rinterval
to determine the range of r values used in the test, and verbose=FALSE to turn
off the messages.

nsim Number of simulated patterns to be generated in the primary experiment.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

alternative Character string determining whether the envelope corresponds to a two-sided
test (alternative="two.sided", the default) or a one-sided test with a lower
critical boundary (alternative="less") or a one-sided test with an upper crit-
ical boundary (alternative="greater").

120 dg.envelope

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value determining whether to print progress reports.

Details

Computes global simulation envelopes corresponding to the Dao-Genton (2014) adjusted Monte
Carlo goodness-of-fit test. The envelopes were developed in Baddeley et al (2015) and described in
Baddeley, Rubak and Turner (2015).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The Dao-Genton test is biased when the significance level is very small (small p-values are not
reliable) and we recommend bits.envelope in this case.

Value

An object of class "fv".

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

dg.test, mad.test, envelope

dg.progress 121

Examples

ns <- if(interactive()) 19 else 4
E <- dg.envelope(swedishpines, Lest, nsim=ns)
E
plot(E)
Eo <- dg.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- dg.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)

dg.progress Progress Plot of Dao-Genton Test of Spatial Pattern

Description

Generates a progress plot (envelope representation) of the Dao-Genton test for a spatial point pat-
tern.

Usage

dg.progress(X, fun = Lest, ...,
exponent = 2, nsim = 19, nsimsub = nsim - 1,
nrank = 1, alpha, leaveout=1, interpolate = FALSE, rmin=0,
savefuns = FALSE, savepatterns = FALSE, verbose=TRUE)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

fun Function that computes the desired summary statistic for a point pattern.

... Arguments passed to envelope. Useful arguments include alternative to
specify one-sided or two-sided envelopes.

exponent Positive number. The exponent of the Lp distance. See Details.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

nrank Integer. The rank of the critical value of the Monte Carlo test, amongst the nsim
simulated values. A rank of 1 means that the minimum and maximum simulated
values will become the critical values for the test.

alpha Optional. The significance level of the test. Equivalent to nrank/(nsim+1)
where nsim is the number of simulations.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

122 dg.progress

interpolate Logical value indicating how to compute the critical value. If interpolate=FALSE
(the default), a standard Monte Carlo test is performed, and the critical value
is the largest simulated value of the test statistic (if nrank=1) or the nrank-th
largest (if nrank is another number). If interpolate=TRUE, kernel density es-
timation is applied to the simulated values, and the critical value is the upper
alpha quantile of this estimated distribution.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

savefuns Logical value indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical value indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test
depends on the choice of an interval of distance values (the argument rinterval). A progress plot
or envelope representation of the test (Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner,
2015) is a plot of the test statistic (and the corresponding critical value) against the length of the
interval rinterval.

The command dg.progress effectively performs dg.test on X using all possible intervals of the
form [0, R], and returns the resulting values of the test statistic, and the corresponding critical values
of the test, as a function of R.

The result is an object of class "fv" that can be plotted to obtain the progress plot. The display
shows the test statistic (solid black line) and the test acceptance region (grey shading). If X is an
envelope object, then some of the data stored in X may be re-used:

• If X is an envelope object containing simulated functions, and fun=NULL, then the code will
re-use the simulated functions stored in X.

• If X is an envelope object containing simulated point patterns, then fun will be applied to the
stored point patterns to obtain the simulated functions. If fun is not specified, it defaults to
Lest.

• Otherwise, new simulations will be performed, and fun defaults to Lest.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the progress plot.

dg.sigtrace 123

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

See Also

dg.test, dclf.progress

Examples

ns <- if(interactive()) 19 else 5
plot(dg.progress(cells, nsim=ns))

dg.sigtrace Significance Trace of Dao-Genton Test

Description

Generates a Significance Trace of the Dao and Genton (2014) test for a spatial point pattern.

Usage

dg.sigtrace(X, fun = Lest, ...,
exponent = 2, nsim = 19, nsimsub = nsim - 1,
alternative = c("two.sided", "less", "greater"),
rmin=0, leaveout=1,
interpolate = FALSE, confint = TRUE, alpha = 0.05,
savefuns=FALSE, savepatterns=FALSE, verbose=FALSE)

124 dg.sigtrace

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

fun Function that computes the desired summary statistic for a point pattern.

... Arguments passed to envelope.

exponent Positive number. Exponent used in the test statistic. Use exponent=2 for the
Diggle-Cressie-Loosmore-Ford test, and exponent=Inf for the Maximum Ab-
solute Deviation test. See Details.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

confint Logical value indicating whether to compute a confidence interval for the ‘true’
p-value.

alpha Significance level to be plotted (this has no effect on the calculation but is simply
plotted as a reference value).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical flag indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test
depends on the choice of an interval of distance values (the argument rinterval). A significance
trace (Bowman and Azzalini, 1997; Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015)
of the test is a plot of the p-value obtained from the test against the length of the interval rinterval.

The command dg.sigtrace effectively performs dg.test on X using all possible intervals of the
form [0, R], and returns the resulting p-values as a function of R.

dg.sigtrace 125

The result is an object of class "fv" that can be plotted to obtain the significance trace. The plot
shows the Dao-Genton adjusted p-value (solid black line), the critical value 0.05 (dashed red line),
and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson) p-value. The
confidence band is based on the Agresti-Coull (1998) confidence interval for a binomial proportion.

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in
X.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Agresti, A. and Coull, B.A. (1998) Approximate is better than “Exact” for interval estimation of
binomial proportions. American Statistician 52, 119–126.

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Bowman, A.W. and Azzalini, A. (1997) Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. Oxford University Press, Oxford.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

See Also

dg.test for the Dao-Genton test, dclf.sigtrace for significance traces of other tests.

126 dg.test

Examples

ns <- if(interactive()) 19 else 5
plot(dg.sigtrace(cells, nsim=ns))

dg.test Dao-Genton Adjusted Goodness-Of-Fit Test

Description

Performs the Dao and Genton (2014) adjusted goodness-of-fit test of spatial pattern.

Usage

dg.test(X, ...,
exponent = 2, nsim=19, nsimsub=nsim-1,
alternative=c("two.sided", "less", "greater"),
reuse = TRUE, leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm", "lppm" or "slrm").

... Arguments passed to dclf.test or mad.test or envelope to control the con-
duct of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of r values used in the test, and use.theory
described under Details.

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

reuse Logical value indicating whether to re-use the first stage simulations at the sec-
ond stage, as described by Dao and Genton (2014).

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

dg.test 127

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

Performs the Dao-Genton (2014) adjusted Monte Carlo goodness-of-fit test, in the equivalent form
described by Baddeley et al (2014).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

The Dao-Genton test is biased when the significance level is very small (small p-values are not
reliable) and we recommend bits.test in this case.

Value

A hypothesis test (object of class "htest" which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114,
75–87.

128 dimhat

See Also

bits.test, dclf.test, mad.test

Examples

ns <- if(interactive()) 19 else 4
dg.test(cells, nsim=ns)
dg.test(cells, alternative="less", nsim=ns)
dg.test(cells, nsim=ns, interpolate=TRUE)

dimhat Estimate Dimension of Central Subspace

Description

Given the kernel matrix that characterises a central subspace, this function estimates the dimension
of the subspace.

Usage

dimhat(M)

Arguments

M Kernel of subspace. A symmetric, non-negative definite, numeric matrix, typi-
cally obtained from sdr.

Details

This function computes the maximum descent estimate of the dimension of the central subspace
with a given kernel matrix M.

The matrix M should be the kernel matrix of a central subspace, which can be obtained from sdr. It
must be a symmetric, non-negative-definite, numeric matrix.

The algorithm finds the eigenvalues λ1 ≥ . . . ≥ λn of M , and then determines the index k for
which λk/λk−1 is greatest.

Value

A single integer giving the estimated dimension.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

distcdf 129

See Also

sdr, subspaceDistance

distcdf Distribution Function of Interpoint Distance

Description

Computes the cumulative distribution function of the distance between two independent random
points in a given window or windows.

Usage

distcdf(W, V=W, ..., dW=1, dV=dW, nr=1024,
regularise=TRUE, savedenom=FALSE, delta=NULL)

Arguments

W A window (object of class "owin") containing the first random point.

V Optional. Another window containing the second random point. Defaults to W.

... Arguments passed to as.mask to determine the pixel resolution for the calcula-
tion.

dV, dW Optional. Probability densities (not necessarily normalised) for the first and
second random points respectively. Data in any format acceptable to as.im, for
example, a function(x,y) or a pixel image or a numeric value. The default
corresponds to a uniform distribution over the window.

nr Integer. The number of values of interpoint distance r for which the CDF will
be computed. Should be a large value. Alternatively if nr=NULL, a good default
value will be chosen, depending on the pixel resolution.

regularise Logical value indicating whether to smooth the results for very small distances,
to avoid discretisation artefacts.

savedenom Logical value indicating whether to save the denominator of the double integral
as an attribute of the result.

delta Optional. A positive number. The maximum permitted spacing between values
of the function argument.

Details

This command computes the Cumulative Distribution Function CDF (r) = Prob(T ≤ r) of the
Euclidean distance T = ∥X1 −X2∥ between two independent random points X1 and X2.

In the simplest case, the command distcdf(W), the random points are assumed to be uniformly
distributed in the same window W.

Alternatively the two random points may be uniformly distributed in two different windows W and
V.

130 domain.quadrattest

In the most general case the first point X1 is random in the window W with a probability density
proportional to dW, and the second point X2 is random in a different window V with probability
density proportional to dV. The values of dW and dV must be finite and nonnegative.

The calculation is performed by numerical integration of the set covariance function setcov for
uniformly distributed points, and by computing the covariance function imcov in the general case.
The accuracy of the result depends on the pixel resolution used to represent the windows: this is
controlled by the arguments ... which are passed to as.mask. For example use eps=0.1 to specify
pixels of size 0.1 units.

The arguments W or V may also be point patterns (objects of class "ppp"). The result is the cumu-
lative distribution function of the distance from a randomly selected point in the point pattern, to a
randomly selected point in the other point pattern or window.

If regularise=TRUE (the default), values of the cumulative distribution function for very short
distances are smoothed to avoid discretisation artefacts. Smoothing is applied to all distances shorter
than the width of 10 pixels.

Numerical accuracy of some calculations requires very fine spacing of the values of the function
argument r. If the argument delta is given, then after the cumulative distribution function has been
calculated, it will be interpolated onto a finer grid of r values with spacing less than or equal to
delta.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

setcov, as.mask.

Examples

The unit disc
B <- disc()
plot(distcdf(B))

domain.quadrattest Extract the Domain of any Spatial Object

Description

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts
the spatial domain in which the object is defined.

domain.quadrattest 131

Usage

S3 method for class 'quadrattest'
domain(X, ...)

Arguments

X A spatial object such as a point pattern (in any number of dimensions), line
segment pattern or pixel image.

... Extra arguments. They are ignored by all the methods listed here.

Details

The function domain is generic.

For a spatial object X in any number of dimensions, domain(X) extracts the spatial domain in which
X is defined.

For a two-dimensional object X, typically domain(X) is the same as Window(X).

Exceptions occur for methods related to linear networks.

Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a three-
dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

domain, domain.quadratcount, domain.ppm, domain.rmhmodel, domain.lpp. Window, Frame.

Examples

domain(quadrat.test(redwood, 2, 2))

132 edge.Ripley

edge.Ripley Ripley’s Isotropic Edge Correction

Description

Computes Ripley’s isotropic edge correction weights for a point pattern.

Usage

edge.Ripley(X, r, W = Window(X), method = c("C", "interpreted"),
maxweight = 100, internal=list())

rmax.Ripley(W)

Arguments

X Point pattern (object of class "ppp").

W Window for which the edge correction is required.

r Vector or matrix of interpoint distances for which the edge correction should be
computed.

method Choice of algorithm. Either "interpreted" or "C". This is needed only for
debugging purposes.

maxweight Maximum permitted value of the edge correction weight.

internal For developer use only.

Details

The function edge.Ripley computes Ripley’s (1977) isotropic edge correction weight, which is
used in estimating the K function and in many other contexts.

The function rmax.Ripley computes the maximum value of distance r for which the isotropic edge
correction estimate of K(r) is valid.

For a single point x in a window W , and a distance r > 0, the isotropic edge correction weight is

e(u, r) =
2πr

length(c(u, r) ∩W)

where c(u, r) is the circle of radius r centred at the point u. The denominator is the length of the
overlap between this circle and the window W .

The function edge.Ripley computes this edge correction weight for each point in the point pattern
X and for each corresponding distance value in the vector or matrix r.

If r is a vector, with one entry for each point in X, then the result is a vector containing the edge
correction weights e(X[i], r[i]) for each i.

If r is a matrix, with one row for each point in X, then the result is a matrix whose i,j entry gives the
edge correction weight e(X[i], r[i,j]). For example edge.Ripley(X, pairdist(X)) computes
all the edge corrections required for the K-function.

edge.Trans 133

If any value of the edge correction weight exceeds maxwt, it is set to maxwt.

The function rmax.Ripley computes the smallest distance r such that it is possible to draw a circle
of radius r, centred at a point of W, such that the circle does not intersect the interior of W.

Value

A numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

edge.Trans, rmax.Trans, Kest

Examples

v <- edge.Ripley(cells, pairdist(cells))

rmax.Ripley(Window(cells))

edge.Trans Translation Edge Correction

Description

Computes Ohser and Stoyan’s translation edge correction weights for a point pattern.

Usage

edge.Trans(X, Y = X, W = Window(X),
exact = FALSE, paired = FALSE,
...,
trim = spatstat.options("maxedgewt"),
dx=NULL, dy=NULL,
give.rmax=FALSE, gW=NULL)

rmax.Trans(W, g=setcov(W))

134 edge.Trans

Arguments

X, Y Point patterns (objects of class "ppp").

W Window for which the edge correction is required.

exact Logical. If TRUE, a slow algorithm will be used to compute the exact value. If
FALSE, a fast algorithm will be used to compute the approximate value.

paired Logical value indicating whether X and Y are paired. If TRUE, compute the edge
correction for corresponding points X[i], Y[i] for all i. If FALSE, compute the
edge correction for each possible pair of points X[i], Y[j] for all i and j.

... Ignored.

trim Maximum permitted value of the edge correction weight.

dx, dy Alternative data giving the x and y coordinates of the vector differences between
the points. Incompatible with X and Y. See Details.

give.rmax Logical. If TRUE, also compute the value of rmax.Trans(W) and return it as an
attribute of the result.

g, gW Optional. Set covariance of W, if it has already been computed. Not required if
W is a rectangle.

Details

The function edge.Trans computes Ohser and Stoyan’s translation edge correction weight, which
is used in estimating the K function and in many other contexts.

The function rmax.Trans computes the maximum value of distance r for which the translation
edge correction estimate of K(r) is valid.

For a pair of points x and y in a window W , the translation edge correction weight is

e(u, r) =
area(W)

area(W ∩ (W + y − x))

where W + y − x is the result of shifting the window W by the vector y − x. The denominator is
the area of the overlap between this shifted window and the original window.

The function edge.Trans computes this edge correction weight. If paired=TRUE, then X and Y
should contain the same number of points. The result is a vector containing the edge correction
weights e(X[i], Y[i]) for each i.

If paired=FALSE, then the result is a matrix whose i,j entry gives the edge correction weight
e(X[i], Y[j]).

Computation is exact if the window is a rectangle. Otherwise,

• if exact=TRUE, the edge correction weights are computed exactly using overlap.owin, which
can be quite slow.

• if exact=FALSE (the default), the weights are computed rapidly by evaluating the set covari-
ance function setcov using the Fast Fourier Transform.

If any value of the edge correction weight exceeds trim, it is set to trim.

The arguments dx and dy can be provided as an alternative to X and Y. If paired=TRUE then dx,dy
should be vectors of equal length such that the vector difference of the ith pair is c(dx[i], dy[i]).

Emark 135

If paired=FALSE then dx,dy should be matrices of the same dimensions, such that the vector dif-
ference between X[i] and Y[j] is c(dx[i,j], dy[i,j]). The argument W is needed.

The value of rmax.Trans is the shortest distance from the origin (0, 0) to the boundary of the
support of the set covariance function of W. It is computed by pixel approximation using setcov,
unless W is a rectangle, when rmax.Trans(W) is the length of the shortest side of the rectangle.

Value

Numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

See Also

rmax.Trans, edge.Ripley, setcov, Kest

Examples

v <- edge.Trans(cells)
rmax.Trans(Window(cells))

Emark Diagnostics for random marking

Description

Estimate the summary functions E(r) and V (r) for a marked point pattern, proposed by Schlather
et al (2004) as diagnostics for dependence between the points and the marks.

Usage

Emark(X, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Vmark(X, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

136 Emark

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp. The pattern should have numeric marks.

r Optional. Numeric vector. The values of the argument r at which the function
E(r) or V (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

normalise IfTRUE, normalise the estimate of E(r) or V (r) so that it would have value equal
to 1 if the marks are independent of the points.

Details

For a marked point process, Schlather et al (2004) defined the functions E(r) and V (r) to be the
conditional mean and conditional variance of the mark attached to a typical random point, given
that there exists another random point at a distance r away from it.

More formally,
E(r) = E0u[M(0)]

and
V (r) = E0u[(M(0)− E(u))2]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r, and where M(0) denotes the mark attached to the point
0.

These functions may serve as diagnostics for dependence between the points and the marks. If the
points and marks are independent, then E(r) and V (r) should be constant (not depending on r).
See Schlather et al (2004).

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern with numeric marks.

The argument r is the vector of values for the distance r at which kf (r) is estimated.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks).

translate Translation correction (Ohser, 1983). Implemented for all window geometries, but slow
for complex windows.

Emark 137

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are
estimated using density estimation techniques. The user can choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

Value

If marks(X) is a numeric vector, the result is an object of class "fv" (see fv.object). If marks(X)
is a data frame, the result is a list of objects of class "fv", one for each column of marks.

An object of class "fv" is essentially a data frame containing numeric columns

r the values of the argument r at which the function E(r) or V (r) has been esti-
mated

theo the theoretical, constant value of E(r) or V (r) when the marks attached to dif-
ferent points are independent

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function E(r) or V (r) obtained by the edge
corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Schlather, M. and Ribeiro, P. and Diggle, P. (2004) Detecting dependence between marks and loca-
tions of marked point processes. Journal of the Royal Statistical Society, series B 66 (2004) 79-83.

See Also

Mark correlation markcorr, mark variogram markvario for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Examples

plot(Emark(spruces))
E <- Emark(spruces, method="density", kernel="epanechnikov")
plot(Vmark(spruces))

plot(Emark(finpines))
V <- Vmark(finpines)

138 envelope

envelope Simulation Envelopes of Summary Function

Description

Computes simulation envelopes of a summary function.

Usage

envelope(Y, fun, ...)

S3 method for class 'ppp'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y Object containing point pattern data. A point pattern (object of class "ppp") or
a fitted point process model (object of class "ppm", "kppm" or "slrm").

fun Function that computes the desired summary statistic for a point pattern.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.

envelope 139

Alternatively simulate may be an object produced by the envelope command:
see Details.

fix.n Logical. If TRUE, simulated patterns will have the same number of points as the
original data pattern. This option is currently not available for envelope.kppm.

fix.marks Logical. If TRUE, simulated patterns will have the same number of points and the
same marks as the original data pattern. In a multitype point pattern this means
that the simulated patterns will have the same number of points of each type as
the original data. This option is currently not available for envelope.kppm.

verbose Logical flag indicating whether to print progress reports during the simulations.

clipdata Logical flag indicating whether the data point pattern should be clipped to the
same window as the simulated patterns, before the summary function for the data
is computed. This should usually be TRUE to ensure that the data and simulations
are properly comparable.

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.
Default is use.theory=TRUE if Y is a point pattern, or a point process model
equivalent to Complete Spatial Randomness, and use.theory=FALSE other-
wise.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

140 envelope

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are only rejected when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic
based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern
data.

For the most basic use, if you have a point pattern X and you want to test Complete Spatial Random-
ness (CSR), type plot(envelope(X, Kest,nsim=39)) to see the K function for X plotted together
with the envelopes of the K function for 39 simulations of CSR.

The envelope function is generic, with methods for the classes "ppp", "ppm", "kppm" and "slrm"
described here. There are also methods for the classes "pp3", "lpp" and "lppm" which are de-
scribed separately under envelope.pp3 and envelope.lpp. Envelopes can also be computed from
other envelopes, using envelope.envelope.

To create simulation envelopes, the command envelope(Y, ...) first generates nsim random point
patterns in one of the following ways.

• If Y is a point pattern (an object of class "ppp") and simulate=NULL, then we generate nsim
simulations of Complete Spatial Randomness (i.e. nsim simulated point patterns each being
a realisation of the uniform Poisson point process) with the same intensity as the pattern
Y. (If Y is a multitype point pattern, then the simulated patterns are also given independent
random marks; the probability distribution of the random marks is determined by the relative
frequencies of marks in Y.)

envelope 141

• If Y is a fitted point process model (an object of class "ppm" or "kppm" or "slrm") and
simulate=NULL, then this routine generates nsim simulated realisations of that model.

• If simulate is supplied, then it determines how the simulated point patterns are generated. It
may be either

– an expression in the R language, typically containing a call to a random generator. This
expression will be evaluated nsim times to yield nsim point patterns. For example if
simulate=expression(runifpoint(100)) then each simulated pattern consists of ex-
actly 100 independent uniform random points.

– a function in the R language, typically containing a call to a random generator. This
function will be applied repeatedly to the original data pattern Y to yield nsim point pat-
terns. For example if simulate=rlabel then each simulated pattern was generated by
evaluating rlabel(Y) and consists of a randomly-relabelled version of Y.

– a list of point patterns. The entries in this list will be taken as the simulated patterns.
– an object of class "envelope". This should have been produced by calling envelope

with the argument savepatterns=TRUE. The simulated point patterns that were saved in
this object will be extracted and used as the simulated patterns for the new envelope com-
putation. This makes it possible to plot envelopes for two different summary functions
based on exactly the same set of simulated point patterns.

The summary statistic fun is applied to each of these simulated patterns. Typically fun is one of
the functions Kest, Gest, Fest, Jest, pcf, Kcross, Kdot, Gcross, Gdot, Jcross, Jdot, Kmulti,
Gmulti, Jmulti or Kinhom. It may also be a character string containing the name of one of these
functions.

The statistic fun can also be a user-supplied function; if so, then it must have arguments X and r
like those in the functions listed above, and it must return an object of class "fv".

Upper and lower critical envelopes are computed in one of the following ways:

pointwise: by default, envelopes are calculated pointwise (i.e. for each value of the distance ar-
gument r), by sorting the nsim simulated values, and taking the m-th lowest and m-th highest
values, where m = nrank. For example if nrank=1, the upper and lower envelopes are the
pointwise maximum and minimum of the simulated values.
The pointwise envelopes are not “confidence bands” for the true value of the function! Rather,
they specify the critical points for a Monte Carlo test (Ripley, 1981). The test is constructed
by choosing a fixed value of r, and rejecting the null hypothesis if the observed function value
lies outside the envelope at this value of r. This test has exact significance level alpha = 2 *
nrank/(1 + nsim).

simultaneous: if global=TRUE, then the envelopes are determined as follows. First we calculate
the theoretical mean value of the summary statistic (if we are testing CSR, the theoretical value
is supplied by fun; otherwise we perform a separate set of nsim2 simulations, compute the av-
erage of all these simulated values, and take this average as an estimate of the theoretical mean
value). Then, for each simulation, we compare the simulated curve to the theoretical curve,
and compute the maximum absolute difference between them (over the interval of r values
specified by ginterval). This gives a deviation value di for each of the nsim simulations.
Finally we take the m-th largest of the deviation values, where m=nrank, and call this dcrit.
Then the simultaneous envelopes are of the form lo = expected - dcrit and hi = expected
+ dcrit where expected is either the theoretical mean value theo (if we are testing CSR)
or the estimated theoretical value mmean (if we are testing another model). The simultaneous
critical envelopes have constant width 2 * dcrit.

142 envelope

The simultaneous critical envelopes allow us to perform a different Monte Carlo test (Ripley,
1981). The test rejects the null hypothesis if the graph of the observed function lies outside the
envelope at any value of r. This test has exact significance level alpha = nrank/(1 + nsim).
This test can also be performed using mad.test.

based on sample moments: if VARIANCE=TRUE, the algorithm calculates the (pointwise) sample
mean and sample variance of the simulated functions. Then the envelopes are computed as
mean plus or minus nSD standard deviations. These envelopes do not have an exact signif-
icance interpretation. They are a naive approximation to the critical points of the Neyman-
Pearson test assuming the summary statistic is approximately Normally distributed.

The return value is an object of class "fv" containing the summary function for the data point
pattern, the upper and lower simulation envelopes, and the theoretical expected value (exact or esti-
mated) of the summary function for the model being tested. It can be plotted using plot.envelope.

If VARIANCE=TRUE then the return value also includes the sample mean, sample variance and other
quantities.

Arguments can be passed to the function fun through This means that you simply specify
these arguments in the call to envelope, and they will be passed to fun. In particular, the argument
correction determines the edge correction to be used to calculate the summary statistic. See the
section on Edge Corrections, and the Examples.

Arguments can also be passed to the function fun through the list funargs. This mechanism is typ-
ically used if an argument of fun has the same name as an argument of envelope. The list funargs
should contain entries of the form name=value, where each name is the name of an argument of
fun.

There is also an option, rarely used, in which different function arguments are used when computing
the summary function for the data Y and for the simulated patterns. If funYargs is given, it will
be used when the summary function for the data Y is computed, while funargs will be used when
computing the summary function for the simulated patterns. This option is only needed in rare
cases: usually the basic principle requires that the data and simulated patterns must be treated
equally, so that funargs and funYargs should be identical.

If Y is a fitted cluster point process model (object of class "kppm"), and simulate=NULL, then the
model is simulated directly using simulate.kppm.

If Y is a fitted Gibbs point process model (object of class "ppm"), and simulate=NULL, then the
model is simulated by running the Metropolis-Hastings algorithm rmh. Complete control over this
algorithm is provided by the arguments start and control which are passed to rmh.

For simultaneous critical envelopes (global=TRUE) the following options are also useful:

ginterval determines the interval of r values over which the deviation between curves is cal-
culated. It should be a numeric vector of length 2. There is a sensible default (namely, the
recommended plotting interval for fun(X), or the range of r values if r is explicitly specified).

transform specifies a transformation of the summary function fun that will be carried out before
the deviations are computed. Such transforms are useful if global=TRUE or VARIANCE=TRUE.
The transform must be an expression object using the symbol . to represent the function
value (and possibly other symbols recognised by with.fv). For example, the conventional
way to normalise the K function (Ripley, 1981) is to transform it to the L function L(r) =√
K(r)/π and this is implemented by setting transform=expression(sqrt(./pi)).

envelope 143

It is also possible to extract the summary functions for each of the individual simulated point pat-
terns, by setting savefuns=TRUE. Then the return value also has an attribute "simfuns" containing
all the summary functions for the individual simulated patterns. It is an "fv" object containing
functions named sim1, sim2, ... representing the nsim summary functions.

It is also possible to save the simulated point patterns themselves, by setting savepatterns=TRUE.
Then the return value also has an attribute "simpatterns" which is a list of length nsim containing
all the simulated point patterns.

See plot.envelope and plot.fv for information about how to plot the envelopes.

Different envelopes can be recomputed from the same data using envelope.envelope. Envelopes
can be combined using pool.envelope.

Value

An object of class "envelope" and "fv", see fv.object, which can be printed and plotted directly.

Essentially a data frame containing columns

r the vector of values of the argument r at which the summary function fun has
been estimated

obs values of the summary function for the data point pattern
lo lower envelope of simulations
hi upper envelope of simulations

and either

theo theoretical value of the summary function under CSR (Complete Spatial Ran-
domness, a uniform Poisson point process) if the simulations were generated
according to CSR

mmean estimated theoretical value of the summary function, computed by averaging
simulated values, if the simulations were not generated according to CSR.

Additionally, if savepatterns=TRUE, the return value has an attribute "simpatterns" which is a
list containing the nsim simulated patterns. If savefuns=TRUE, the return value has an attribute
"simfuns" which is an object of class "fv" containing the summary functions computed for each
of the nsim simulated patterns.

Errors and warnings

An error may be generated if one of the simulations produces a point pattern that is empty, or is
otherwise unacceptable to the function fun.

The upper envelope may be NA (plotted as plus or minus infinity) if some of the function values
computed for the simulated point patterns are NA. Whether this occurs will depend on the function
fun, but it usually happens when the simulated point pattern does not contain enough points to
compute a meaningful value.

Confidence intervals

Simulation envelopes do not compute confidence intervals; they generate significance bands. If you
really need a confidence interval for the true summary function of the point process, use lohboot.
See also varblock.

144 envelope

Edge corrections

It is common to apply a correction for edge effects when calculating a summary function such as
the K function. Typically the user has a choice between several possible edge corrections. In a
call to envelope, the user can specify the edge correction to be applied in fun, using the argument
correction. See the Examples below.

Summary functions in spatstat Summary functions that are available in spatstat, such as Kest,
Gest and pcf, have a standard argument called correction which specifies the name of one
or more edge corrections.
The list of available edge corrections is different for each summary function, and may also
depend on the kind of window in which the point pattern is recorded. In the case of Kest (the
default and most frequently used value of fun) the best edge correction is Ripley’s isotropic
correction if the window is rectangular or polygonal, and the translation correction if the
window is a binary mask. See the help files for the individual functions for more information.
All the summary functions in spatstat recognise the option correction="best" which gives
the “best” (most accurate) available edge correction for that function.
In a call to envelope, if fun is one of the summary functions provided in spatstat, then the
default is correction="best". This means that by default, the envelope will be computed
using the “best” available edge correction.
The user can override this default by specifying the argument correction. For example the
computation can be accelerated by choosing another edge correction which is less accurate
than the “best” one, but faster to compute.

User-written summary functions If fun is a function written by the user, then envelope has to
guess what to do.
If fun has an argument called correction, or has ... arguments, then envelope assumes
that the function can handle a correction argument. To compute the envelope, fun will be
called with a correction argument. The default is correction="best", unless overridden
in the call to envelope.
Otherwise, if fun does not have an argument called correction and does not have ... ar-
guments, then envelope assumes that the function cannot handle a correction argument. To
compute the envelope, fun is called without a correction argument.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Arnold, 2003.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

envelope 145

See Also

dclf.test, mad.test for envelope-based tests.

fv.object, plot.envelope, plot.fv, envelope.envelope, pool.envelope for handling en-
velopes. There are also methods for print and summary.

Kest, Gest, Fest, Jest, pcf, ppp, ppm, default.expand

Examples

X <- simdat
online <- interactive()
Nsim <- if(online) 19 else 3

Envelope of K function under CSR
plot(envelope(X, nsim=Nsim))

Translation edge correction (this is also FASTER):
if(online) {
plot(envelope(X, correction="translate"))

} else {
E <- envelope(X, nsim=Nsim, correction="translate")
}

Global envelopes
if(online) {

plot(envelope(X, Lest, global=TRUE))
plot(envelope(X, Kest, global=TRUE, scale=function(r) { r }))

} else {
E <- envelope(X, Lest, nsim=Nsim, global=TRUE)
E <- envelope(X, Kest, nsim=Nsim, global=TRUE, scale=function(r) { r })
E
summary(E)
}

Envelope of G function under CSR
if(online) {

plot(envelope(X, Gest))
} else {
E <- envelope(X, Gest, correction="rs", nsim=Nsim)
}

Envelope of L function under CSR
L(r) = sqrt(K(r)/pi)
if(online) {
E <- envelope(X, Kest)
} else {
E <- envelope(X, Kest, correction="border", nsim=Nsim)
}
plot(E, sqrt(./pi) ~ r)

146 envelope

Simultaneous critical envelope for L function
(alternatively, use Lest)
if(online) {
plot(envelope(X, Kest, transform=expression(sqrt(./pi)), global=TRUE))
} else {
E <- envelope(X, Kest, nsim=Nsim, correction="border",

transform=expression(sqrt(./pi)), global=TRUE)
}

One-sided envelope
if(online) {
plot(envelope(X, Lest, alternative="less"))
} else {
E <- envelope(X, Lest, nsim=Nsim, alternative="less")
}

How to pass arguments needed to compute the summary functions:
We want envelopes for Jcross(X, "A", "B")
where "A" and "B" are types of points in the dataset 'demopat'

if(online) {
plot(envelope(demopat, Jcross, i="A", j="B"))
} else {
plot(envelope(demopat, Jcross, correction="rs", i="A", j="B", nsim=Nsim))
}

Use of `simulate' expression
if(online) {
plot(envelope(cells, Gest, simulate=expression(runifpoint(42))))
plot(envelope(cells, Gest, simulate=expression(rMaternI(100,0.02))))
} else {
plot(envelope(cells, Gest, correction="rs", simulate=expression(runifpoint(42)), nsim=Nsim))

plot(envelope(cells, Gest, correction="rs", simulate=expression(rMaternI(100, 0.02)),
nsim=Nsim, global=TRUE))
}

Use of `simulate' function
if(online) {

plot(envelope(amacrine, Kcross, simulate=rlabel))
} else {

plot(envelope(amacrine, Kcross, simulate=rlabel, nsim=Nsim))
}

Envelope under random toroidal shifts
if(online) {
plot(envelope(amacrine, Kcross, i="on", j="off",

simulate=expression(rshift(amacrine, radius=0.25))))
}

Envelope under random shifts with erosion
if(online) {
plot(envelope(amacrine, Kcross, i="on", j="off",

envelope.envelope 147

simulate=expression(rshift(amacrine, radius=0.1, edge="erode"))))
}

Note that the principle of symmetry, essential to the validity of
simulation envelopes, requires that both the observed and
simulated patterns be subjected to the same method of intensity
estimation. In the following example it would be incorrect to set the
argument 'lambda=red.dens' in the envelope command, because this
would mean that the inhomogeneous K functions of the simulated
patterns would be computed using the intensity function estimated
from the original redwood data, violating the symmetry. There is
still a concern about the fact that the simulations are generated
from a model that was fitted to the data; this is only a problem in
small datasets.

if(online) {
red.dens <- density(redwood, sigma=bw.diggle, positive=TRUE)
plot(envelope(redwood, Kinhom, sigma=bw.diggle,

simulate=expression(rpoispp(red.dens))))
}

Precomputed list of point patterns
if(online) {
nX <- npoints(X)
PatList <- list()
for(i in 1:Nsim) PatList[[i]] <- runifpoint(nX)
E <- envelope(X, Kest, nsim=19, simulate=PatList)
} else {
PatList <- list()
for(i in 1:Nsim) PatList[[i]] <- runifpoint(10)
}
E <- envelope(X, Kest, nsim=Nsim, simulate=PatList)

re-using the same point patterns
EK <- envelope(X, Kest, nsim=Nsim, savepatterns=TRUE)
EG <- envelope(X, Gest, nsim=Nsim, simulate=EK)

envelope.envelope Recompute Envelopes

Description

Given a simulation envelope (object of class "envelope"), compute another envelope from the
same simulation data using different parameters.

Usage

S3 method for class 'envelope'
envelope(Y, fun = NULL, ...,

transform=NULL, global=FALSE, VARIANCE=FALSE)

148 envelope.envelope

Arguments

Y A simulation envelope (object of class "envelope").

fun Optional. Summary function to be applied to the simulated point patterns.
..., transform, global, VARIANCE

Parameters controlling the type of envelope that is re-computed. See envelope.

Details

This function can be used to re-compute a simulation envelope from previously simulated data,
using different parameter settings for the envelope: for example, a different significance level, or a
global envelope instead of a pointwise envelope.

The function envelope is generic. This is the method for the class "envelope".

The argument Y should be a simulation envelope (object of class "envelope") produced by any of
the methods for envelope. Additionally, Y must contain either

• the simulated point patterns that were used to create the original envelope (so Y should have
been created by calling envelope with savepatterns=TRUE);

• the summary functions of the simulated point patterns that were used to create the original
envelope (so Y should have been created by calling envelope with savefuns=TRUE).

If the argument fun is given, it should be a summary function that can be applied to the simulated
point patterns that were used to create Y. The envelope of the summary function fun for these point
patterns will be computed using the parameters specified in

If fun is not given, then:

• If Y contains the summary functions that were used to compute the original envelope, then the
new envelope will be computed from these original summary functions.

• Otherwise, if Y contains the simulated point patterns. then the K function Kest will be ap-
plied to each of these simulated point patterns, and the new envelope will be based on the K
functions.

The new envelope will be computed using the parameters specified in

See envelope for a full list of envelope parameters. Frequently-used parameters include nrank and
nsim (to change the number of simulations used and the significance level of the envelope), global
(to change from pointwise to global envelopes) and VARIANCE (to compute the envelopes from the
sample moments instead of the ranks).

Value

An envelope (object of class "envelope".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

envelope.pp3 149

See Also

envelope

Examples

E <- envelope(cells, Kest, nsim=19, savefuns=TRUE, savepatterns=TRUE)
E2 <- envelope(E, nrank=2)
Eg <- envelope(E, global=TRUE)
EG <- envelope(E, Gest)
EL <- envelope(E, transform=expression(sqrt(./pi)))

envelope.pp3 Simulation Envelopes of Summary Function for 3D Point Pattern

Description

Computes simulation envelopes of a summary function for a three-dimensional point pattern.

Usage

S3 method for class 'pp3'
envelope(Y, fun=K3est, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs, simulate=NULL, verbose=TRUE,
transform=NULL,global=FALSE,ginterval=NULL,use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y A three-dimensional point pattern (object of class "pp3").

fun Function that computes the desired summary statistic for a 3D point pattern.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

150 envelope.pp3

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

verbose Logical flag indicating whether to print progress reports during the simulations.

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

envelope.pp3 151

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are only rejected when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic
based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern
data.

The envelope function is generic, with methods for the classes "ppp", "ppm" and "kppm" described
in the help file for envelope. This function envelope.pp3 is the method for three-dimensional
point patterns (objects of class "pp3").

For the most basic use, if you have a 3D point pattern X and you want to test Complete Spatial
Randomness (CSR), type plot(envelope(X, K3est,nsim=39)) to see the three-dimensional K
function for X plotted together with the envelopes of the three-dimensional K function for 39 sim-
ulations of CSR.

To create simulation envelopes, the command envelope(Y, ...) first generates nsim random point
patterns in one of the following ways.

• If simulate=NULL, then we generate nsim simulations of Complete Spatial Randomness (i.e.
nsim simulated point patterns each being a realisation of the uniform Poisson point process)
with the same intensity as the pattern Y.

• If simulate is supplied, then it determines how the simulated point patterns are generated.
See envelope for details.

The summary statistic fun is applied to each of these simulated patterns. Typically fun is one of the
functions K3est, G3est, F3est or pcf3est. It may also be a character string containing the name
of one of these functions.

For further information, see the documentation for envelope.

Value

A function value table (object of class "fv") which can be plotted directly. See envelope for further
details.

152 envelopeArray

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

See Also

pp3, rpoispp3, K3est, G3est, F3est, pcf3est.

Examples

X <- rpoispp3(20, box3())
if(interactive()) {
plot(envelope(X, nsim=39))
}

envelopeArray Array of Simulation Envelopes of Summary Function

Description

Compute an array of simulation envelopes using a summary function that returns an array of curves.

Usage

envelopeArray(X, fun, ..., dataname = NULL, verb = FALSE, reuse = TRUE)

Arguments

X Object containing point pattern data. A point pattern (object of class "ppp",
"lpp", "pp3" or "ppx") or a fitted point process model (object of class "ppm",
"kppm" or "lppm").

fun Function that computes the desired summary statistic for a point pattern. The
result of fun should be a function array (object of class "fasp").

... Arguments passed to envelope to control the simulations, or passed to fun
when evaluating the function.

dataname Optional character string name for the data.

verb Logical value indicating whether to print progress reports.

reuse Logical value indicating whether the envelopes in each panel should be based
on the same set of simulated patterns (reuse=TRUE, the default) or on different,
independent sets of simulated patterns (reuse=FALSE).

envelopeArray 153

Details

This command is the counterpart of envelope when the function fun that is evaluated on each
simulated point pattern will return an object of class "fasp" representing an array of summary
functions.

Simulated point patterns are generated according to the rules described for envelope. In brief, if X
is a point pattern, the algorithm generates simulated point patterns of the same kind, according to
complete spatial randomness. If X is a fitted model, the algorithm generates simulated point patterns
according to this model.

For each simulated point pattern Y, the function fun is invoked. The result Z <- fun(Y, ...) should
be an object of class "fasp" representing an array of summary functions. The dimensions of the
array Z should be the same for each simulated pattern Y.

This algorithm finds the simulation envelope of the summary functions in each cell of the array.

Value

An object of class "fasp" representing an array of envelopes.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

envelope, alltypes.

Examples

if(interactive()) {
Nsim <- 19
X <- finpines
co <- "best"

} else {
smaller task to reduce check time
Nsim <- 3
X <- finpines[c(FALSE, TRUE)]
co <- "none"

}
A <- envelopeArray(X, markcrosscorr, nsim=Nsim, correction=co)
plot(A)

154 eval.fasp

eval.fasp Evaluate Expression Involving Function Arrays

Description

Evaluates any expression involving one or more function arrays (fasp objects) and returns another
function array.

Usage

eval.fasp(expr, envir, dotonly=TRUE)

Arguments

expr An expression involving the names of objects of class "fasp".

envir Optional. The environment in which to evaluate the expression, or a named list
containing "fasp" objects to be used in the expression.

dotonly Logical. Passed to eval.fv.

Details

This is a wrapper to make it easier to perform pointwise calculations with the arrays of summary
functions used in spatial statistics.

A function array (object of class "fasp") can be regarded as a matrix whose entries are functions.
Objects of this kind are returned by the command alltypes.

Suppose X is an object of class "fasp". Then eval.fasp(X+3) effectively adds 3 to the value of
every function in the array X, and returns the resulting object.

Suppose X and Y are two objects of class "fasp" which are compatible (for example the arrays must
have the same dimensions). Then eval.fasp(X + Y) will add the corresponding functions in each
cell of the arrays X and Y, and return the resulting array of functions.

Suppose X is an object of class "fasp" and f is an object of class "fv". Then eval.fasp(X + f)
will add the function f to the functions in each cell of the array X, and return the resulting array of
functions.

In general, expr can be any expression involving (a) the names of objects of class "fasp" or "fv",
(b) scalar constants, and (c) functions which are vectorised. See the Examples.

First eval.fasp determines which of the variable names in the expression expr refer to objects of
class "fasp". The expression is then evaluated for each cell of the array using eval.fv.

The expression expr must be vectorised. There must be at least one object of class "fasp" in the
expression. All such objects must be compatible.

Value

Another object of class "fasp".

eval.fv 155

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

fasp.object, Kest

Examples

K <- alltypes(amacrine, "K")

expressions involving a fasp object
eval.fasp(K + 3)
L <- eval.fasp(sqrt(K/pi))

expression involving two fasp objects
D <- eval.fasp(K - L)

subtracting the unmarked K function from the cross-type K functions
K0 <- Kest(unmark(amacrine))
DK <- eval.fasp(K - K0)

Use of 'envir'
S <- eval.fasp(1-G, list(G=alltypes(amacrine, 'G')))

eval.fv Evaluate Expression Involving Functions

Description

Evaluates any expression involving one or more function value (fv) objects, and returns another
object of the same kind.

Usage

eval.fv(expr, envir, dotonly=TRUE, equiv=NULL, relabel=TRUE)

Arguments

expr An expression.
envir Optional. The environment in which to evaluate the expression, or a named list

containing "fv" objects to be used in the expression.
dotonly Logical. See Details.
equiv Mapping between column names of different objects that are deemed to be

equivalent. See Details.
relabel Logical value indicating whether to compute appropriate labels for the resulting

function. This should normally be TRUE (the default). See Details.

156 eval.fv

Details

This is a wrapper to make it easier to perform pointwise calculations with the summary functions
used in spatial statistics.

An object of class "fv" is essentially a data frame containing several different statistical estimates
of the same function. Such objects are returned by Kest and its relatives.

For example, suppose X is an object of class "fv" containing several different estimates of the
Ripley’s K function K(r), evaluated at a sequence of values of r. Then eval.fv(X+3) effectively
adds 3 to each function estimate in X, and returns the resulting object.

Suppose X and Y are two objects of class "fv" which are compatible (in particular they have the
same vector of r values). Then eval.im(X + Y) will add the corresponding function values in X and
Y, and return the resulting function.

In general, expr can be any expression involving (a) the names of objects of class "fv", (b) scalar
constants, and (c) functions which are vectorised. See the Examples.

First eval.fv determines which of the variable names in the expression expr refer to objects of
class "fv". Each such name is replaced by a vector containing the function values. The expression
is then evaluated. The result should be a vector; it is taken as the new vector of function values.

The expression expr must be vectorised. There must be at least one object of class "fv" in the
expression. If the objects are not compatible, they will be made compatible by harmonise.fv.

If dotonly=TRUE (the default), the expression will be evaluated only for those columns of an "fv"
object that contain values of the function itself (rather than values of the derivative of the function,
the hazard rate, etc). If dotonly=FALSE, the expression will be evaluated for all columns.

For example the result of Fest includes several columns containing estimates of the empty space
function F (r), but also includes an estimate of the hazard h(r) of F (r). Transformations that are
valid for F may not be valid for h. Accordingly, h would normally be omitted from the calculation.

The columns of an object x that represent the function itself are identified by its “dot” names,
fvnames(x, "."). They are the columns normally plotted by plot.fv and identified by the symbol
"." in plot formulas in plot.fv.

The argument equiv can be used to specify that two different column names in different function
objects are mathematically equivalent or cognate. It should be a list of name=value pairs, or a
named vector of character strings, indicating the pairing of equivalent names. (Without this argu-
ment, these columns would be discarded.) See the Examples.

The argument relabel should normally be TRUE (the default). It determines whether to compute
appropriate mathematical labels and descriptions for the resulting function object (used when the
object is printed or plotted). If relabel=FALSE then this does not occur, and the mathematical labels
and descriptions in the result are taken from the function object that appears first in the expression.
This reduces computation time slightly (for advanced use only).

Value

Another object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

Extract.fasp 157

See Also

fv.object, Kest

Examples

manipulating the K function
X <- runifrect(42)
Ks <- Kest(X)

eval.fv(Ks + 3)
Ls <- eval.fv(sqrt(Ks/pi))

manipulating two K functions
Y <- runifrect(20)
Kr <- Kest(Y)

Kdif <- eval.fv(Ks - Kr)
Z <- eval.fv(sqrt(Ks/pi) - sqrt(Kr/pi))

Use of 'envir'
U <- eval.fv(sqrt(K), list(K=Ks))

Use of 'equiv'
Fc <- Fest(cells)
Gc <- Gest(cells)
Hanisch and Chiu-Stoyan estimators are cognate
Dc <- eval.fv(Fc - Gc, equiv=list(cs="han"))

Extract.fasp Extract Subset of Function Array

Description

Extract a subset of a function array (an object of class "fasp").

Usage

S3 method for class 'fasp'
x[I, J, drop=TRUE,...]

Arguments

x A function array. An object of class "fasp".
I any valid expression for a subset of the row indices of the array.
J any valid expression for a subset of the column indices of the array.
drop Logical. When the selected subset consists of only one cell of the array, if

drop=FALSE the result is still returned as a 1×1 array of functions (class "fasp")
while if drop=TRUE it is returned as a function (class "fv").

... Ignored.

158 Extract.fv

Details

A function array can be regarded as a matrix whose entries are functions. See fasp.object for an
explanation of function arrays.

This routine extracts a sub-array according to the usual conventions for matrix indexing.

Value

A function array (of class "fasp"). Exceptionally, if the array has only one cell, and if drop=TRUE,
then the result is a function value table (class "fv").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

fasp.object

Examples

online <- interactive()
Lansing woods data - multitype points with 6 types
X <- lansing

if(!online) {
subsample data (from 2251 to 450 points) to shorten check time
X <- X[c(FALSE,FALSE,FALSE,FALSE,TRUE)]

}

a <- alltypes(X, 'K')

extract first three marks only
b <- a[1:3,1:3]
if(online) {plot(b)}
subset of array pertaining to hickories
h <- a["hickory",]
if(online) {plot(h)}

Extract.fv Extract or Replace Subset of Function Values

Description

Extract or replace a subset of an object of class "fv".

Extract.fv 159

Usage

S3 method for class 'fv'
x[i, j, ..., drop=FALSE]

S3 replacement method for class 'fv'
x[i, j] <- value

S3 replacement method for class 'fv'
x$name <- value

Arguments

x a function value object, of class "fv" (see fv.object). Essentially a data frame.

i any appropriate subset index. Selects a subset of the rows of the data frame, i.e.
a subset of the domain of the function(s) represented by x.

j any appropriate subset index for the columns of the data frame. Selects some of
the functions present in x.

name the name of a column of the data frame.

... Ignored.

drop Logical. If TRUE, the result is a data frame or vector containing the selected rows
and columns of data. If FALSE (the default), the result is another object of class
"fv".

value Replacement value for the column or columns selected by name or j.

Details

These functions extract a designated subset of an object of class "fv", or replace the designated
subset with other data, or delete the designated subset.

The subset is specified by the row index i and column index j, or by the column name name. Either
i or j may be missing, or both may be missing.

The function [.fv is a method for the generic operator [for the class "fv". It extracts the designated
subset of x, and returns it as another object of class "fv" (if drop=FALSE) or as a data frame or vector
(if drop=TRUE).

The function [<-.fv is a method for the generic operator [<- for the class "fv". If value is NULL,
the designated subset of x will be deleted from x. Otherwise, the designated subset of x will be
replaced by the data contained in value. The return value is the modified object x.

The function $<-.fv is a method for the generic operator $<- for the class "fv". If value is NULL,
the designated column of x will be deleted from x. Otherwise, the designated column of x will be
replaced by the data contained in value. The return value is the modified object x.

Value

The result of [.fv with drop=TRUE is a data frame or vector.

Otherwise, the result is another object of class "fv".

160 F3est

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

fv.object

Examples

K <- Kest(cells)

discard the estimates of K(r) for r > 0.1
Ksub <- K[K$r <= 0.1,]

extract the border method estimates
bor <- K[, "border", drop=TRUE]
or equivalently
bor <- K$border

remove the border-method estimates
K$border <- NULL
K

F3est Empty Space Function of a Three-Dimensional Point Pattern

Description

Estimates the empty space function F3(r) from a three-dimensional point pattern.

Usage

F3est(X, ..., rmax = NULL, nrval = 128, vside = NULL,
correction = c("rs", "km", "cs"),
sphere = c("fudge", "ideal", "digital"))

Arguments

X Three-dimensional point pattern (object of class "pp3").
... Ignored.
rmax Optional. Maximum value of argument r for which F3(r) will be estimated.
nrval Optional. Number of values of r for which F3(r) will be estimated. A large

value of nrval is required to avoid discretisation effects.
vside Optional. Side length of the voxels in the discrete approximation.
correction Optional. Character vector specifying the edge correction(s) to be applied. See

Details.
sphere Optional. Character string specifying how to calculate the theoretical value of

F3(r) for a Poisson process. See Details.

F3est 161

Details

For a stationary point process Φ in three-dimensional space, the empty space function is

F3(r) = P (d(0,Φ) ≤ r)

where d(0,Φ) denotes the distance from a fixed origin 0 to the nearest point of Φ.

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The empty space function of Φ can then be estimated using techniques described in the
References.

The box containing the point pattern is discretised into cubic voxels of side length vside. The
distance function d(u,Φ) is computed for every voxel centre point u using a three-dimensional ver-
sion of the distance transform algorithm (Borgefors, 1986). The empirical cumulative distribution
function of these values, with appropriate edge corrections, is the estimate of F3(r).

The available edge corrections are:

"rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)

"km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)

"cs": the three-dimensional generalisation of the Chiu-Stoyan or Hanisch estimator (Chiu and
Stoyan, 1998).

Alternatively correction="all" selects all options.

The result includes a column theo giving the theoretical value of F3(r) for a uniform Poisson
process (Complete Spatial Randomness). This value depends on the volume of the sphere of radius
r measured in the discretised distance metric. The argument sphere determines how this will be
calculated.

• If sphere="ideal" the calculation will use the volume of an ideal sphere of radius r namely
(4/3)πr3. This is not recommended because the theoretical values of F3(r) are inaccurate.

• If sphere="fudge" then the volume of the ideal sphere will be multiplied by 0.78, which
gives the approximate volume of the sphere in the discretised distance metric.

• If sphere="digital" then the volume of the sphere in the discretised distance metric is com-
puted exactly using another distance transform. This takes longer to compute, but is exact.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Warnings

A small value of vside and a large value of nrval are required for reasonable accuracy.

The default value of vside ensures that the total number of voxels is 2^22 or about 4 million. To
change the default number of voxels, see spatstat.options("nvoxel").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rana Moyeed.

162 fasp.object

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. Analysis of a three-dimensional point
pattern with replication. Applied Statistics 42 (1993) 641–668.

Baddeley, A.J. and Gill, R.D. (1997) Kaplan-Meier estimators of interpoint distance distributions
for spatial point processes. Annals of Statistics 25, 263–292.

Borgefors, G. (1986) Distance transformations in digital images. Computer Vision, Graphics and
Image Processing 34, 344–371.

Chiu, S.N. and Stoyan, D. (1998) Estimators of distance distributions for spatial patterns. Statistica
Neerlandica 52, 239–246.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

G3est, K3est, pcf3est for other summary functions of a three-dimensional point pattern.

Fest to estimate the empty space function of point patterns in two dimensions.

Examples

X <- rpoispp3(42)
Z <- F3est(X)
if(interactive()) plot(Z)

fasp.object Function Arrays for Spatial Patterns

Description

A class "fasp" to represent a “matrix” of functions, amenable to plotting as a matrix of plot panels.

Details

An object of this class is a convenient way of storing (and later plotting, editing, etc) a set of
functions fi,j(r) of a real argument r, defined for each possible pair (i, j) of indices 1 ≤ i, j ≤ n.
We may think of this as a matrix or array of functions fi,j .

Function arrays are particularly useful in the analysis of a multitype point pattern (a point pattern in
which the points are identified as belonging to separate types). We may want to compute a summary
function for the points of type i only, for each of the possible types i. This produces a 1×m array
of functions. Alternatively we may compute a summary function for each possible pair of types
(i, j). This produces an m×m array of functions.

For multitype point patterns the command alltypes will compute arrays of summary functions for
each possible type or for each possible pair of types. The function alltypes returns an object of
class "fasp".

An object of class "fasp" is a list containing at least the following components:

fasp.object 163

fns A list of data frames, each representing one of the functions.

which A matrix representing the spatial arrangement of the functions. If which[i,j] = k then
the function represented by fns[[k]] should be plotted in the panel at position (i, j). If
which[i,j] = NA then nothing is plotted in that position.

titles A list of character strings, providing suitable plotting titles for the functions.

default.formulae A list of default formulae for plotting each of the functions.

title A character string, giving a default title for the array when it is plotted.

Functions available

There are methods for plot, print and "[" for this class.

The plot method displays the entire array of functions. The method [.fasp selects a sub-array
using the natural indices i,j.

The command eval.fasp can be used to apply a transformation to each function in the array, and
to combine two arrays.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

alltypes, plot.fasp, [.fasp, eval.fasp

Examples

GG <- alltypes(amacrine, 'G')

plot(GG)

select the row corresponding to cells of type "on"
Gon <- GG["on",]
plot(Gon)

extract the G function for i = "on", j = "off"
Gonoff <- GG["on", "off", drop=TRUE]

Fisher variance stabilising transformation
GGfish <- eval.fasp(asin(sqrt(GG)))
plot(GGfish)

164 Fest

Fest Estimate the Empty Space Function or its Hazard Rate

Description

Estimates the empty space function F (r) or its hazard rate h(r) from a point pattern in a window
of arbitrary shape.

Usage

Fest(X, ..., eps, r=NULL, breaks=NULL,
correction=c("rs", "km", "cs"),
domain=NULL)

Fhazard(X, ...)

Arguments

X The observed point pattern, from which an estimate of F (r) will be computed.
An object of class ppp, or data in any format acceptable to as.ppp().

... Extra arguments, passed from Fhazard to Fest. Extra arguments to Fest are
ignored.

eps Optional. A positive number. The resolution of the discrete approximation to
Euclidean distance (see below). There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which F (r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

correction Optional. The edge correction(s) to be used to estimate F (r). A vector of char-
acter strings selected from "none", "rs", "km", "cs" and "best". Alternatively
correction="all" selects all options.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

Details

Fest computes an estimate of the empty space function F (r), and Fhazard computes an estimate
of its hazard rate h(r).

The empty space function (also called the “spherical contact distribution” or the “point-to-nearest-
event” distribution) of a stationary point process X is the cumulative distribution function F of the
distance from a fixed point in space to the nearest point of X .

An estimate of F derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory
analyses, the estimate of F is a useful statistic summarising the sizes of gaps in the pattern. For

Fest 165

inferential purposes, the estimate of F is usually compared to the true value of F for a completely
random (Poisson) point process, which is

F (r) = 1− e−λπr2

where λ is the intensity (expected number of points per unit area). Deviations between the empirical
and theoretical F curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the empty space function F from the point pattern X. It assumes that X can
be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in
the plane, observed through a bounded window. The window (which is specified in X) may have
arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp.

The algorithm uses two discrete approximations which are controlled by the parameter eps and by
the spacing of values of r respectively. (See below for details.) First-time users are strongly advised
not to specify these arguments.

The estimation of F is hampered by edge effects arising from the unobservability of points of
the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley,
1998; Ripley, 1988). The edge corrections implemented here are the border method or "reduced
sample" estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Chiu-
Stoyan estimator (Chiu and Stoyan, 1998).

Our implementation makes essential use of the distance transform algorithm of image processing
(Borgefors, 1986). A fine grid of pixels is created in the observation window. The Euclidean
distance between two pixels is approximated by the length of the shortest path joining them in
the grid, where a path is a sequence of steps between adjacent pixels, and horizontal, vertical and
diagonal steps have length 1, 1 and

√
2 respectively in pixel units. If the pixel grid is sufficiently

fine then this is an accurate approximation.

The parameter eps is the pixel width of the rectangular raster used to compute the distance transform
(see below). It must not be too large: the absolute error in distance values due to discretisation is
bounded by eps.

If eps is not specified, the function checks whether the window Window(X) contains pixel raster
information. If so, then eps is set equal to the pixel width of the raster; otherwise, eps defaults to
1/100 of the width of the observation window.

The argument r is the vector of values for the distance r at which F (r) should be evaluated. It
is also used to determine the breakpoints (in the sense of hist) for the computation of histograms
of distances. The estimators are computed from histogram counts. This introduces a discretisation
error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the spacing of successive r values must be very fine (ideally not greater than eps/4).

The algorithm also returns an estimate of the hazard rate function, h(r) of F (r). The hazard rate is
defined by

h(r) = − d

dr
log(1− F (r))

The hazard rate of F has been proposed as a useful exploratory statistic (Baddeley and Gill, 1994).
The estimate of h(r) given here is a discrete approximation to the hazard rate of the Kaplan-Meier

166 Fest

estimator of F . Note that F is absolutely continuous (for any stationary point process X), so the
hazard function always exists (Baddeley and Gill, 1997).

If the argument domain is given, the estimate of F (r) will be based only on the empty space dis-
tances measured from locations inside domain (although their nearest data points may lie outside
domain). This is useful in bootstrap techniques. The argument domain should be a window (object
of class "owin") or something acceptable to as.owin. It must be a subset of the window of the
point pattern X.

The naive empirical distribution of distances from each location in the window to the nearest point
of the data pattern, is a biased estimate of F . However this is also returned by the algorithm (if
correction="none"), as it is sometimes useful in other contexts. Care should be taken not to use
the uncorrected empirical F as if it were an unbiased estimator of F .

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

The result of Fest is essentially a data frame containing up to seven columns:

r the values of the argument r at which the function F (r) has been estimated

rs the “reduced sample” or “border correction” estimator of F (r)

km the spatial Kaplan-Meier estimator of F (r)

hazard the hazard rate λ(r) of F (r) by the spatial Kaplan-Meier method

cs the Chiu-Stoyan estimator of F (r)

raw the uncorrected estimate of F (r), i.e. the empirical distribution of the distance
from a random point in the window to the nearest point of the data pattern X

theo the theoretical value of F (r) for a stationary Poisson process of the same esti-
mated intensity.

The result of Fhazard contains only three columns

r the values of the argument r at which the hazard rate h(r) has been estimated

hazard the spatial Kaplan-Meier estimate of the hazard rate h(r)

theo the theoretical value of h(r) for a stationary Poisson process of the same esti-
mated intensity.

Warnings

The reduced sample (border method) estimator of F is pointwise approximately unbiased, but need
not be a valid distribution function; it may not be a nondecreasing function of r. Its range is always
within [0, 1].

The spatial Kaplan-Meier estimator of F is always nondecreasing but its maximum value may be
less than 1.

The estimate of hazard rate h(r) returned by the algorithm is an approximately unbiased estimate
for the integral of h() over the corresponding histogram cell. It may exhibit oscillations due to
discretisation effects. We recommend modest smoothing, such as kernel smoothing with kernel
width equal to the width of a histogram cell, using Smooth.fv.

Fest 167

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263-292.

Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image
Processing 34 (1986) 344-371.

Chiu, S.N. and Stoyan, D. (1998) Estimators of distance distributions for spatial patterns. Statistica
Neerlandica 52, 239–246.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Gest, Jest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

Fc <- Fest(cells, 0.01)

Tip: don't use F for the left hand side!
That's an abbreviation for FALSE

plot(Fc)

P-P style plot
plot(Fc, cbind(km, theo) ~ theo)

The empirical F is above the Poisson F
indicating an inhibited pattern

if(interactive()) {

168 Finhom

plot(Fc, . ~ theo)
plot(Fc, asin(sqrt(.)) ~ asin(sqrt(theo)))
}

Finhom Inhomogeneous Empty Space Function

Description

Estimates the inhomogeneous empty space function of a non-stationary point pattern.

Usage

Finhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL, ratio = FALSE,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
F function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm") or a function(x,y) which can be evaluated to give the intensity
value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

Finhom 169

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

Details

This command computes estimates of the inhomogeneous F -function (van Lieshout, 2010) of a
point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the empty space
function F for homogeneous point patterns computed by Fest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous F function is computed using the border correction, equation (6) in Van
Lieshout (2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel
smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

170 FmultiInhom

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Ginhom, Jinhom, Fest

Examples

online <- interactive()
if(online) {

plot(Finhom(swedishpines, sigma=10))
plot(Finhom(swedishpines, sigma=bw.diggle, adjust=2))

} else {
use a coarse grid for faster computation and package testing
plot(Finhom(swedishpines, sigma=10, dimyx=32))

}

FmultiInhom Inhomogeneous Marked F-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype F function, effec-
tively the cumulative distribution function of the distance from a fixed point to the nearest point in
subset J , adjusted for spatially varying intensity.

Usage

Fmulti.inhom(X, J,
lambda = NULL, lambdaJ = NULL, lambdamin = NULL,
...,
r = NULL)

FmultiInhom(X, J,
lambda = NULL, lambdaJ = NULL, lambdamin = NULL,
...,
r = NULL)

FmultiInhom 171

Arguments

X A spatial point pattern (object of class "ppp".

J A subset index specifying the subset of points to which distances are measured.
Any kind of subset index acceptable to [.ppp.

lambda Intensity estimates for each point of X. A numeric vector of length equal to
npoints(X). Incompatible with lambdaJ.

lambdaJ Intensity estimates for each point of X[J]. A numeric vector of length equal to
npoints(X[J]). Incompatible with lambda.

lambdamin A lower bound for the intensity, or at least a lower bound for the values in
lambdaJ or lambda[J].

... Extra arguments passed to as.mask to control the pixel resolution for the com-
putation.

r Vector of distance values at which the inhomogeneous G function should be
estimated. There is a sensible default.

Details

See Cronie and Van Lieshout (2015).

The functions FmultiInhom and Fmulti.inhom are identical.

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype F function.

Author(s)

Ottmar Cronie and Marie-Colette van Lieshout. Rewritten for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Finhom

Examples

X <- amacrine
J <- (marks(X) == "off")
online <- interactive()
eps <- if(online) NULL else 0.025
if(online && require(spatstat.model)) {

mod <- ppm(X ~ marks * x, eps=eps)
lambdaX <- fitted(mod, dataonly=TRUE)
lambdaOff <- predict(mod, eps=eps)[["off"]]
lmin <- min(lambdaOff) * 0.9

172 formula.fv

} else {
faster computation for package checker only
lambdaX <- intensity(X)[as.integer(marks(X))]
lmin <- intensity(X)[2] * 0.9

}

plot(FmultiInhom(X, J, lambda=lambdaX, lambdamin=lmin, eps=eps))

formula.fv Extract or Change the Plot Formula for a Function Value Table

Description

Extract or change the default plotting formula for an object of class "fv" (function value table).

Usage

S3 method for class 'fv'
formula(x, ...)

formula(x, ...) <- value

S3 replacement method for class 'fv'
formula(x, ...) <- value

Arguments

x An object of class "fv", containing the values of several estimates of a function.

... Arguments passed to other methods.

value New value of the formula. Either a formula or a character string.

Details

A function value table (object of class "fv", see fv.object) is a convenient way of storing and
plotting several different estimates of the same function.

The default behaviour of plot(x) for a function value table x is determined by a formula associated
with x called its plot formula. See plot.fv for explanation about these formulae.

The function formula.fv is a method for the generic command formula. It extracts the plot for-
mula associated with the object.

The function formula<- is generic. It changes the formula associated with an object.

The function formula<-.fv is the method for formula<- for the class "fv". It changes the plot
formula associated with the object.

Value

The result of formula.fv is a character string containing the plot formula. The result of formula<-.fv
is a new object of class "fv".

fryplot 173

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

fv, plot.fv, formula.

Examples

K <- Kest(cells)
formula(K)
formula(K) <- (iso ~ r)

fryplot Fry Plot of Point Pattern

Description

Displays the Fry plot (Patterson plot) of a spatial point pattern.

Usage

fryplot(X, ..., width=NULL, from=NULL, to=NULL, axes=FALSE)
frypoints(X, from=NULL, to=NULL, dmax=Inf)

Arguments

X A point pattern (object of class "ppp") or something acceptable to as.ppp.

... Optional arguments to control the appearance of the plot.

width Optional parameter indicating the width of a box for a zoomed-in view of the
Fry plot near the origin.

from, to Optional. Subset indices specifying which points of X will be considered when
forming the vectors (drawn from each point of from, to each point of to.)

axes Logical value indicating whether to draw axes, crossing at the origin.

dmax Maximum distance between points. Pairs at greater distances do not contribute
to the result. The default means there is no maximum distance.

Details

The function fryplot generates a Fry plot (or Patterson plot); frypoints returns the points of the
Fry plot as a point pattern dataset.

Fry (1979) and Hanna and Fry (1979) introduced a manual graphical method for investigating fea-
tures of a spatial point pattern of mineral deposits. A transparent sheet, marked with an origin or
centre point, is placed over the point pattern. The transparent sheet is shifted so that the origin
lies over one of the data points, and the positions of all the other data points are copied onto the
transparent sheet. This procedure is repeated for each data point in turn. The resulting plot (the Fry

174 fryplot

plot) is a pattern of n(n− 1) points, where n is the original number of data points. This procedure
was previously proposed by Patterson (1934, 1935) for studying inter-atomic distances in crystals,
and is also known as a Patterson plot.

The function fryplot generates the Fry/Patterson plot. Standard graphical parameters such as
main, pch, lwd, col, bg, cex can be used to control the appearance of the plot. To zoom in (to view
only a subset of the Fry plot at higher magnification), use the argument width to specify the width
of a rectangular field of view centred at the origin, or the standard graphical arguments xlim and
ylim to specify another rectangular field of view. (The actual field of view may be slightly larger,
depending on the graphics device.)

The function frypoints returns the points of the Fry plot as a point pattern object. There may be a
large number of points in this pattern, so this function should be used only if further analysis of the
Fry plot is required.

Fry plots are particularly useful for recognising anisotropy in regular point patterns. A void around
the origin in the Fry plot suggests regularity (inhibition between points) and the shape of the void
gives a clue to anisotropy in the pattern. Fry plots are also useful for detecting periodicity or
rounding of the spatial coordinates.

In mathematical terms, the Fry plot of a point pattern X is simply a plot of the vectors X[i] - X[j]
connecting all pairs of distinct points in X.

The Fry plot is related to the K function (see Kest) and the reduced second moment measure (see
Kmeasure). For example, the number of points in the Fry plot lying within a circle of given radius is
an unnormalised and uncorrected version of the K function. The Fry plot has a similar appearance
to the plot of the reduced second moment measure Kmeasure when the smoothing parameter sigma
is very small.

The Fry plot does not adjust for the effect of the size and shape of the sampling window. The density
of points in the Fry plot tapers off near the edges of the plot. This is an edge effect, a consequence
of the bounded sampling window. In geological applications this is usually not important, because
interest is focused on the behaviour near the origin where edge effects can be ignored. To correct
for the edge effect, use Kmeasure or Kest or its relatives.

Value

fryplot returns NULL. frypoints returns a point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Fry, N. (1979) Random point distributions and strain measurement in rocks. Tectonophysics 60,
89–105.

Hanna, S.S. and Fry, N. (1979) A comparison of methods of strain determination in rocks from
southwest Dyfed (Pembrokeshire) and adjacent areas. Journal of Structural Geology 1, 155–162.

Patterson, A.L. (1934) A Fourier series method for the determination of the component of inter-
atomic distances in crystals. Physics Reviews 46, 372–376.

fv 175

Patterson, A.L. (1935) A direct method for the determination of the components of inter-atomic
distances in crystals. Zeitschrift fuer Krystallographie 90, 517–554.

See Also

Kmeasure, Kest

Examples

unmarked data
fryplot(cells)
Y <- frypoints(cells)

numerical marks
fryplot(longleaf, width=4, axes=TRUE)

multitype points
fryplot(amacrine, width=0.2,

from=(marks(amacrine) == "on"),
chars=c(3,16), cols=2:3,
main="Fry plot centred at an On-cell")

points(0,0)

fv Create a Function Value Table

Description

Advanced Use Only. This low-level function creates an object of class "fv" from raw numerical
data.

Usage

fv(x, argu = "r", ylab = NULL, valu, fmla = NULL, alim = NULL,
labl = names(x), desc = NULL, unitname = NULL, fname = NULL, yexp = ylab)

Arguments

x A data frame with at least 2 columns containing the values of the function argu-
ment and the corresponding values of (one or more versions of) the function.

argu String. The name of the column of x that contains the values of the function
argument.

ylab Either NULL, or an R language expression representing the mathematical name
of the function. See Details.

valu String. The name of the column of x that should be taken as containing the
function values, in cases where a single column is required.

fmla Either NULL, or a formula specifying the default plotting behaviour. See Details.

176 fv

alim Optional. The default range of values of the function argument for which the
function will be plotted. Numeric vector of length 2.

labl Optional. Plot labels for the columns of x. A vector of strings, with one entry
for each column of x.

desc Optional. Descriptions of the columns of x. A vector of strings, with one entry
for each column of x.

unitname Optional. Name of the unit (usually a unit of length) in which the function argu-
ment is expressed. Either a single character string, or a vector of two character
strings giving the singular and plural forms, respectively.

fname Optional. The name of the function itself. A character string.

yexp Optional. Alternative form of ylab more suitable for annotating an axis of the
plot. See Details.

Details

This documentation is provided for experienced programmers who want to modify the internal
behaviour of spatstat. Other users please see fv.object.

The low-level function fv is used to create an object of class "fv" from raw numerical data.

The data frame x contains the numerical data. It should have one column (typically but not nec-
essarily named "r") giving the values of the function argument for which the function has been
evaluated; and at least one other column, containing the corresponding values of the function.

Typically there is more than one column of function values. These columns typically give the values
of different versions or estimates of the same function, for example, different estimates of the K
function obtained using different edge corrections. However they may also contain the values of
related functions such as the derivative or hazard rate.

argu specifies the name of the column of x that contains the values of the function argument (typi-
cally argu="r" but this is not compulsory).

valu specifies the name of another column that contains the ‘recommended’ estimate of the func-
tion. It will be used to provide function values in those situations where a single column of data is
required. For example, envelope computes its simulation envelopes using the recommended value
of the summary function.

fmla specifies the default plotting behaviour. It should be a formula, or a string that can be converted
to a formula. Variables in the formula are names of columns of x. See plot.fv for the interpretation
of this formula.

alim specifies the recommended range of the function argument. This is used in situations where
statistical theory or statistical practice indicates that the computed estimates of the function are not
trustworthy outside a certain range of values of the function argument. By default, plot.fv will
restrict the plot to this range.

fname is a string giving the name of the function itself. For example, the K function would have
fname="K".

ylab is a mathematical expression for the function value, used when labelling an axis of the plot,
or when printing a description of the function. It should be an R language object. For example the
K function’s mathematical name K(r) is rendered by ylab=quote(K(r)).

fv 177

If yexp is present, then ylab will be used only for printing, and yexp will be used for annotating axes
in a plot. (Otherwise yexp defaults to ylab). For example the cross-type K function K1,2(r) is ren-
dered by something like ylab=quote(Kcross[1,2](r)) and yexp=quote(Kcross[list(1,2)](r))
to get the most satisfactory behaviour.

(A useful tip: use substitute instead of quote to insert values of variables into an expression,
e.g. substitute(Kcross[i,j](r), list(i=42,j=97)) yields the same as quote(Kcross[42,
97](r)).)

labl is a character vector specifying plot labels for each column of x. These labels will appear on
the plot axes (in non-default plots), legends and printed output. Entries in labl may contain the
string "%s" which will be replaced by fname. For example the border-corrected estimate of the K
function has label "%s[bord](r)" which becomes "K[bord](r)".

desc is a character vector containing intelligible explanations of each column of x. Entries in desc
may contain the string "%s" which will be replaced by ylab. For example the border correction
estimate of the K function has description "border correction estimate of %s".

Value

An object of class "fv", see fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

See plot.fv for plotting an "fv" object.

See as.function.fv to convert an "fv" object to an R function.

Use cbind.fv to combine several "fv" objects. Use bind.fv to glue additional columns onto an
existing "fv" object.

Simple calculations such as arithmetic and mathematical operations can be computed directly. The
range of y values of a function f can be computed by typing range(f). These operations are
dispatched to Summary.fv, Math.fv and Ops.fv.

Use eval.fv or with.fv for more complicated calculations.

The functions fvnames, fvnames<- allow the user to use standard abbreviations to refer to columns
of an "fv" object.

Undocumented functions for modifying an "fv" object include tweak.fv.entry and rebadge.fv.

Examples

df <- data.frame(r=seq(0,5,by=0.1))
df <- transform(df, a=pi*r^2, b=3*r^2)
X <- fv(df, "r", quote(A(r)),

"a", cbind(a, b) ~ r,
alim=c(0,4),
labl=c("r", "%s[true](r)", "%s[approx](r)"),
desc=c("radius of circle",

"true area %s",

178 fv.object

"rough area %s"),
fname="A")

X

fv.object Function Value Table

Description

A class "fv" to support the convenient plotting of several estimates of the same function.

Details

An object of this class is a convenient way of storing and plotting several different estimates of the
same function.

It is a data frame with extra attributes indicating the recommended way of plotting the function, and
other information.

There are methods for print and plot for this class.

Objects of class "fv" are returned by Fest, Gest,Jest, and Kest along with many other functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

Objects of class "fv" are returned by Fest, Gest,Jest, and Kest along with many other functions.

See plot.fv for plotting an "fv" object.

See as.function.fv to convert an "fv" object to an R function.

Use cbind.fv to combine several "fv" objects. Use bind.fv to glue additional columns onto an
existing "fv" object.

Undocumented functions for modifying an "fv" object include fvnames, fvnames<-, tweak.fv.entry
and rebadge.fv.

Examples

K <- Kest(cells)
class(K)

K # prints a sensible summary

plot(K)

fvnames 179

fvnames Abbreviations for Groups of Columns in Function Value Table

Description

Groups of columns in a function value table (object of class "fv") identified by standard abbrevia-
tions.

Usage

fvnames(X, a = ".")

fvnames(X, a = ".") <- value

Arguments

X Function value table (object of class "fv"). See fv.object.

a One of the standard abbreviations listed below.

value Character vector containing names of columns of X.

Details

An object of class "fv" represents a table of values of a function, usually a summary function
for spatial data such as the K-function, for which several different statistical estimators may be
available. The different estimates are stored as columns of the table.

Auxiliary information carried in the object X specifies some columns or groups of columns of this
table that should be used for particular purposes. For convenience these groups can be referred to
by standard abbreviations which are recognised by various functions in the spatstat package, such
as plot.fv.

These abbreviations are:

".x" the function argument
".y" the recommended value of the function
"." all function values to be plotted by default

(in order of plotting)
".s" the upper and lower limits of shading

(for envelopes and confidence intervals)
".a" all function values (in column order)

The command fvnames(X, a) expands the abbreviation a and returns a character vector containing
the names of the columns.

The assignment fvnames(X, a) <- value changes the definition of the abbreviation a to the char-
acter string value (which should be the name of another column of X). The column names of X are
not changed.

180 G3est

Note that fvnames(x, ".") lists the columns of values that will be plotted by default, in the order
that they would be plotted, not in order of the column position. The order in which curves are
plotted affects the colours and line styles associated with the curves.

Value

For fvnames, a character vector.

For fvnames<-, the updated object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

fv.object, plot.fv

Examples

K <- Kest(cells)
fvnames(K, ".y")
fvnames(K, ".y") <- "trans"

G3est Nearest Neighbour Distance Distribution Function of a Three-
Dimensional Point Pattern

Description

Estimates the nearest-neighbour distance distribution function G3(r) from a three-dimensional
point pattern.

Usage

G3est(X, ..., rmax = NULL, nrval = 128, correction = c("rs", "km", "Hanisch"))

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

rmax Optional. Maximum value of argument r for which G3(r) will be estimated.

nrval Optional. Number of values of r for which G3(r) will be estimated. A large
value of nrval is required to avoid discretisation effects.

correction Optional. Character vector specifying the edge correction(s) to be applied. See
Details.

G3est 181

Details

For a stationary point process Φ in three-dimensional space, the nearest-neighbour function is

G3(r) = P (d∗(x,Φ) ≤ r | x ∈ Φ)

the cumulative distribution function of the distance d∗(x,Φ) from a typical point x in Φ to its nearest
neighbour, i.e. to the nearest other point of Φ.

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The nearest neighbour function of Φ can then be estimated using techniques described
in the References. For each data point, the distance to the nearest neighbour is computed. The
empirical cumulative distribution function of these values, with appropriate edge corrections, is the
estimate of G3(r).

The available edge corrections are:

"rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)
"km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)
"Hanisch": the three-dimensional generalisation of the Hanisch estimator (Hanisch, 1984).

Alternatively correction="all" selects all options.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Warnings

A large value of nrval is required in order to avoid discretisation effects (due to the use of his-
tograms in the calculation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Baddeley, A.J. and Gill, R.D. (1997) Kaplan-Meier estimators of interpoint distance distributions
for spatial point processes. Annals of Statistics 25, 263–292.

Hanisch, K.-H. (1984) Some remarks on estimators of the distribution function of nearest neighbour
distance in stationary spatial point patterns. Mathematische Operationsforschung und Statistik,
series Statistics 15, 409–412.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

F3est, K3est, pcf3est for other summary functions of a three-dimensional point pattern.

Gest to estimate the empty space function of point patterns in two dimensions.

182 Gcross

Examples

X <- rpoispp3(42)
Z <- G3est(X)
if(interactive()) plot(Z)

Gcross Multitype Nearest Neighbour Distance Function (i-to-j)

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type i to the
nearest point of type j.

Usage

Gcross(X, i, j, r=NULL, breaks=NULL, ..., correction=c("rs", "km", "han"))

Arguments

X The observed point pattern, from which an estimate of the cross type distance
distribution function Gij(r) will be computed. It must be a multitype point
pattern (a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

r Optional. Numeric vector. The values of the argument r at which the distribution
function Gij(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Gcross and its companions Gdot and Gmulti are generalisations of the function Gest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point

Gcross 183

pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
arguments i and j will be interpreted as levels of the factor X$marks. (Warning: this means that an
integer value i=3 will be interpreted as the number 3, not the 3rd smallest level).

The “cross-type” (type i to type j) nearest neighbour distance distribution function of a multitype
point process is the cumulative distribution function Gij(r) of the distance from a typical random
point of the process with type i the nearest point of type j.

An estimate of Gij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the process of type i points were independent of the process of type j points, then Gij(r)
would equal Fj(r), the empty space function of the type j points. For a multitype Poisson point
process where the type i points have intensity λi, we have

Gij(r) = 1− e−λjπr
2

Deviations between the empirical and theoretical Gij curves may suggest dependence between the
points of types i and j.

This algorithm estimates the distribution function Gij(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

The argument r is the vector of values for the distance r at which Gij(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of Gij(r). This estimate
should be used with caution as Gij(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of Gij . However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
Gij as if it were an unbiased estimator of Gij .

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function Gij(r) has been estimated

rs the “reduced sample” or “border correction” estimator of Gij(r)

han the Hanisch-style estimator of Gij(r)

184 Gcross

km the spatial Kaplan-Meier estimator of Gij(r)

hazard the hazard rate λ(r) of Gij(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of Gij(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest point of type j

theo the theoretical value of Gij(r) for a marked Poisson process with the same esti-
mated intensity (see below).

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

The function Gij does not necessarily have a density.

The reduced sample estimator of Gij is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of Gij is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Gdot, Gest, Gmulti

Gcross.inhom 185

Examples

amacrine cells data
G01 <- Gcross(amacrine)

equivalent to:

G01 <- Gcross(amacrine, "off", "on")

plot(G01)

empty space function of `on' points
if(interactive()) {

F1 <- Fest(split(amacrine)$on, r = G01$r)
lines(F1$r, F1$km, lty=3)

}

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
G <- Gcross(pp, "0", "1") # note: "0" not 0

Gcross.inhom Inhomogeneous Multitype G Cross Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross G function, which
is the distribution of the distance from a point of type i to the nearest point of type j, adjusted for
spatially varying intensity.

Usage

Gcross.inhom(X, i, j,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL,
...,
r = NULL,
ReferenceMeasureMarkSetI = NULL,
ratio = FALSE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type G function Gij(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

186 Gcross.inhom

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

lambda Optional. Values of the estimated intensity of the point process. Either a pixel
image (object of class "im"), a numeric vector containing the intensity values
at each of the points in X, a fitted point process model (object of class "ppm"
or "kppm" or "dppm"), or a function(x,y) which can be evaluated to give the
intensity value at any location.

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the the estimated intensity of the sub-process of points of
type j. Either a pixel image (object of class "im"), a numeric vector containing
the intensity values at each of the type j points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdamin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

... Extra arguments passed to as.mask to control the pixel resolution for the com-
putation.

r vector of values for the argument r at which the inhomogeneous G function
should be evaluated. Not normally given by the user; there is a sensible default.

ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

Details

This is a generalisation of the function Gcross to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Ginhom.

The argument lambdaI supplies the values of the intensity of the sub-process of points of type i. It
may be either

a pixel image (object of class "im") which gives the values of the type i intensity at all locations
in the window containing X;

a numeric vector containing the values of the type i intensity evaluated only at the data points of
type i. The length of this vector must equal the number of type i points in X.

a function of the form function(x,y) which can be evaluated to give values of the intensity at
any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

Gcross.inhom 187

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

Similarly the argument lambdaJ should contain estimated values of the intensity of the points of
type j. It may be either a pixel image, a numeric vector of length equal to the number of points in
X, a function, or omitted.

The argument r is the vector of values for the distance r at which Gij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object) containing estimates of the inhomogeneous cross type G
function.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Gcross, Ginhom, Gcross.inhom, Gmulti.inhom.

Examples

X <- rescale(amacrine)
if(interactive() && require(spatstat.model)) {

how to do it normally
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9

} else {
for package testing
lam <- intensity(X)[as.integer(marks(X))]
lmin <- intensity(X)[2] * 0.9

}
GC <- Gcross.inhom(X, "on", "off", lambda=lam, lambdamin=lmin)

188 Gdot

Gdot Multitype Nearest Neighbour Distance Function (i-to-any)

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type i to the
nearest other point of any type.

Usage

Gdot(X, i, r=NULL, breaks=NULL, ..., correction=c("km", "rs", "han"))

Arguments

X The observed point pattern, from which an estimate of the distance distribution
function Gi•(r) will be computed. It must be a multitype point pattern (a marked
point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

r Optional. Numeric vector. The values of the argument r at which the distribution
function Gi•(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Gdot and its companions Gcross and Gmulti are generalisations of the function Gest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
argument will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level.)

The “dot-type” (type i to any type) nearest neighbour distance distribution function of a multitype
point process is the cumulative distribution function Gi•(r) of the distance from a typical random
point of the process with type i the nearest other point of the process, regardless of type.

Gdot 189

An estimate of Gi•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the type i points were independent of all other points, then Gi•(r) would equal Gii(r),
the nearest neighbour distance distribution function of the type i points alone. For a multitype
Poisson point process with total intensity λ, we have

Gi•(r) = 1− e−λπr2

Deviations between the empirical and theoretical Gi• curves may suggest dependence of the type i
points on the other points.

This algorithm estimates the distribution function Gi•(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

The argument r is the vector of values for the distance r at which Gi•(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of Gi•(r). This estimate
should be used with caution as Gi•(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of Gi•. However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
Gi• as if it were an unbiased estimator of Gi•.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function Gi•(r) has been estimated

rs the “reduced sample” or “border correction” estimator of Gi•(r)

han the Hanisch-style estimator of Gi•(r)

km the spatial Kaplan-Meier estimator of Gi•(r)

hazard the hazard rate λ(r) of Gi•(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of Gi•(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest other point of any type.

theo the theoretical value of Gi•(r) for a marked Poisson process with the same esti-
mated intensity (see below).

190 Gdot

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

The function Gi• does not necessarily have a density.

The reduced sample estimator of Gi• is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of Gi• is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Gcross, Gest, Gmulti

Examples

amacrine cells data
G0. <- Gdot(amacrine, "off")
plot(G0.)

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
G <- Gdot(pp, "0")
G <- Gdot(pp, 0) # equivalent

Gdot.inhom 191

Gdot.inhom Inhomogeneous Multitype G Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot G function, which is
the distribution of the distance from a point of type i to the nearest other point of any type, adjusted
for spatially varying intensity.

Usage

Gdot.inhom(X, i,
lambdaI = NULL, lambdadot = NULL, lambdamin = NULL,
...,
r = NULL, ReferenceMeasureMarkSetI = NULL, ratio = FALSE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous dot
type G function Gi•(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdadot Optional. Values of the estimated intensity of the entire point process, Either
a pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X, a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

lambdamin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

... Ignored.

r vector of values for the argument r at which the inhomogeneous dot type G
function Gi•(r) should be evaluated. Not normally given by the user; there is a
sensible default.

ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

192 Gdot.inhom

Details

This is a generalisation of the function Gdot to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Ginhom.

The argument lambdaI supplies the values of the intensity of the sub-process of points of type i. It
may be either

a pixel image (object of class "im") which gives the values of the type i intensity at all locations
in the window containing X;

a numeric vector containing the values of the type i intensity evaluated only at the data points of
type i. The length of this vector must equal the number of type i points in X.

a function of the form function(x,y) which can be evaluated to give values of the intensity at
any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

Similarly the argument lambdadot should contain estimated values of the intensity of the entire
point process. It may be either a pixel image, a numeric vector of length equal to the number of
points in X, a function, or omitted.

The argument r is the vector of values for the distance r at which Gi•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object) containing estimates of the inhomogeneous dot type G
function.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Gdot, Ginhom, Gcross.inhom, Gmulti.inhom.

Gest 193

Examples

X <- rescale(amacrine)
if(interactive() && require(spatstat.model)) {

how to do it normally
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9

} else {
for package testing
lam <- intensity(X)[as.integer(marks(X))]
lmin <- intensity(X)[2] * 0.9

}
lamI <- lam[marks(X) == "on"]
GD <- Gdot.inhom(X, "on", lambdaI=lamI, lambdadot=lam, lambdamin=lmin)

Gest Nearest Neighbour Distance Function G

Description

Estimates the nearest neighbour distance distribution function G(r) from a point pattern in a win-
dow of arbitrary shape.

Usage

Gest(X, r=NULL, breaks=NULL, ...,
correction=c("rs", "km", "han"),
domain=NULL)

Arguments

X The observed point pattern, from which an estimate of G(r) will be computed.
An object of class ppp, or data in any format acceptable to as.ppp().

r Optional. Numeric vector. The values of the argument r at which G(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. The edge correction(s) to be used to estimate G(r). A vector of
character strings selected from "none", "rs", "km", "Hanisch" and "best".
Alternatively correction="all" selects all options.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

194 Gest

Details

The nearest neighbour distance distribution function (also called the “event-to-event” or “inter-
event” distribution) of a point process X is the cumulative distribution function G of the distance
from a typical random point of X to the nearest other point of X .

An estimate of G derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory
analyses, the estimate of G is a useful statistic summarising one aspect of the “clustering” of points.
For inferential purposes, the estimate of G is usually compared to the true value of G for a com-
pletely random (Poisson) point process, which is

G(r) = 1− e−λπr2

where λ is the intensity (expected number of points per unit area). Deviations between the empirical
and theoretical G curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the nearest neighbour distance distribution function G from the point pat-
tern X. It assumes that X can be treated as a realisation of a stationary (spatially homogeneous) ran-
dom spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp().

The estimation of G is hampered by edge effects arising from the unobservability of points of the
random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998;
Ripley, 1988). The edge corrections implemented here are the border method or “reduced sample”
estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Hanisch estimator
(Hanisch, 1984).

The argument r is the vector of values for the distance r at which G(r) should be evaluated. It
is also used to determine the breakpoints (in the sense of hist) for the computation of histograms
of distances. The estimators are computed from histogram counts. This introduces a discretisation
error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of G(r). The hazard rate
is defined as the derivative

λ(r) = − d

dr
log(1−G(r))

This estimate should be used with caution as G is not necessarily differentiable.

If the argument domain is given, the estimate of G(r) will be based only on the nearest neighbour
distances measured from points falling inside domain (although their nearest neighbours may lie
outside domain). This is useful in bootstrap techniques. The argument domain should be a window
(object of class "owin") or something acceptable to as.owin. It must be a subset of the window of
the point pattern X.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of G. However it is sometimes useful. It can be returned by
the algorithm, by selecting correction="none". Care should be taken not to use the uncorrected
empirical G as if it were an unbiased estimator of G.

Gest 195

To simply compute the nearest neighbour distance for each point in the pattern, use nndist. To
determine which point is the nearest neighbour of a given point, use nnwhich.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing some or all of the following columns:

r the values of the argument r at which the function G(r) has been estimated
rs the “reduced sample” or “border correction” estimator of G(r)

km the spatial Kaplan-Meier estimator of G(r)

hazard the hazard rate λ(r) of G(r) by the spatial Kaplan-Meier method
raw the uncorrected estimate of G(r), i.e. the empirical distribution of the distances

from each point in the pattern X to the nearest other point of the pattern
han the Hanisch correction estimator of G(r)

theo the theoretical value of G(r) for a stationary Poisson process of the same esti-
mated intensity.

Warnings

The function G does not necessarily have a density. Any valid c.d.f. may appear as the nearest
neighbour distance distribution function of a stationary point process.

The reduced sample estimator of G is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of G is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263-292.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Hanisch, K.-H. (1984) Some remarks on estimators of the distribution function of nearest-neighbour
distance in stationary spatial point patterns. Mathematische Operationsforschung und Statistik,
series Statistics 15, 409–412.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

196 Gfox

See Also

nndist, nnwhich, Fest, Jest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

G <- Gest(cells)
plot(G)

P-P style plot
plot(G, cbind(km,theo) ~ theo)

the empirical G is below the Poisson G,
indicating an inhibited pattern

if(interactive()) {
plot(G, . ~ r)
plot(G, . ~ theo)
plot(G, asin(sqrt(.)) ~ asin(sqrt(theo)))

}

Gfox Foxall’s Distance Functions

Description

Given a point pattern X and a spatial object Y, compute estimates of Foxall’s G and J functions.

Usage

Gfox(X, Y, r=NULL, breaks=NULL, correction=c("km", "rs", "han"), W, ...)
Jfox(X, Y, r=NULL, breaks=NULL, correction=c("km", "rs", "han"), W, ...,

warn.trim=TRUE)

Arguments

X A point pattern (object of class "ppp") from which distances will be measured.

Y An object of class "ppp", "psp" or "owin" to which distances will be measured.
Alternatively a pixel image (class "im") with logical values.

r Optional. Numeric vector. The values of the argument r at which Gfox(r) or
Jfox(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

correction Optional. The edge correction(s) to be used to estimate Gfox(r) or Jfox(r). A
vector of character strings selected from "none", "rs", "km", "cs" and "best".
Alternatively correction="all" selects all options.

Gfox 197

W Optional. A window (object of class "owin") to be taken as the window of
observation. The distribution function will be estimated from data inside W. The
default is W=Frame(Y) when Y is a window, and W=Window(Y) otherwise.

... Extra arguments affecting the discretisation of distances. These arguments are
ignored by Gfox, but Jfox passes them to Hest to determine the discretisation
of the spatial domain.

warn.trim Logical value indicating whether a warning should be issued by Jfox when the
window of X had to be trimmed in order to be a subset of the frame of Y.

Details

Given a point pattern X and another spatial object Y, these functions compute two nonparametric
measures of association between X and Y, introduced by Foxall (Foxall and Baddeley, 2002).

Let the random variable R be the distance from a typical point of X to the object Y. Foxall’s G-
function is the cumulative distribution function of R:

G(r) = P (R ≤ r)

Let the random variable S be the distance from a fixed point in space to the object Y. The cumulative
distribution function of S is the (unconditional) spherical contact distribution function

H(r) = P (S ≤ r)

which is computed by Hest.

Foxall’s J-function is the ratio

J(r) =
1−G(r)

1−H(r)

For further interpretation, see Foxall and Baddeley (2002).

Accuracy of Jfox depends on the pixel resolution, which is controlled by the arguments eps, dimyx
and xy passed to as.mask. For example, use eps=0.1 to specify square pixels of side 0.1 units, and
dimyx=256 to specify a 256 by 256 grid of pixels.

Value

A function value table (object of class "fv") which can be printed, plotted, or converted to a data
frame of values.

Author(s)

Rob Foxall and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Foxall, R. and Baddeley, A. (2002) Nonparametric measures of association between a spatial point
process and a random set, with geological applications. Applied Statistics 51, 165–182.

See Also

Gest, Hest, Jest, Fest

198 Ginhom

Examples

X <- copper$SouthPoints
Y <- copper$SouthLines
G <- Gfox(X,Y)
J <- Jfox(X,Y, correction="km")

Ginhom Inhomogeneous Nearest Neighbour Function

Description

Estimates the inhomogeneous nearest neighbour function G of a non-stationary point pattern.

Usage

Ginhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL, ratio = FALSE,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
G function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm") or a function(x,y) which can be evaluated to give the intensity
value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.
ratio Logical. If TRUE, the numerator and denominator of the estimate will also be

saved, for use in analysing replicated point patterns.
update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE

(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

Ginhom 199

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

Details

This command computes estimates of the inhomogeneous G-function (van Lieshout, 2010) of
a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the nearest-
neighbour distance distribution function G for homogeneous point patterns computed by Gest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous G function is computed using the border correction, equation (7) in Van
Lieshout (2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel
smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

200 Gmulti

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Finhom, Jinhom, Gest

Examples

plot(Ginhom(swedishpines, sigma=10))

plot(Ginhom(swedishpines, sigma=bw.diggle, adjust=2))

Gmulti Marked Nearest Neighbour Distance Function

Description

For a marked point pattern, estimate the distribution of the distance from a typical point in subset I
to the nearest point of subset J .

Usage

Gmulti(X, I, J, r=NULL, breaks=NULL, ...,
disjoint=NULL, correction=c("rs", "km", "han"))

Arguments

X The observed point pattern, from which an estimate of the multitype distance
distribution function GIJ(r) will be computed. It must be a marked point pat-
tern. See under Details.

I Subset of points of X from which distances are measured.

J Subset of points in X to which distances are measured.

r Optional. Numeric vector. The values of the argument r at which the distribution
function GIJ(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

Gmulti 201

breaks This argument is for internal use only.

... Ignored.

disjoint Optional flag indicating whether the subsets I and J are disjoint. If missing, this
value will be computed by inspecting the vectors I and J.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

Details

The function Gmulti generalises Gest (for unmarked point patterns) and Gdot and Gcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. This function com-
putes an estimate of the cumulative distribution function GIJ(r) of the distance from a typical point
of XI to the nearest distinct point of XJ .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

This algorithm estimates the distribution function GIJ(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

The argument r is the vector of values for the distance r at which GIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of GIJ(r). This estimate
should be used with caution as GIJ(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of GIJ . However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
GIJ as if it were an unbiased estimator of GIJ .

202 Gmulti

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function GIJ(r) has been estimated

rs the “reduced sample” or “border correction” estimator of GIJ(r)

han the Hanisch-style estimator of GIJ(r)

km the spatial Kaplan-Meier estimator of GIJ(r)

hazard the hazard rate λ(r) of GIJ(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of GIJ(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest point of type j

theo the theoretical value of GIJ(r) for a marked Poisson process with the same
estimated intensity

Warnings

The function GIJ does not necessarily have a density.

The reduced sample estimator of GIJ is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of GIJ is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

GmultiInhom 203

See Also

Gcross, Gdot, Gest

Examples

trees <- longleaf
Longleaf Pine data: marks represent diameter

Gm <- Gmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(Gm)

GmultiInhom Inhomogeneous Marked G-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype G function, ef-
fectively the cumulative distribution function of the distance from a point in subset I to the nearest
point in subset J , adjusted for spatially varying intensity.

Usage

Gmulti.inhom(X, I, J,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL, ...,
r = NULL,
ReferenceMeasureMarkSetI = NULL,
ratio = FALSE)

GmultiInhom(X, I, J,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL, ...,
r = NULL,
ReferenceMeasureMarkSetI = NULL,
ratio = FALSE)

Arguments

X A spatial point pattern (object of class "ppp".

I A subset index specifying the subset of points from which distances are mea-
sured. Any kind of subset index acceptable to [.ppp.

J A subset index specifying the subset of points to which distances are measured.
Any kind of subset index acceptable to [.ppp.

lambda Intensity estimates for each point of X. A numeric vector of length equal to
npoints(X). Incompatible with lambdaI,lambdaJ.

204 GmultiInhom

lambdaI Intensity estimates for each point of X[I]. A numeric vector of length equal to
npoints(X[I]). Incompatible with lambda.

lambdaJ Intensity estimates for each point of X[J]. A numeric vector of length equal to
npoints(X[J]). Incompatible with lambda.

lambdamin A lower bound for the intensity, or at least a lower bound for the values in
lambdaJ or lambda[J].

... Ignored.

r Vector of distance values at which the inhomogeneous G function should be
estimated. There is a sensible default.

ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

Details

See Cronie and Van Lieshout (2015).

The functions GmultiInhom and Gmulti.inhom are identical.

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype G function.

Author(s)

Ottmar Cronie and Marie-Colette van Lieshout. Rewritten for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Ginhom, Gmulti

Examples

X <- rescale(amacrine)
I <- (marks(X) == "on")
J <- (marks(X) == "off")
if(interactive() && require(spatstat.model)) {

how to do it normally
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9

} else {
for package testing
lam <- intensity(X)[as.integer(marks(X))]
lmin <- intensity(X)[2] * 0.9

harmonise.fv 205

}
plot(GmultiInhom(X, I, J, lambda=lam, lambdamin=lmin))
equivalent
plot(GmultiInhom(X, I, J, lambdaI=lam[I], lambdaJ=lam[J], lambdamin=lmin),

main="")

harmonise.fv Make Function Tables Compatible

Description

Convert several objects of class "fv" to the same values of the function argument.

Usage

S3 method for class 'fv'
harmonise(..., strict=FALSE)

S3 method for class 'fv'
harmonize(..., strict=FALSE)

Arguments

... Any number of function tables (objects of class "fv").

strict Logical. If TRUE, a column of data will be deleted if columns of the same name
do not appear in every object.

Details

A function value table (object of class "fv") is essentially a data frame giving the values of a
function f(x) (or several alternative estimates of this value) at equally-spaced values of the function
argument x.

The command harmonise is generic. This is the method for objects of class "fv".

This command makes any number of "fv" objects compatible, in the loose sense that they have the
same sequence of values of x. They can then be combined by cbind.fv, but not necessarily by
eval.fv.

All arguments ... must be function value tables (objects of class "fv"). The result will be a list, of
length equal to the number of arguments ..., containing new versions of each of these functions,
converted to a common sequence of x values. If the arguments were named (name=value) then the
return value also carries these names.

The range of x values in the resulting functions will be the intersection of the ranges of x values in
the original functions. The spacing of x values in the resulting functions will be the finest (narrow-
est) of the spacings of the x values in the original functions. Function values are interpolated using
approxfun.

206 Hest

If strict=TRUE, each column of data will be retained only if a column of the same name appears in
all of the arguments This ensures that the resulting objects are strictly compatible in the sense
of compatible.fv, and can be combined using eval.fv or collapse.fv.

If strict=FALSE (the default), this does not occur, and then the resulting objects are not guaranteed
to be compatible in the sense of compatible.fv.

Value

A list, of length equal to the number of arguments ..., whose entries are objects of class "fv". If
the arguments were named (name=value) then the return value also carries these names.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

fv.object, cbind.fv, eval.fv, compatible.fv

Examples

H <- harmonise(K=Kest(cells), G=Gest(cells))
H

Hest Spherical Contact Distribution Function

Description

Estimates the spherical contact distribution function of a random set.

Usage

Hest(X, r=NULL, breaks=NULL, ...,
W,
correction=c("km", "rs", "han"),
conditional=TRUE)

Arguments

X The observed random set. An object of class "ppp", "psp" or "owin". Alterna-
tively a pixel image (class "im") with logical values.

r Optional. Vector of values for the argument r at which H(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.

breaks This argument is for internal use only.

... Arguments passed to as.mask to control the discretisation.

Hest 207

W Optional. A window (object of class "owin") to be taken as the window of
observation. The contact distribution function will be estimated from values of
the contact distance inside W. The default is W=Frame(X) when X is a window,
and W=Window(X) otherwise.

correction Optional. The edge correction(s) to be used to estimate H(r). A vector of
character strings selected from "none", "rs", "km", "han" and "best". Alter-
natively correction="all" selects all options.

conditional Logical value indicating whether to compute the conditional or unconditional
distribution. See Details.

Details

The spherical contact distribution function of a stationary random set X is the cumulative distribu-
tion function H of the distance from a fixed point in space to the nearest point of X , given that the
point lies outside X . That is, H(r) equals the probability that X lies closer than r units away from
the fixed point x, given that X does not cover x.

Let D = d(x,X) be the shortest distance from an arbitrary point x to the set X. Then the spherical
contact distribution function is

H(r) = P (D ≤ r | D > 0)

For a point process, the spherical contact distribution function is the same as the empty space
function F discussed in Fest.

The argument X may be a point pattern (object of class "ppp"), a line segment pattern (object of
class "psp") or a window (object of class "owin"). It is assumed to be a realisation of a stationary
random set.

The algorithm first calls distmap to compute the distance transform of X, then computes the Kaplan-
Meier and reduced-sample estimates of the cumulative distribution following Hansen et al (1999). If
conditional=TRUE (the default) the algorithm returns an estimate of the spherical contact function
H(r) as defined above. If conditional=FALSE, it instead returns an estimate of the cumulative
distribution function H∗(r) = P (D ≤ r) which includes a jump at r = 0 if X has nonzero area.

Accuracy depends on the pixel resolution, which is controlled by the arguments eps, dimyx and
xy passed to as.mask. For example, use eps=0.1 to specify square pixels of side 0.1 units, and
dimyx=256 to specify a 256 by 256 grid of pixels.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing up to six columns:

r the values of the argument r at which the function H(r) has been estimated

rs the “reduced sample” or “border correction” estimator of H(r)

km the spatial Kaplan-Meier estimator of H(r)

hazard the hazard rate λ(r) of H(r) by the spatial Kaplan-Meier method

han the spatial Hanisch-Chiu-Stoyan estimator of H(r)

raw the uncorrected estimate of H(r), i.e. the empirical distribution of the distance
from a fixed point in the window to the nearest point of X

208 Hest

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> with contributions from Kassel Hingee.

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

Hansen, M.B., Baddeley, A.J. and Gill, R.D. First contact distributions for spatial patterns: regular-
ity and estimation. Advances in Applied Probability 31 (1999) 15-33.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Fest

Examples

X <- runifpoint(42)
H <- Hest(X)
Y <- rpoisline(10)
H <- Hest(Y)
H <- Hest(Y, dimyx=256)
X <- heather$coarse
plot(Hest(X))
H <- Hest(X, conditional=FALSE)

P <- owin(poly=list(x=c(5.3, 8.5, 8.3, 3.7, 1.3, 3.7),
y=c(9.7, 10.0, 13.6, 14.4, 10.7, 7.2)))

plot(X)
plot(P, add=TRUE, col="red")
H <- Hest(X, W=P)
Z <- as.im(FALSE, Frame(X))
Z[X] <- TRUE
Z <- Z[P, drop=FALSE]
plot(Z)
H <- Hest(Z)

hopskel 209

hopskel Hopkins-Skellam Test

Description

Perform the Hopkins-Skellam test of Complete Spatial Randomness, or simply calculate the test
statistic.

Usage

hopskel(X)

hopskel.test(X, ...,
alternative=c("two.sided", "less", "greater",

"clustered", "regular"),
method=c("asymptotic", "MonteCarlo"),
nsim=999)

Arguments

X Point pattern (object of class "ppp").

alternative String indicating the type of alternative for the hypothesis test. Partially matched.

method Method of performing the test. Partially matched.

nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is
required.

... Ignored.

Details

Hopkins and Skellam (1954) proposed a test of Complete Spatial Randomness based on comparing
nearest-neighbour distances with point-event distances.

If the point pattern X contains n points, we first compute the nearest-neighbour distances P1, . . . , Pn

so that Pi is the distance from the ith data point to the nearest other data point. Then we generate
another completely random pattern U with the same number n of points, and compute for each point
of U the distance to the nearest point of X, giving distances I1, . . . , In. The test statistic is

A =

∑
i P

2
i∑

i I
2
i

The null distribution of A is roughly an F distribution with shape parameters (2n, 2n). (This is
equivalent to using the test statistic H = A/(1 + A) and referring H to the Beta distribution with
parameters (n, n)).

The function hopskel calculates the Hopkins-Skellam test statistic A, and returns its numeric value.
This can be used as a simple summary of spatial pattern: the value H = 1 is consistent with
Complete Spatial Randomness, while values H < 1 are consistent with spatial clustering, and
values H > 1 are consistent with spatial regularity.

210 hotbox

The function hopskel.test performs the test. If method="asymptotic" (the default), the test
statistic H is referred to the F distribution. If method="MonteCarlo", a Monte Carlo test is per-
formed using nsim simulated point patterns.

Value

The value of hopskel is a single number.

The value of hopskel.test is an object of class "htest" representing the outcome of the test. It
can be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Hopkins, B. and Skellam, J.G. (1954) A new method of determining the type of distribution of plant
individuals. Annals of Botany 18, 213–227.

See Also

clarkevans, clarkevans.test, nndist, nncross

Examples

hopskel(redwood)
hopskel.test(redwood, alternative="clustered")

hotbox Heat Kernel for a Two-Dimensional Rectangle

Description

Calculate values of the heat kernel in a rectangle with insulated edges.

Usage

hotbox(Xsource, Xquery, sigma,
..., W=NULL, squared=FALSE, nmax=20)

hotbox 211

Arguments

Xsource Point pattern of sources of heat. Object of class "ppp" or convertible to a point
pattern using as.ppp(Xsource, W).

Xquery Locations where the heat kernel value is required. An object of class "ppp"
specifying query location points, or an object of class "im" or "owin" specifying
a grid of query points.

sigma Bandwidth for kernel. A single number.

... Extra arguments (passed to as.mask) controlling the pixel resolution of the re-
sult, when Xquery is a window or an image.

W Window (object of class "owin") used to define the spatial domain when Xsource
is not of class "ppp".

squared Logical value indicating whether to take the square of each heat kernel value,
before summing over the source points.

nmax Number of terms to be used from the infinite-sum expression for the heat kernel.
A single integer.

Details

This function computes the sum of heat kernels associated with each of the source points, evaluating
them at each query location.

The window for evaluation of the heat kernel must be a rectangle.

The heat kernel in any region can be expressed as an infinite sum of terms associated with the
eigenfunctions of the Laplacian. The heat kernel in a rectangle is the product of heat kernels for one-
dimensional intervals on the horizontal and vertical axes. This function uses hotrod to compute the
one-dimensional heat kernels, truncating the infinite sum to the first nmax terms, and then calculates
the two-dimensional heat kernel from each source point to each query location. If squared=TRUE
these values are squared. Finally the values are summed over all source points to obtain a single
value for each query location.

Value

If Xquery is a point pattern, the result is a numeric vector with one entry for each query point.

If Xquery is an image or window, the result is a pixel image.

Author(s)

Adrian Baddeley and Greg McSwiggan.

References

Baddeley, A., Davies, T., Rakshit, S., Nair, G. and McSwiggan, G. (2021) Diffusion smoothing for
spatial point patterns. Statistical Science, in press.

See Also

densityHeat.ppp

212 idw

Examples

X <- runifpoint(10)

Y <- runifpoint(5)
hotbox(X, Y, 0.1)

plot(hotbox(X, Window(X), 0.1))
points(X, pch=16)

idw Inverse-distance weighted smoothing of observations at irregular
points

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations using inverse-
distance weighting.

Usage

idw(X, power=2, at=c("pixels", "points"), ..., se=FALSE)

Arguments

X A marked point pattern (object of class "ppp").

power Numeric. Power of distance used in the weighting.

at Character string specifying whether to compute the intensity values at a grid of
pixel locations (at="pixels") or only at the points of X (at="points"). String
is partially matched.

... Arguments passed to as.mask to control the pixel resolution of the result.

se Logical value specifying whether to calculate a standard error.

Details

This function performs spatial smoothing of numeric values observed at a set of irregular locations.

Smoothing is performed by inverse distance weighting. If the observed values are v1, . . . , vn at
locations x1, . . . , xn respectively, then the smoothed value at a location u is

g(u) =

∑
i wivi∑
i wi

where the weights are the inverse p-th powers of distance,

wi =
1

d(u, xi)p

where d(u, xi) = ||u− xi|| is the Euclidean distance from u to xi.

idw 213

The argument X must be a marked point pattern (object of class "ppp", see ppp.object). The points
of the pattern are taken to be the observation locations xi, and the marks of the pattern are taken to
be the numeric values vi observed at these locations.

The marks are allowed to be a data frame. Then the smoothing procedure is applied to each column
of marks.

If at="pixels" (the default), the smoothed mark value is calculated at a grid of pixels, and the
result is a pixel image. The arguments ... control the pixel resolution. See as.mask.

If at="points", the smoothed mark values are calculated at the data points only, using a leave-one-
out rule (the mark value at a data point is excluded when calculating the smoothed value for that
point).

An estimate of standard error is also calculated, if se=TRUE. The calculation assumes that the data
point locations are fixed, that is, the standard error only takes into account the variability in the
mark values, and not the variability due to randomness of the data point locations.

An alternative to inverse-distance weighting is kernel smoothing, which is performed by Smooth.ppp.

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values
are values of the interpolated function.

• If at="points", the result is a numeric vector of length equal to the number of points in X.
Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

If se=TRUE, then the result is a list with two entries named estimate and SE, which each have the
format described above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>. Variance calculation by Andrew P Wheeler with modifi-
cations by Adrian Baddeley.

References

Shepard, D. (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceed-
ings of the 1968 ACM National Conference, 1968, pages 517–524. DOI: 10.1145/800186.810616

214 Iest

See Also

density.ppp, ppp.object, im.object.

See Smooth.ppp for kernel smoothing, SpatialMedian.ppp for median smoothing and nnmark for
nearest-neighbour interpolation.

To perform other kinds of interpolation, see also the akima package.

Examples

data frame of marks: trees marked by diameter and height
plot(idw(finpines))
idw(finpines, at="points")[1:5,]
plot(idw(finpines, se=TRUE)$SE)
idw(finpines, at="points", se=TRUE)$SE[1:5,]

Iest Estimate the I-function

Description

Estimates the summary function I(r) for a multitype point pattern.

Usage

Iest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)

Arguments

X The observed point pattern, from which an estimate of I(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

eps the resolution of the discrete approximation to Euclidean distance (see below).
There is a sensible default.

r Optional. Numeric vector of values for the argument r at which I(r) should be
evaluated. There is a sensible default. First-time users are strongly advised not
to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

correction Optional. Vector of character strings specifying the edge correction(s) to be used
by Jest.

Iest 215

Details

The I function summarises the dependence between types in a multitype point process (Van Lieshout
and Baddeley, 1999) It is based on the concept of the J function for an unmarked point process (Van
Lieshout and Baddeley, 1996). See Jest for information about the J function.

The I function is defined as

I(r) =

m∑
i=1

piJii(r)− J••(r)

where J•• is the J function for the entire point process ignoring the marks, while Jii is the J
function for the process consisting of points of type i only, and pi is the proportion of points which
are of type i.

The I function is designed to measure dependence between points of different types, even if the
points are not Poisson. Let X be a stationary multitype point process, and write Xi for the process of
points of type i. If the processes Xi are independent of each other, then the I-function is identically
equal to 0. Deviations I(r) < 1 or I(r) > 1 typically indicate negative and positive association,
respectively, between types. See Van Lieshout and Baddeley (1999) for further information.

An estimate of I derived from a multitype spatial point pattern dataset can be used in exploratory
data analysis and formal inference about the pattern. The estimate of I(r) is compared against the
constant function 0. Deviations I(r) < 1 or I(r) > 1 may suggest negative and positive association,
respectively.

This algorithm estimates the I-function from the multitype point pattern X. It assumes that X can be
treated as a realisation of a stationary (spatially homogeneous) random spatial marked point process
in the plane, observed through a bounded window.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can
be supplied in any of the formats recognised by as.ppp(). It must be a multitype point pattern (it
must have a marks vector which is a factor).

The function Jest is called to compute estimates of the J functions in the formula above. In fact
three different estimates are computed using different edge corrections. See Jest for information.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing

r the vector of values of the argument r at which the function I has been estimated

rs the “reduced sample” or “border correction” estimator of I(r) computed from
the border-corrected estimates of J functions

km the spatial Kaplan-Meier estimator of I(r) computed from the Kaplan-Meier
estimates of J functions

han the Hanisch-style estimator of I(r) computed from the Hanisch-style estimates
of J functions

un the uncorrected estimate of I(r) computed from the uncorrected estimates of J

theo the theoretical value of I(r) for a stationary Poisson process: identically equal
to 0

216 increment.fv

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jest

Examples

Ic <- Iest(amacrine)
plot(Ic, main="Amacrine Cells data")
values are below I= 0, suggesting negative association
between 'on' and 'off' cells.

increment.fv Increments of a Function

Description

Compute the change in the value of a function f when the function argument increases by delta.

Usage

increment.fv(f, delta)

Arguments

f Object of class "fv" representing a function.

delta Numeric. The increase in the value of the function argument.

Details

This command computes the new function

g(x) = f(x+ h)− f(x− h)

where h = delta/2. The value of g(x) is the change in the value of f over an interval of length
delta centred at x.

integral.fv 217

Value

Another object of class "fv" compatible with X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

fv.object, deriv.fv

Examples

plot(increment.fv(Kest(cells), 0.05))

integral.fv Compute Integral of Function Object

Description

Compute the integral of a function over a specified range.

Usage

S3 method for class 'fv'
integral(f, domain = NULL, ...)

Arguments

f A function value table (object of class "fv").
domain Optional. Range of values of the argument x over which the density f(x) should

be integrated. A numeric vector of length 2 giving the minimum and maximum
values of x. Infinite limits are permitted.

... Ignored.

Details

This is a method for the generic function integral. It computes the numerical integral

I =

∫
f(x)dx

of the function object f. If domain is specified, the integral is restricted to the interval of x values
given by the domain.

The result is a numeric value or numeric vector containing one entry for each column of function
values in f.

Integrals are calculated numerically using the trapezoidal rule restricted to the domain given.

218 Jcross

Value

A single numerical value, or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

fv.object, integral

stieltjes

Examples

g <- pcf(redwood, divisor="d")
integral(g, domain=c(0, 0.1))

Jcross Multitype J Function (i-to-j)

Description

For a multitype point pattern, estimate the multitype J function summarising the interpoint depen-
dence between points of type i and of type j.

Usage

Jcross(X, i, j, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype J function
Jij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

eps A positive number. The resolution of the discrete approximation to Euclidean
distance (see below). There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which the function
Jij(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

Jcross 219

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Jcross and its companions Jdot and Jmulti are generalisations of the function Jest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable
to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level).

The “type i to type j” multitype J function of a stationary multitype point process X was introduced
by Van lieshout and Baddeley (1999). It is defined by

Jij(r) =
1−Gij(r)

1− Fj(r)

where Gij(r) is the distribution function of the distance from a type i point to the nearest point
of type j, and Fj(r) is the distribution function of the distance from a fixed point in space to the
nearest point of type j in the pattern.

An estimate of Jij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the subprocess of type i points is independent of the subprocess of points of type j,
then Jij(r) ≡ 1. Hence deviations of the empirical estimate of Jij from the value 1 may suggest
dependence between types.

This algorithm estimates Jij(r) from the point pattern X. It assumes that X can be treated as a reali-
sation of a stationary (spatially homogeneous) random spatial point process in the plane, observed
through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary
shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier
and border corrections. The main work is done by Gmulti and Fest.

The argument r is the vector of values for the distance r at which Jij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

J the recommended estimator of Jij(r), currently the Kaplan-Meier estimator.

r the values of the argument r at which the function Jij(r) has been estimated

220 Jcross

km the Kaplan-Meier estimator of Jij(r)

rs the “reduced sample” or “border correction” estimator of Jij(r)

han the Hanisch-style estimator of Jij(r)

un the “uncorrected” estimator of Jij(r) formed by taking the ratio of uncorrected
empirical estimators of 1−Gij(r) and 1− Fj(r), see Gdot and Fest.

theo the theoretical value of Jij(r) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of Gcross and
Fest for the point pattern.

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jdot, Jest, Jmulti

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Jhm <- Jcross(woods, "hickory", "maple")
diagnostic plot for independence between hickories and maples
plot(Jhm)

synthetic example with two types "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jcross(pp)

Jcross.inhom 221

Jcross.inhom Inhomogeneous Multitype J function (i-to-j)

Description

For a multitype point pattern, estimate the inhomogeneous multitype J function summarising the
interpoint dependence between points of type i and of type j.

Usage

Jcross.inhom(X, i, j,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL,
...,
r = NULL, ReferenceMeasureMarkSetI = NULL, ratio = FALSE)

Arguments

X The observed point pattern, from which an estimate of the multitype J function
Jij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

lambda Optional. Values of the estimated intensity of the point process. Either a pixel
image (object of class "im"), a numeric vector containing the intensity values
at each of the points in X, a fitted point process model (object of class "ppm"
or "kppm" or "dppm"), or a function(x,y) which can be evaluated to give the
intensity value at any location.

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the the estimated intensity of the sub-process of points of
type j. Either a pixel image (object of class "im"), a numeric vector containing
the intensity values at each of the type j points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdamin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

222 Jcross.inhom

... Extra arguments passed to as.mask to control the pixel resolution for the com-
putation.

r vector of values for the argument r at which the inhomogeneous J function
should be evaluated. Not normally given by the user; there is a sensible default.

ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

Details

This function is the counterpart of Jcross for inhomogeneous patterns. It is computed as a special
case of Jmulti.inhom.

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype J function.

Author(s)

Jonatan González and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Jdot.inhom, Jmulti.inhom, Jcross.

Examples

X <- rescale(amacrine)
if(interactive() && require(spatstat.model)) {

how to do it normally
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9
dd <- NULL

} else {
for package testing
lam <- intensity(X)[as.integer(marks(X))]
lmin <- intensity(X)[2] * 0.9
dd <- 32

}
JC <- Jcross.inhom(X, "on", "off", lambda=lam, lambdamin=lmin, dimyx=dd)

Jdot 223

Jdot Multitype J Function (i-to-any)

Description

For a multitype point pattern, estimate the multitype J function summarising the interpoint depen-
dence between the type i points and the points of any type.

Usage

Jdot(X, i, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype J function
Ji•(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

eps A positive number. The resolution of the discrete approximation to Euclidean
distance (see below). There is a sensible default.

r numeric vector. The values of the argument r at which the function Ji•(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Jdot and its companions Jcross and Jmulti are generalisations of the function Jest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable
to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level.)

224 Jdot

The “type i to any type” multitype J function of a stationary multitype point process X was intro-
duced by Van lieshout and Baddeley (1999). It is defined by

Ji•(r) =
1−Gi•(r)

1− F•(r)

where Gi•(r) is the distribution function of the distance from a type i point to the nearest other
point of the pattern, and F•(r) is the distribution function of the distance from a fixed point in space
to the nearest point of the pattern.

An estimate of Ji•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the pattern is a marked Poisson point process, then Ji•(r) ≡ 1. If the subprocess of type
i points is independent of the subprocess of points of all types not equal to i, then Ji•(r) equals
Jii(r), the ordinary J function (see Jest and Van Lieshout and Baddeley (1996)) of the points of
type i. Hence deviations from zero of the empirical estimate of Ji• − Jii may suggest dependence
between types.

This algorithm estimates Ji•(r) from the point pattern X. It assumes that X can be treated as a reali-
sation of a stationary (spatially homogeneous) random spatial point process in the plane, observed
through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary
shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier
and border corrections. The main work is done by Gmulti and Fest.

The argument r is the vector of values for the distance r at which Ji•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

J the recommended estimator of Ji•(r), currently the Kaplan-Meier estimator.

r the values of the argument r at which the function Ji•(r) has been estimated

km the Kaplan-Meier estimator of Ji•(r)

rs the “reduced sample” or “border correction” estimator of Ji•(r)

han the Hanisch-style estimator of Ji•(r)

un the “uncorrected” estimator of Ji•(r) formed by taking the ratio of uncorrected
empirical estimators of 1−Gi•(r) and 1− F•(r), see Gdot and Fest.

theo the theoretical value of Ji•(r) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of Gdot and Fest
for the point pattern.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Jdot.inhom 225

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jcross, Jest, Jmulti

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Jh. <- Jdot(woods, "hickory")
plot(Jh.)
diagnostic plot for independence between hickories and other trees
Jhh <- Jest(split(woods)$hickory)
plot(Jhh, add=TRUE, legendpos="bottom")

synthetic example with two marks "a" and "b"

pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jdot(pp, "a")

Jdot.inhom Inhomogeneous Multitype J function (i-to-any)

Description

For a multitype point pattern, estimate the inhomogeneous multitype J function summarising the
interpoint dependence between points of type i and points of any type.

Usage

Jdot.inhom(X, i,
lambdaI = NULL, lambdadot = NULL,
lambdamin = NULL,
...,
r = NULL, ReferenceMeasureMarkSetI = NULL, ratio = FALSE)

226 Jdot.inhom

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous mul-
titype J function Ji•(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdadot Optional. Values of the estimated intensity of the point process. Either a pixel
image (object of class "im"), a numeric vector containing the intensity values
at each of the points in X, a fitted point process model (object of class "ppm"
or "kppm" or "dppm"), or a function(x,y) which can be evaluated to give the
intensity value at any location.

lambdamin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

... Extra arguments passed to as.mask to control the pixel resolution for the com-
putation.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

Details

This function is the counterpart of Jdot for inhomogeneous patterns. It is computed as a special
case of Jmulti.inhom.

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype J function.

Author(s)

Jonatan González and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

Jest 227

See Also

Jdot.inhom, Jmulti.inhom, Jdot.

Examples

X <- rescale(amacrine)
if(interactive() && require(spatstat.model)) {

how to do it normally
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9
dd <- NULL

} else {
for package testing
lam <- intensity(X)[as.integer(marks(X))]
lmin <- intensity(X)[2] * 0.9
dd <- 32

}
lamI <- lam[marks(X) == "on"]
JD <- Jdot.inhom(X, "on", lambdaI=lamI, lambdadot=lam, lambdamin=lmin,

dimyx=dd)

Jest Estimate the J-function

Description

Estimates the summary function J(r) for a point pattern in a window of arbitrary shape.

Usage

Jest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)

Arguments

X The observed point pattern, from which an estimate of J(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

eps the resolution of the discrete approximation to Euclidean distance (see below).
There is a sensible default.

r vector of values for the argument r at which J(r) should be evaluated. There
is a sensible default. First-time users are strongly advised not to specify this
argument. See below for important conditions on r.

breaks This argument is for internal use only.

correction Optional. Character string specifying the choice of edge correction(s) in Fest
and Gest. See Details.

228 Jest

Details

The J function (Van Lieshout and Baddeley, 1996) of a stationary point process is defined as

J(r) =
1−G(r)

1− F (r)

where G(r) is the nearest neighbour distance distribution function of the point process (see Gest)
and F (r) is its empty space function (see Fest).

For a completely random (uniform Poisson) point process, the J-function is identically equal to
1. Deviations J(r) < 1 or J(r) > 1 typically indicate spatial clustering or spatial regularity,
respectively. The J-function is one of the few characteristics that can be computed explicitly for
a wide range of point processes. See Van Lieshout and Baddeley (1996), Baddeley et al (2000),
Thonnes and Van Lieshout (1999) for further information.

An estimate of J derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern. The estimate of J(r) is compared against the constant
function 1. Deviations J(r) < 1 or J(r) > 1 may suggest spatial clustering or spatial regularity,
respectively.

This algorithm estimates the J-function from the point pattern X. It assumes that X can be treated
as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane,
observed through a bounded window. The window (which is specified in X as Window(X)) may have
arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp().

The functions Fest and Gest are called to compute estimates of F (r) and G(r) respectively. These
estimates are then combined by simply taking the ratio J(r) = (1−G(r))/(1− F (r)).

In fact several different estimates are computed using different edge corrections (Baddeley, 1998).

The Kaplan-Meier estimate (returned as km) is the ratio J = (1-G)/(1-F) of the Kaplan-Meier
estimates of 1 − F and 1 − G computed by Fest and Gest respectively. This is computed if
correction=NULL or if correction includes "km".

The Hanisch-style estimate (returned as han) is the ratio J = (1-G)/(1-F) where F is the Chiu-
Stoyan estimate of F and G is the Hanisch estimate of G. This is computed if correction=NULL or
if correction includes "cs" or "han".

The reduced-sample or border corrected estimate (returned as rs) is the same ratio J = (1-G)/(1-F)
of the border corrected estimates. This is computed if correction=NULL or if correction includes
"rs" or "border".

These edge-corrected estimators are slightly biased for J , since they are ratios of approximately
unbiased estimators. The logarithm of the Kaplan-Meier estimate is exactly unbiased for log J .

The uncorrected estimate (returned as un and computed only if correction includes "none") is the
ratio J = (1-G)/(1-F) of the uncorrected (“raw”) estimates of the survival functions of F and G,
which are the empirical distribution functions of the empty space distances Fest(X,...)$raw and
of the nearest neighbour distances Gest(X,...)$raw. The uncorrected estimates of F and G are
severely biased. However the uncorrected estimate of J is approximately unbiased (if the process is
close to Poisson); it is insensitive to edge effects, and should be used when edge effects are severe
(see Baddeley et al, 2000).

Jest 229

The algorithm for Fest uses two discrete approximations which are controlled by the parameter eps
and by the spacing of values of r respectively. See Fest for details. First-time users are strongly
advised not to specify these arguments.

Note that the value returned by Jest includes the output of Fest and Gest as attributes (see the last
example below). If the user is intending to compute the F,G and J functions for the point pattern, it
is only necessary to call Jest.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing

r the vector of values of the argument r at which the function J has been estimated

rs the “reduced sample” or “border correction” estimator of J(r) computed from
the border-corrected estimates of F and G

km the spatial Kaplan-Meier estimator of J(r) computed from the Kaplan-Meier
estimates of F and G

han the Hanisch-style estimator of J(r) computed from the Hanisch estimate of G
and the Chiu-Stoyan estimate of F

un the uncorrected estimate of J(r) computed from the uncorrected estimates of F
and G

theo the theoretical value of J(r) for a stationary Poisson process: identically equal
to 1

The data frame also has attributes

F the output of Fest for this point pattern, containing three estimates of the empty
space function F (r) and an estimate of its hazard function

G the output of Gest for this point pattern, containing three estimates of the near-
est neighbour distance distribution function G(r) and an estimate of its hazard
function

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37–78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

230 Jinhom

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263–292.

Baddeley, A., Kerscher, M., Schladitz, K. and Scott, B.T. Estimating the J function without edge
correction. Statistica Neerlandica 54 (2000) 315–328.

Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image
Processing 34 (1986) 344–371.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Thonnes, E. and Van Lieshout, M.N.M, A comparative study on the power of Van Lieshout and
Baddeley’s J-function. Biometrical Journal 41 (1999) 721–734.

Van Lieshout, M.N.M. and Baddeley, A.J. A nonparametric measure of spatial interaction in point
patterns. Statistica Neerlandica 50 (1996) 344–361.

See Also

Jinhom, Fest, Gest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

J <- Jest(cells, 0.01)
plot(J, main="cells data")
values are far above J = 1, indicating regular pattern

data(redwood)
J <- Jest(redwood, 0.01, legendpos="center")
plot(J, main="redwood data")
values are below J = 1, indicating clustered pattern

Jinhom Inhomogeneous J-function

Description

Estimates the inhomogeneous J function of a non-stationary point pattern.

Usage

Jinhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL, ratio=FALSE,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Jinhom 231

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
J function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

Details

This command computes estimates of the inhomogeneous J-function (Van Lieshout, 2010) of a
point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the J function for
homogeneous point patterns computed by Jest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous J function is computed as Jinhom(r) = (1−Ginhom(r))/(1−Finhom(r))
where Ginhom,F inhom are the inhomogeneous G and F functions computed using the border
correction (equations (7) and (6) respectively in Van Lieshout, 2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

232 Jinhom

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel
smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

References

van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Ginhom, Finhom, Jest

Examples

online <- interactive()
if(online) {

plot(Jinhom(swedishpines, sigma=10))

Jmulti 233

plot(Jinhom(swedishpines, sigma=bw.diggle, adjust=2))
} else {

use a coarse grid for faster computation and package testing
plot(Jinhom(swedishpines, sigma=10, dimyx=32))

}

Jmulti Marked J Function

Description

For a marked point pattern, estimate the multitype J function summarising dependence between the
points in subset I and those in subset J .

Usage

Jmulti(X, I, J, eps=NULL, r=NULL, breaks=NULL, ..., disjoint=NULL,
correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype distance
distribution function JIJ(r) will be computed. It must be a marked point pattern.
See under Details.

I Subset of points of X from which distances are measured. See Details.

J Subset of points in X to which distances are measured. See Details.

eps A positive number. The pixel resolution of the discrete approximation to Eu-
clidean distance (see Jest). There is a sensible default.

r numeric vector. The values of the argument r at which the distribution function
JIJ(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

... Ignored.

disjoint Optional flag indicating whether the subsets I and J are disjoint. If missing, this
value will be computed by inspecting the vectors I and J.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

234 Jmulti

Details

The function Jmulti generalises Jest (for unmarked point patterns) and Jdot and Jcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. Define

JIJ(r) =
1−GIJ(r)

1− FJ(r)

where FJ(r) is the cumulative distribution function of the distance from a fixed location to the
nearest point of XJ , and GIJ(r) is the distribution function of the distance from a typical point of
XI to the nearest distinct point of XJ .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

It is assumed that X can be treated as a realisation of a stationary (spatially homogeneous) random
spatial point process in the plane, observed through a bounded window. The window (which is
specified in X as Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the
same manner as in Jest.

The argument r is the vector of values for the distance r at which JIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function JIJ(r) has been estimated

rs the “reduced sample” or “border correction” estimator of JIJ(r)

km the spatial Kaplan-Meier estimator of JIJ(r)

han the Hanisch-style estimator of JIJ(r)

un the uncorrected estimate of JIJ(r), formed by taking the ratio of uncorrected
empirical estimators of 1−GIJ(r) and 1− FJ(r), see Gdot and Fest.

theo the theoretical value of JIJ(r) for a marked Poisson process with the same esti-
mated intensity, namely 1.

Jmulti.inhom 235

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jcross, Jdot, Jest

Examples

trees <- longleaf
Longleaf Pine data: marks represent diameter

Jm <- Jmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(Jm)

Jmulti.inhom Inhomogeneous Marked J-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype J function.

Usage

Jmulti.inhom(X, I, J,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL,
...,
r = NULL,
ReferenceMeasureMarkSetI = NULL,
ratio = FALSE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous mul-
titype J function JIJ(r) will be computed. It must be a marked point pattern.
See under Details.

I Subset index specifying the points of X from which distances are measured, for
the inhomogeneous G function.

J Subset index specifying the points in X to which distances are measured, for the
inhomogeneous G and F functions.

236 Jmulti.inhom

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm") or a function(x,y) which can be evaluated to give the intensity
value at any location.

lambdaI Optional. Values of the estimated intensity of the sub-process X[I]. Either a
pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X[I], a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location,

lambdaJ Optional. Values of the estimated intensity of the sub-process X[J]. Either a
pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X[J], a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

lambdamin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

... Extra arguments passed to as.mask to control the pixel resolution for the com-
putation.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

Details

This function is the counterpart of Jmulti for inhomogeneous patterns. It is computed by evaluating
the inhomogeneous G function GmultiInhom and the inhomogeneous F function FmultiInhom and
computing the ratio J = (1−G)/(1− F).

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype J function.

Author(s)

Jonatan González and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Jcross.inhom, Jdot.inhom for special cases.

GmultiInhom, FmultiInhom, Jmulti.

K3est 237

Examples

X <- rescale(amacrine)
I <- (marks(X) == "on")
J <- (marks(X) == "off")
if(interactive() && require(spatstat.model)) {

how to do it normally
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9
dd <- NULL

} else {
for package testing
lam <- intensity(X)[as.integer(marks(X))]
lmin <- intensity(X)[2] * 0.9
dd <- 32

}
JM <- Jmulti.inhom(X, I, J, lambda=lam, lambdamin=lmin, dimyx=dd)

K3est K-function of a Three-Dimensional Point Pattern

Description

Estimates the K-function from a three-dimensional point pattern.

Usage

K3est(X, ...,
rmax = NULL, nrval = 128,
correction = c("translation", "isotropic"),
ratio=FALSE)

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

rmax Optional. Maximum value of argument r for which K3(r) will be estimated.

nrval Optional. Number of values of r for which K3(r) will be estimated. A large
value of nrval is required to avoid discretisation effects.

correction Optional. Character vector specifying the edge correction(s) to be applied. See
Details.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

238 K3est

Details

For a stationary point process Φ in three-dimensional space, the three-dimensional K function is

K3(r) =
1

λ
E(N(Φ, x, r) | x ∈ Φ)

where λ is the intensity of the process (the expected number of points per unit volume) and N(Φ, x, r)
is the number of points of Φ, other than x itself, which fall within a distance r of x. This is the
three-dimensional generalisation of Ripley’s K function for two-dimensional point processes (Rip-
ley, 1977).

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The distance between each pair of distinct points is computed. The empirical cumulative
distribution function of these values, with appropriate edge corrections, is renormalised to give the
estimate of K3(r).

The available edge corrections are:

"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)

"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley,
1977; Baddeley et al, 1993).

Alternatively correction="all" selects all options.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

pcf3est, F3est, G3est for other summary functions of a three-dimensional point pattern.

Kest to estimate the K-function of point patterns in two dimensions or other spaces.

Kcross 239

Examples

X <- rpoispp3(42)
Z <- K3est(X)
if(interactive()) plot(Z)

Kcross Multitype K Function (Cross-type)

Description

For a multitype point pattern, estimate the multitype K function which counts the expected number
of points of type j within a given distance of a point of type i.

Usage

Kcross(X, i, j, r=NULL, breaks=NULL, correction,
..., ratio=FALSE, from, to)

Arguments

X The observed point pattern, from which an estimate of the cross type K function
Kij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

r numeric vector. The values of the argument r at which the distribution function
Kij(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "periodic", "none"
or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

from, to An alternative way to specify i and j respectively.

240 Kcross

Details

This function Kcross and its companions Kdot and Kmulti are generalisations of the function Kest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The arguments i and j will be interpreted as levels of the factor X$marks. If i and j are missing,
they default to the first and second level of the marks factor, respectively.

The “cross-type” (type i to type j) K function of a stationary multitype point process X is defined
so that λjKij(r) equals the expected number of additional random points of type j within a distance
r of a typical point of type i in the process X . Here λj is the intensity of the type j points, i.e. the
expected number of points of type j per unit area. The function Kij is determined by the second
order moment properties of X .

An estimate of Kij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the process of type i points were independent of the process of type j points, then Kij(r)
would equal πr2. Deviations between the empirical Kij curve and the theoretical curve πr2 may
suggest dependence between the points of types i and j.

This algorithm estimates the distribution function Kij(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Kest, using the border correction.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of Kcross; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Kij(r) has been estimated

theo the theoretical value of Kij(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Kij(r)
obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Kcross 241

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Kdot, Kest, Kmulti, pcf

Examples

amacrine cells data
K01 <- Kcross(amacrine, "off", "on")
plot(K01)

synthetic example: point pattern with marks 0 and 1

pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
K <- Kcross(pp, "0", "1")
K <- Kcross(pp, 0, 1) # equivalent

242 Kcross.inhom

Kcross.inhom Inhomogeneous Cross K Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross K function, which
counts the expected number of points of type j within a given distance of a point of type i, adjusted
for spatially varying intensity.

Usage

Kcross.inhom(X, i, j, lambdaI=NULL, lambdaJ=NULL, ..., r=NULL, breaks=NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
sigma=NULL, varcov=NULL,
lambdaIJ=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type K function Kij(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the the estimated intensity of the sub-process of points of
type j. Either a pixel image (object of class "im"), a numeric vector containing
the intensity values at each of the type j points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

r Optional. Numeric vector giving the values of the argument r at which the cross
K function Kij(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for advanced use only.

Kcross.inhom 243

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley" ,"translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

sigma Standard deviation of isotropic Gaussian smoothing kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdaJ if they are omitted.

varcov Variance-covariance matrix of anisotropic Gaussian kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdaJ if they are omitted. Incom-
patible with sigma.

lambdaIJ Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdaJ for each pair of points of types i and j respectively.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (object
of class "im"), a numeric vector containing the intensity values at each of the
points in X, a fitted point process model (object of class "ppm" or "kppm" or
"dppm"), or a function(x,y) which can be evaluated to give the intensity value
at any location. If present, this argument overrides both lambdaI and lambdaJ.

update Logical value indicating what to do when lambdaI, lambdaJ or lambdaX is a
fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

This is a generalisation of the function Kcross to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Kinhom.

The inhomogeneous cross-type K function is described by Møller and Waagepetersen (2003, pages
48-49 and 51-53).

Briefly, given a multitype point process, suppose the sub-process of points of type j has intensity
function λj(u) at spatial locations u. Suppose we place a mass of 1/λj(ζ) at each point ζ of type
j. Then the expected total mass per unit area is 1. The inhomogeneous “cross-type” K function
Kinhom

ij (r) equals the expected total mass within a radius r of a point of the process of type i.

If the process of type i points were independent of the process of type j points, then Kinhom
ij (r)

would equal πr2. Deviations between the empirical Kij curve and the theoretical curve πr2 suggest
dependence between the points of types i and j.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The arguments i and j will be interpreted as levels of the factor X$marks. (Warning: this means
that an integer value i=3 will be interpreted as the number 3, not the 3rd smallest level). If i and j
are missing, they default to the first and second level of the marks factor, respectively.

The argument lambdaI supplies the values of the intensity of the sub-process of points of type i. It
may be either

244 Kcross.inhom

a pixel image (object of class "im") which gives the values of the type i intensity at all locations
in the window containing X;

a numeric vector containing the values of the type i intensity evaluated only at the data points of
type i. The length of this vector must equal the number of type i points in X.

a function which can be evaluated to give values of the intensity at any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly lambdaJ should contain estimated values of the intensity of the sub-process of points of
type j. It may be either a pixel image, a function, a numeric vector, or omitted.

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points of
X, and the arguments lambdaI, lambdaJ will be ignored.

The optional argument lambdaIJ is for advanced use only. It is a matrix containing estimated values
of the products of these two intensities for each pair of data points of types i and j respectively.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in Kest.

The pair correlation function can also be applied to the result of Kcross.inhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Kij(r) has been estimated

theo the theoretical value of Kij(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Kij(r)
obtained by the edge corrections named.

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Kcross.inhom 245

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Kcross, Kinhom, Kdot.inhom, Kmulti.inhom, pcf

Examples

Lansing Woods data
woods <- lansing

ma <- split(woods)$maple
wh <- split(woods)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
K <- Kcross.inhom(woods, "whiteoak", "maple", lambdaW, lambdaM)

method (2): leave-one-out
K <- Kcross.inhom(woods, "whiteoak", "maple", sigma=0.15)

method (3): fit parametric intensity model
if(require("spatstat.model")) {
fit <- ppm(woods ~marks * polynom(x,y,2))
alternative (a): use fitted model as 'lambda' argument
online <- interactive()
K <- Kcross.inhom(woods, "whiteoak", "maple",

lambdaI=fit, lambdaJ=fit,
update=online, leaveoneout=online)

K <- Kcross.inhom(woods, "whiteoak", "maple",
lambdaX=fit,
update=online, leaveoneout=online)

alternative (b): evaluate fitted intensities at data points
(these are the intensities of the sub-processes of each type)
inten <- fitted(fit, dataonly=TRUE, leaveoneout=FALSE)
split according to types of points
lambda <- split(inten, marks(woods))
K <- Kcross.inhom(woods, "whiteoak", "maple",

lambda$whiteoak, lambda$maple)
}

246 Kdot

synthetic example: type A points have intensity 50,
type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kcross.inhom(X, "A", "B",

lambdaI=as.im(50, Window(X)), lambdaJ=lamB)

Kdot Multitype K Function (i-to-any)

Description

For a multitype point pattern, estimate the multitype K function which counts the expected number
of other points of the process within a given distance of a point of type i.

Usage

Kdot(X, i, r=NULL, breaks=NULL, correction, ..., ratio=FALSE, from)

Arguments

X The observed point pattern, from which an estimate of the multitype K function
Ki•(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

r numeric vector. The values of the argument r at which the distribution function
Ki•(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "periodic", "none"
or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

from An alternative way to specify i.

Kdot 247

Details

This function Kdot and its companions Kcross and Kmulti are generalisations of the function Kest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The argument i will be interpreted as a level of the factor X$marks. If i is missing, it defaults to the
first level of the marks factor, i = levels(X$marks)[1].

The “type i to any type” multitype K function of a stationary multitype point process X is defined
so that λKi•(r) equals the expected number of additional random points within a distance r of a
typical point of type i in the process X . Here λ is the intensity of the process, i.e. the expected
number of points of X per unit area. The function Ki• is determined by the second order moment
properties of X .

An estimate of Ki•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the subprocess of type i points were independent of the subprocess of points of all types
not equal to i, then Ki•(r) would equal πr2. Deviations between the empirical Ki• curve and the
theoretical curve πr2 may suggest dependence between types.

This algorithm estimates the distribution function Ki•(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Kest, using the chosen edge correction(s).

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of Kdot; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Ki•(r) has been estimated

theo the theoretical value of Ki•(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Ki•(r)
obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

248 Kdot

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

The reduced sample estimator of Ki• is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Kdot, Kest, Kmulti, pcf

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Kh. <- Kdot(woods, "hickory")
diagnostic plot for independence between hickories and other trees
plot(Kh.)

synthetic example with two marks "a" and "b"

pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(c("a","b"), npoints(pp), replace=TRUE))
K <- Kdot(pp, "a")

Kdot.inhom 249

Kdot.inhom Inhomogeneous Multitype K Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot K function, which
counts the expected number of points of any type within a given distance of a point of type i,
adjusted for spatially varying intensity.

Usage

Kdot.inhom(X, i, lambdaI=NULL, lambdadot=NULL, ..., r=NULL, breaks=NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
sigma=NULL, varcov=NULL, lambdaIdot=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous dot
type K function Ki•(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdadot Optional. Values of the estimated intensity of the entire point process, Either
a pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X, a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

... Ignored.

r Optional. Numeric vector giving the values of the argument r at which the dot
K function Ki•(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

250 Kdot.inhom

sigma Standard deviation of isotropic Gaussian smoothing kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdadot if they are omitted.

varcov Variance-covariance matrix of anisotropic Gaussian kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdadot if they are omitted. In-
compatible with sigma.

lambdaIdot Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdadot for each pair of points, the first point of type i and the second
of any type.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (ob-
ject of class "im"), a numeric vector containing the intensity values at each of
the points in X, a fitted point process model (object of class "ppm" or "kppm"
or "dppm"), or a function(x,y) which can be evaluated to give the intensity
value at any location. If present, this argument overrides both lambdaI and
lambdadot.

update Logical value indicating what to do when lambdaI, lambdadot or lambdaX is
a fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

This is a generalisation of the function Kdot to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Kinhom.

Briefly, given a multitype point process, consider the points without their types, and suppose this
unmarked point process has intensity function λ(u) at spatial locations u. Suppose we place a mass
of 1/λ(ζ) at each point ζ of the process. Then the expected total mass per unit area is 1. The
inhomogeneous “dot-type” K function Kinhom

i• (r) equals the expected total mass within a radius
r of a point of the process of type i, discounting this point itself.

If the process of type i points were independent of the points of other types, then Kinhom
i• (r)

would equal πr2. Deviations between the empirical Ki• curve and the theoretical curve πr2 suggest
dependence between the points of types i and j for j ̸= i.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an
integer value i=3 will be interpreted as the number 3, not the 3rd smallest level). If i is missing, it
defaults to the first level of the marks factor, i = levels(X$marks)[1].

The argument lambdaI supplies the values of the intensity of the sub-process of points of type i. It
may be either

a pixel image (object of class "im") which gives the values of the type i intensity at all locations
in the window containing X;

a numeric vector containing the values of the type i intensity evaluated only at the data points of
type i. The length of this vector must equal the number of type i points in X.

Kdot.inhom 251

a function of the form function(x,y) which can be evaluated to give values of the intensity at
any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly the argument lambdadot should contain estimated values of the intensity of the entire
point process. It may be either a pixel image, a numeric vector of length equal to the number of
points in X, a function, or omitted.

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points
of X, and the arguments lambdaI, lambdadot will be ignored. (The two arguments lambdaI,
lambdadot allow the user to specify two different methods for calculating the intensities of the
two kinds of points, while lambdaX ensures that the same method is used for both kinds of points.)

For advanced use only, the optional argument lambdaIdot is a matrix containing estimated values
of the products of these two intensities for each pair of points, the first point of type i and the second
of any type.

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in Kest.

The pair correlation function can also be applied to the result of Kdot.inhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Ki•(r) has been estimated

theo the theoretical value of Ki•(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Ki•(r)
obtained by the edge corrections named.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

252 Kest

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Kdot, Kinhom, Kcross.inhom, Kmulti.inhom, pcf

Examples

Lansing Woods data
woods <- lansing
woods <- woods[seq(1,npoints(woods), by=10)]
ma <- split(woods)$maple
lg <- unmark(woods)

Estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdadot <- density.ppp(lg, sigma=0.15, at="points")
K <- Kdot.inhom(woods, "maple", lambdaI=lambdaM,

lambdadot=lambdadot)

Equivalent
K <- Kdot.inhom(woods, "maple", sigma=0.15)

Fit model
if(require("spatstat.model")) {
fit <- ppm(woods ~ marks * polynom(x,y,2))
K <- Kdot.inhom(woods, "maple", lambdaX=fit,

update=FALSE, leaveoneout=FALSE)
}

synthetic example: type A points have intensity 50,
type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
lamdot <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kdot.inhom(X, "B", lambdaI=lamB, lambdadot=lamdot)

Kest K-function

Kest 253

Description

Estimates Ripley’s reduced second moment function K(r) from a point pattern in a window of
arbitrary shape.

Usage

Kest(X, ..., r=NULL, rmax=NULL, breaks=NULL,
correction=c("border", "isotropic", "Ripley", "translate"),
nlarge=3000, domain=NULL, var.approx=FALSE, ratio=FALSE)

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.
If necessary, specify rmax.

rmax Optional. Maximum desired value of the argument r.

breaks This argument is for internal use only.

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "isotropic", "Ripley", "translate", "translation",
"rigid", "none", "periodic", "good" or "best". It specifies the edge correc-
tion(s) to be applied. Alternatively correction="all" selects all options.

nlarge Optional. Efficiency threshold. If the number of points exceeds nlarge, then
only the border correction will be computed (by default), using a fast algorithm.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

var.approx Logical. If TRUE, the approximate variance of K̂(r) under CSR will also be
computed.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

Details

The K function (variously called “Ripley’s K-function” and the “reduced second moment func-
tion”) of a stationary point process X is defined so that λK(r) equals the expected number of
additional random points within a distance r of a typical random point of X . Here λ is the intensity
of the process, i.e. the expected number of points of X per unit area. The K function is determined
by the second order moment properties of X .

An estimate of K derived from a spatial point pattern dataset can be used in exploratory data anal-
ysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1977, 1988). In
exploratory analyses, the estimate of K is a useful statistic summarising aspects of inter-point “de-
pendence” and “clustering”. For inferential purposes, the estimate of K is usually compared to the
true value of K for a completely random (Poisson) point process, which is K(r) = πr2. Deviations
between the empirical and theoretical K curves may suggest spatial clustering or spatial regularity.

254 Kest

This routine Kest estimates the K function of a stationary point process, given observation of the
process inside a known, bounded window. The argument X is interpreted as a point pattern object (of
class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp().

The estimation of K is hampered by edge effects arising from the unobservability of points of the
random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998;
Ripley, 1988). The corrections implemented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented for rectangular and polygonal windows (not for binary masks).

translate/translation Translation correction (Ohser, 1983). Implemented for all window geome-
tries, but slow for complex windows.

rigid Rigid motion correction (Ohser and Stoyan, 1981). Implemented for all window geometries,
but slow for complex windows.

none Uncorrected estimate. An estimate of the K function without edge correction. (i.e. setting
eij = 1 in the equation below. This estimate is biased and should not be used for data analysis,
unless you have an extremely large point pattern (more than 100,000 points).

periodic Periodic (toroidal) edge correction. Defined only for rectangular windows.

best Selects the best edge correction that is available for the geometry of the window. Currently
this is Ripley’s isotropic correction for a rectangular or polygonal window, and the translation
correction for masks.

good Selects the best edge correction that can be computed in a reasonable time. This is the same
as "best" for datasets with fewer than 3000 points; otherwise the selected edge correction is
"border", unless there are more than 100,000 points, when it is "none".

The estimates of K(r) are of the form

K̂(r) =
a

n(n− 1)

∑
i

∑
j

I(dij ≤ r)eij

where a is the area of the window, n is the number of data points, and the sum is taken over all
ordered pairs of points i and j in X. Here dij is the distance between the two points, and I(dij ≤ r)
is the indicator that equals 1 if the distance is less than or equal to r. The term eij is the edge
correction weight (which depends on the choice of edge correction listed above).

Note that this estimator assumes the process is stationary (spatially homogeneous). For inhomoge-
neous point patterns, see Kinhom.

If the point pattern X contains more than about 3000 points, the isotropic and translation edge correc-
tions can be computationally prohibitive. The computations for the border method are much faster,
and are statistically efficient when there are large numbers of points. Accordingly, if the number of
points in X exceeds the threshold nlarge, then only the border correction will be computed. Set-
ting nlarge=Inf or correction="best" will prevent this from happening. Setting nlarge=0 is
equivalent to selecting only the border correction with correction="border".

If X contains more than about 100,000 points, even the border correction is time-consuming. You
may want to consider setting correction="none" in this case. There is an even faster algorithm
for the uncorrected estimate.

Kest 255

Approximations to the variance of K̂(r) are available, for the case of the isotropic edge correction
estimator, assuming complete spatial randomness (Ripley, 1988; Lotwick and Silverman, 1982;
Diggle, 2003, pp 51-53). If var.approx=TRUE, then the result of Kest also has a column named
rip giving values of Ripley’s (1988) approximation to var(K̂(r)), and (if the window is a rectangle)
a column named ls giving values of Lotwick and Silverman’s (1982) approximation.

If the argument domain is given, the calculations will be restricted to a subset of the data. In
the formula for K(r) above, the first point i will be restricted to lie inside domain. The result is an
approximately unbiased estimate of K(r) based on pairs of points in which the first point lies inside
domain and the second point is unrestricted. This is useful in bootstrap techniques. The argument
domain should be a window (object of class "owin") or something acceptable to as.owin. It must
be a subset of the window of the point pattern X.

The estimator Kest ignores marks. Its counterparts for multitype point patterns are Kcross, Kdot,
and for general marked point patterns see Kmulti.

Some writers, particularly Stoyan (1994, 1995) advocate the use of the “pair correlation function”

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r). See pcf on how to estimate this function.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function K(r) obtained by the
edge corrections named.

If var.approx=TRUE then the return value also has columns rip and ls containing approximations
to the variance of K̂(r) under CSR.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Envelopes, significance bands and confidence intervals

To compute simulation envelopes for the K-function under CSR, use envelope.

To compute a confidence interval for the true K-function, use varblock or lohboot.

Warnings

The estimator of K(r) is approximately unbiased for each fixed r, for point processes which do
not have very strong interaction. (For point processes with a strong clustering interaction, the
estimator is negatively biased; for point processes with a strong inhibitive interaction, the estimator
is positively biased.)

256 Kest

Bias increases with r and depends on the window geometry. For a rectangular window it is prudent
to restrict the r values to a maximum of 1/4 of the smaller side length of the rectangle (Ripley,
1977, 1988; Diggle, 1983). Bias may become appreciable for point patterns consisting of fewer
than 15 points.

While K(r) is always a non-decreasing function, the estimator of K is not guaranteed to be non-
decreasing. This is rarely a problem in practice, except for the border correction estimators when
the number of points is small.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37–78.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ohser, J. and Stoyan, D. (1981) On the second-order and orientation analysis of planar stationary
point processes. Biometrical Journal 23, 523–533.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

localK to extract individual summands in the K function.

pcf for the pair correlation.

Fest, Gest, Jest for alternative summary functions.

Kcross, Kdot, Kinhom, Kmulti for counterparts of the K function for multitype point patterns.

reduced.sample for the calculation of reduced sample estimators.

Examples

X <- runifpoint(50)
K <- Kest(X)
K <- Kest(cells, correction="isotropic")
plot(K)
plot(K, main="K function for cells")

Kest.fft 257

plot the L function
plot(K, sqrt(iso/pi) ~ r)
plot(K, sqrt(./pi) ~ r, ylab="L(r)", main="L function for cells")

Kest.fft K-function using FFT

Description

Estimates the reduced second moment function K(r) from a point pattern in a window of arbitrary
shape, using the Fast Fourier Transform.

Usage

Kest.fft(X, sigma, r=NULL, ..., breaks=NULL)

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

sigma Standard deviation of the isotropic Gaussian smoothing kernel.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. There is a sensible default.

... Arguments passed to as.mask determining the spatial resolution for the FFT
calculation.

breaks This argument is for internal use only.

Details

This is an alternative to the function Kest for estimating the K function. It may be useful for very
large patterns of points.

Whereas Kest computes the distance between each pair of points analytically, this function discre-
tises the point pattern onto a rectangular pixel raster and applies Fast Fourier Transform techniques
to estimate K(t). The hard work is done by the function Kmeasure.

The result is an approximation whose accuracy depends on the resolution of the pixel raster. The res-
olution is controlled by the arguments ..., or by setting the parameter npixel in spatstat.options.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

border the estimates of K(r) for these values of r

theo the theoretical value K(r) = πr2 for a stationary Poisson process

258 Kinhom

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, Kmeasure, spatstat.options

Examples

pp <- runifpoint(10000)

Kpp <- Kest.fft(pp, 0.01)
plot(Kpp)

Kinhom Inhomogeneous K-function

Description

Estimates the inhomogeneous K function of a non-stationary point pattern.

Usage

Kinhom(X, lambda=NULL, ..., r = NULL, breaks = NULL,
correction=c("border", "bord.modif", "isotropic", "translate"),
renormalise=TRUE,
normpower=1,
update=TRUE,
leaveoneout=TRUE,
nlarge = 1000,
lambda2=NULL, reciplambda=NULL, reciplambda2=NULL,
diagonal=TRUE,
sigma=NULL, varcov=NULL,
ratio=FALSE)

Kinhom 259

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
K function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

nlarge Optional. Efficiency threshold. If the number of points exceeds nlarge, then
only the border correction will be computed, using a fast algorithm.

lambda2 Advanced use only. Matrix containing estimates of the products λ(xi)λ(xj) of
the intensities at each pair of data points xi and xj .

reciplambda Alternative to lambda. Values of the estimated reciprocal 1/λ of the intensity
function. Either a vector giving the reciprocal intensity values at the points of
the pattern X, a pixel image (object of class "im") giving the reciprocal intensity
values at all locations, or a function(x,y) which can be evaluated to give the
reciprocal intensity value at any location.

reciplambda2 Advanced use only. Alternative to lambda2. A matrix giving values of the
estimated reciprocal products 1/λ(xi)λ(xj) of the intensities at each pair of
data points xi and xj .

diagonal Do not use this argument.

sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

260 Kinhom

Details

This computes a generalisation of the K function for inhomogeneous point patterns, proposed by
Baddeley, Møller and Waagepetersen (2000).

The “ordinary” K function (variously known as the reduced second order moment function and
Ripley’s K function), is described under Kest. It is defined only for stationary point processes.

The inhomogeneous K function Kinhom(r) is a direct generalisation to nonstationary point pro-
cesses. Suppose x is a point process with non-constant intensity λ(u) at each location u. Define
Kinhom(r) to be the expected value, given that u is a point of x, of the sum of all terms 1/λ(xj) over
all points xj in the process separated from u by a distance less than r. This reduces to the ordinary
K function if λ() is constant. If x is an inhomogeneous Poisson process with intensity function
λ(u), then Kinhom(r) = πr2.

Given a point pattern dataset, the inhomogeneous K function can be estimated essentially by sum-
ming the values 1/(λ(xi)λ(xj)) for all pairs of points xi, xj separated by a distance less than r.

This allows us to inspect a point pattern for evidence of interpoint interactions after allowing for
spatial inhomogeneity of the pattern. Values Kinhom(r) > πr2 are suggestive of clustering.

The argument lambda should supply the (estimated) values of the intensity function λ. It may be
either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate lambda[i] for the point X[i] is com-
puted by removing X[i] from the point pattern, applying kernel smoothing to the remaining points
using density.ppp, and evaluating the smoothed intensity at the point X[i]. The smoothing kernel
bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp
along with any extra arguments.

Kinhom 261

Edge corrections are used to correct bias in the estimation of Kinhom. Each edge-corrected estimate
of Kinhom(r) is of the form

K̂inhom(r) = (1/A)
∑
i

∑
j

1{dij ≤ r}e(xi, xj , r)

λ(xi)λ(xj)

where A is a constant denominator, dij is the distance between points xi and xj , and e(xi, xj , r) is
an edge correction factor. For the ‘border’ correction,

e(xi, xj , r) =
1(bi > r)∑

j 1(bj > r)/λ(xj)

where bi is the distance from xi to the boundary of the window. For the ‘modified border’ correction,

e(xi, xj , r) =
1(bi > r)

area(W ⊖ r)

where W ⊖ r is the eroded window obtained by trimming a margin of width r from the border of
the original window. For the ‘translation’ correction,

e(xi, xj , r) =
1

area(W ∩ (W + (xj − xi)))

and for the ‘isotropic’ correction,

e(xi, xj , r) =
1

area(W)g(xi, xj)

where g(xi, xj) is the fraction of the circumference of the circle with centre xi and radius ||xi−xj ||
which lies inside the window.

If renormalise=TRUE (the default), then the estimates described above are multiplied by cnormpower

where c = area(W)/
∑

(1/λ(xi)). This rescaling reduces the variability and bias of the estimate
in small samples and in cases of very strong inhomogeneity. The default value of normpower is 1
(for consistency with previous versions of spatstat) but the most sensible value is 2, which would
correspond to rescaling the lambda values so that

∑
(1/λ(xi)) = area(W).

If the point pattern X contains more than about 1000 points, the isotropic and translation edge correc-
tions can be computationally prohibitive. The computations for the border method are much faster,
and are statistically efficient when there are large numbers of points. Accordingly, if the number of
points in X exceeds the threshold nlarge, then only the border correction will be computed. Set-
ting nlarge=Inf or correction="best" will prevent this from happening. Setting nlarge=0 is
equivalent to selecting only the border correction with correction="border".

The pair correlation function can also be applied to the result of Kinhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing at least the following columns,

r the vector of values of the argument r at which Kinhom(r) has been estimated

262 Kinhom

theo vector of values of πr2, the theoretical value of Kinhom(r) for an inhomogeneous
Poisson process

and containing additional columns according to the choice specified in the correction argu-
ment. The additional columns are named border, trans and iso and give the estimated values
of Kinhom(r) using the border correction, translation correction, and Ripley isotropic correction,
respectively.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of Kinhom(r).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

See Also

Kest, pcf

Examples

inhomogeneous pattern of maples
X <- unmark(split(lansing)$maple)

if(require("spatstat.model")) {
(1) intensity function estimated by model-fitting
Fit spatial trend: polynomial in x and y coordinates
fit <- ppm(X, ~ polynom(x,y,2), Poisson())
(a) predict intensity values at points themselves,
obtaining a vector of lambda values
lambda <- predict(fit, locations=X, type="trend")
inhomogeneous K function
Ki <- Kinhom(X, lambda)
plot(Ki)
(b) predict intensity at all locations,
obtaining a pixel image
lambda <- predict(fit, type="trend")
Ki <- Kinhom(X, lambda)
plot(Ki)

}

(2) intensity function estimated by heavy smoothing
Ki <- Kinhom(X, sigma=0.1)
plot(Ki)

(3) simulated data: known intensity function
lamfun <- function(x,y) { 50 + 100 * x }

Kmark 263

inhomogeneous Poisson process
Y <- rpoispp(lamfun, 150, owin())
inhomogeneous K function
Ki <- Kinhom(Y, lamfun)
plot(Ki)

How to make simulation envelopes:
Example shows method (2)
if(interactive()) {

smo <- density.ppp(X, sigma=0.1)
Ken <- envelope(X, Kinhom, nsim=99,

simulate=expression(rpoispp(smo)),
sigma=0.1, correction="trans")

plot(Ken)
}

Kmark Mark-Weighted K Function

Description

Estimates the mark-weighted K function of a marked point pattern.

Usage

Kmark(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)

markcorrint(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

f Optional. Test function f used in the definition of the mark correlation function.
An R function with at least two arguments. There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied. Alternatively
correction="all" selects all options.

... Ignored.

f1 An alternative to f. If this argument is given, then f is assumed to take the form
f(u, v) = f1(u)f1(v).

264 Kmark

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

returnL Compute the analogue of the K-function if returnL=FALSE or the analogue of
the L-function if returnL=TRUE.

fargs Optional. A list of extra arguments to be passed to the function f or f1.

Details

The functions Kmark and markcorrint are identical. (Eventually markcorrint will be deprecated.)

The mark-weighted K function Kf (r) of a marked point process (Penttinen et al, 1992) is a gener-
alisation of Ripley’s K function, in which the contribution from each pair of points is weighted by
a function of their marks. If the marks of the two points are m1,m2 then the weight is proportional
to f(m1,m2) where f is a specified test function.

The mark-weighted K function is defined so that

λKf (r) =
Cf (r)

E[f(M1,M2)]

where

Cf (r) = E

[∑
x∈X

f(m(u),m(x))10 < ||u− x|| ≤ r
∣∣ u ∈ X

]
for any spatial location u taken to be a typical point of the point process X . Here ||u − x|| is
the euclidean distance between u and x, so that the sum is taken over all random points x that
lie within a distance r of the point u. The function Cf (r) is the unnormalised mark-weighted K
function. To obtain Kf (r) we standardise Cf (r) by dividing by E[f(M1,M2)], the expected value
of f(M1,M2) when M1 and M2 are independent random marks with the same distribution as the
marks in the point process.

Under the hypothesis of random labelling, the mark-weighted K function is equal to Ripley’s K
function, Kf (r) = K(r).

The mark-weighted K function is sometimes called the mark correlation integral because it is
related to the mark correlation function kf (r) and the pair correlation function g(r) by

Kf (r) = 2π

∫ r

0

skf (s) g(s) ds

See markcorr for a definition of the mark correlation function.

Given a marked point pattern X, this command computes edge-corrected estimates of the mark-
weighted K function. If returnL=FALSE then the estimated function Kf (r) is returned; otherwise
the function

Lf (r) =
√
Kf (r)/π

is returned.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

Kmark 265

r the values of the argument r at which the mark correlation integral Kf (r) has
been estimated

theo the theoretical value of Kf (r) when the marks attached to different points are
independent, namely πr2

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the mark-weighted K function Kf (r) obtained by
the edge corrections named (if returnL=FALSE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Penttinen, A., Stoyan, D. and Henttonen, H. M. (1992) Marked point processes in forest statistics.
Forest Science 38 (1992) 806-824.

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical analysis and modelling of
spatial point patterns. Chichester: John Wiley.

See Also

markcorr to estimate the mark correlation function.

Examples

CONTINUOUS-VALUED MARKS:
(1) Spruces
marks represent tree diameter
mark correlation function
ms <- Kmark(spruces)
plot(ms)

(2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Xc <- Kmark(X)
plot(Xc)

MULTITYPE DATA:
Hughes' amacrine data
Cells marked as 'on'/'off'
M <- Kmark(amacrine, function(m1,m2) {m1==m2},

correction="translate")
plot(M)

266 Kmeasure

Kmeasure Reduced Second Moment Measure

Description

Estimates the reduced second moment measure κ from a point pattern in a window of arbitrary
shape.

Usage

Kmeasure(X, sigma, edge=TRUE, ..., varcov=NULL)

Arguments

X The observed point pattern, from which an estimate of κ will be computed. An
object of class "ppp", or data in any format acceptable to as.ppp().

sigma Standard deviation σ of the Gaussian smoothing kernel. Incompatible with
varcov.

edge Logical value indicating whether an edge correction should be applied.

... Arguments passed to as.mask controlling the pixel resolution.

varcov Variance-covariance matrix of the Gaussian smoothing kernel. Incompatible
with sigma.

Details

Given a point pattern dataset, this command computes an estimate of the reduced second moment
measure κ of the point process. The result is a pixel image whose pixel values are estimates of the
density of the reduced second moment measure.

The reduced second moment measure κ can be regarded as a generalisation of the more familiar
K-function. An estimate of κ derived from a spatial point pattern dataset can be useful in ex-
ploratory data analysis. Its advantage over the K-function is that it is also sensitive to anisotropy
and directional effects.

In a nutshell, the command Kmeasure computes a smoothed version of the Fry plot. As explained
under fryplot, the Fry plot is a scatterplot of the vectors joining all pairs of points in the pattern.
The reduced second moment measure is (essentially) defined as the average of the Fry plot over
different realisations of the point process. The command Kmeasure effectively smooths the Fry plot
of a dataset to obtain an estimate of the reduced second moment measure.

In formal terms, the reduced second moment measure κ of a stationary point process X is a measure
defined on the two-dimensional plane such that, for a ‘typical’ point x of the process, the expected
number of other points y of the process such that the vector y− x lies in a region A, equals λκ(A).
Here λ is the intensity of the process, i.e. the expected number of points of X per unit area.

The K-function is a special case. The function value K(t) is the value of the reduced second
moment measure for the disc of radius t centred at the origin; that is, K(t) = κ(b(0, t)).

Kmeasure 267

The command Kmeasure computes an estimate of κ from a point pattern dataset X, which is assumed
to be a realisation of a stationary point process, observed inside a known, bounded window. Marks
are ignored.

The algorithm approximates the point pattern and its window by binary pixel images, introduces a
Gaussian smoothing kernel and uses the Fast Fourier Transform fft to form a density estimate of
κ. The calculation corresponds to the edge correction known as the “translation correction”.

The Gaussian smoothing kernel may be specified by either of the arguments sigma or varcov. If
sigma is a single number, this specifies an isotropic Gaussian kernel with standard deviation sigma
on each coordinate axis. If sigma is a vector of two numbers, this specifies a Gaussian kernel with
standard deviation sigma[1] on the x axis, standard deviation sigma[2] on the y axis, and zero
correlation between the x and y axes. If varcov is given, this specifies the variance-covariance
matrix of the Gaussian kernel. There do not seem to be any well-established rules for selecting the
smoothing kernel in this context.

The density estimate of κ is returned in the form of a real-valued pixel image. Pixel values are
estimates of the normalised second moment density at the centre of the pixel. (The uniform Poisson
process would have values identically equal to 1.) The image x and y coordinates are on the same
scale as vector displacements in the original point pattern window. The point x=0, y=0 corresponds
to the ‘typical point’. A peak in the image near (0,0) suggests clustering; a dip in the image near
(0,0) suggests inhibition; peaks or dips at other positions suggest possible periodicity.

If desired, the value of κ(A) for a region A can be estimated by computing the integral of the
pixel image over the domain A, i.e.\ summing the pixel values and multiplying by pixel area, using
integral.im. One possible application is to compute anisotropic counterparts of the K-function
(in which the disc of radius t is replaced by another shape). See Examples.

Value

A real-valued pixel image (an object of class "im", see im.object) whose pixel values are estimates
of the density of the reduced second moment measure at each location.

Warning

Some writers use the term reduced second moment measure when they mean the K-function. This
has caused confusion.

As originally defined, the reduced second moment measure is a measure, obtained by modifying the
second moment measure, while the K-function is a function obtained by evaluating this measure
for discs of increasing radius. In spatstat, the K-function is computed by Kest and the reduced
second moment measure is computed by Kmeasure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

268 Kmulti

See Also

Kest, fryplot, spatstat.options, integral.im, im.object

Examples

plot(Kmeasure(cells, 0.05))
shows pronounced dip around origin consistent with strong inhibition
plot(Kmeasure(redwood, 0.03), col=grey(seq(1,0,length=32)))
shows peaks at several places, reflecting clustering and ?periodicity
M <- Kmeasure(cells, 0.05)
evaluate measure on a sector
W <- Window(M)
ang <- as.im(atan2, W)
rad <- as.im(function(x,y){sqrt(x^2+y^2)}, W)
sector <- solutionset(ang > 0 & ang < 1 & rad < 0.6)
integral.im(M[sector, drop=FALSE])

Kmulti Marked K-Function

Description

For a marked point pattern, estimate the multitype K function which counts the expected number
of points of subset J within a given distance from a typical point in subset I.

Usage

Kmulti(X, I, J, r=NULL, breaks=NULL, correction, ..., rmax=NULL, ratio=FALSE)

Arguments

X The observed point pattern, from which an estimate of the multitype K function
KIJ(r) will be computed. It must be a marked point pattern. See under Details.

I Subset index specifying the points of X from which distances are measured. See
Details.

J Subset index specifying the points in X to which distances are measured. See
Details.

r numeric vector. The values of the argument r at which the multitype K function
KIJ(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r. If necessary, specify rmax.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "periodic", "none"
or "best". It specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

Kmulti 269

... Ignored.

rmax Optional. Maximum desired value of the argument r.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

Details

The function Kmulti generalises Kest (for unmarked point patterns) and Kdot and Kcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. The multitype K
function is defined so that λJKIJ(r) equals the expected number of additional random points of
XJ within a distance r of a typical point of XI . Here λJ is the intensity of XJ i.e. the expected
number of points of XJ per unit area. The function KIJ is determined by the second order moment
properties of X .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The argument r is the vector of values for the distance r at which KIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently
implemented only for rectangular and polygonal windows.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function pcf can also be applied to the result of Kmulti.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

270 Kmulti

r the values of the argument r at which the function KIJ(r) has been estimated

theo the theoretical value of KIJ(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function KIJ(r)
obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Warnings

The function KIJ is not necessarily differentiable.

The border correction (reduced sample) estimator of KIJ used here is pointwise approximately
unbiased, but need not be a nondecreasing function of r, while the true KIJ must be nondecreasing.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Kcross, Kdot, Kest, pcf

Examples

Longleaf Pine data: marks represent diameter
trees <- longleaf

K <- Kmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(K)

Kmulti.inhom 271

functions determining subsets
f1 <- function(X) { marks(X) <= 15 }
f2 <- function(X) { marks(X) >= 15 }
K <- Kmulti(trees, f1, f2)

Kmulti.inhom Inhomogeneous Marked K-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype K function which
counts the expected number of points of subset J within a given distance from a typical point in
subset I, adjusted for spatially varying intensity.

Usage

Kmulti.inhom(X, I, J, lambdaI=NULL, lambdaJ=NULL,
...,
r=NULL, breaks=NULL,
correction=c("border", "isotropic", "Ripley", "translate"),
lambdaIJ=NULL,
sigma=NULL, varcov=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous mul-
titype K function KIJ(r) will be computed. It must be a marked point pattern.
See under Details.

I Subset index specifying the points of X from which distances are measured. See
Details.

J Subset index specifying the points in X to which distances are measured. See
Details.

lambdaI Optional. Values of the estimated intensity of the sub-process X[I]. Either a
pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X[I], a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

lambdaJ Optional. Values of the estimated intensity of the sub-process X[J]. Either a
pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X[J], a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

... Ignored.

272 Kmulti.inhom

r Optional. Numeric vector. The values of the argument r at which the multitype
K function KIJ(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "none" or "best". It specifies the
edge correction(s) to be applied. Alternatively correction="all" selects all
options.

lambdaIJ Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdaJ for each pair of points, the first point belonging to subset I and the
second point to subset J.

sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (object
of class "im"), a numeric vector containing the intensity values at each of the
points in X, a fitted point process model (object of class "ppm" or "kppm" or
"dppm"), or a function(x,y) which can be evaluated to give the intensity value
at any location. If present, this argument overrides both lambdaI and lambdaJ.

update Logical value indicating what to do when lambdaI, lambdaJ or lambdaX is a
fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

The function Kmulti.inhom is the counterpart, for spatially-inhomogeneous marked point patterns,
of the multitype K function Kmulti.

Suppose X is a marked point process, with marks of any kind. Suppose XI , XJ are two sub-
processes, possibly overlapping. Typically XI would consist of those points of X whose marks
lie in a specified range of mark values, and similarly for XJ . Suppose that λI(u), λJ(u) are the
spatially-varying intensity functions of XI and XJ respectively. Consider all the pairs of points
(u, v) in the point process X such that the first point u belongs to XI , the second point v belongs
to XJ , and the distance between u and v is less than a specified distance r. Give this pair (u, v) the
numerical weight 1/(λI(u)λJ(u)). Calculate the sum of these weights over all pairs of points as
described. This sum (after appropriate edge-correction and normalisation) is the estimated inhomo-
geneous multitype K function.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Kmulti.inhom 273

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The argument lambdaI supplies the values of the intensity of the sub-process identified by index I.
It may be either

a pixel image (object of class "im") which gives the values of the intensity of X[I] at all locations
in the window containing X;

a numeric vector containing the values of the intensity of X[I] evaluated only at the data points
of X[I]. The length of this vector must equal the number of points in X[I].

a function of the form function(x,y) which can be evaluated to give values of the intensity at
any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly lambdaJ supplies the values of the intensity of the sub-process identified by index J.

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points of
X, and the arguments lambdaI, lambdaJ will be ignored.

The argument r is the vector of values for the distance r at which KIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.

Biases due to edge effects are treated in the same manner as in Kinhom. The edge corrections
implemented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently
implemented only for rectangular windows.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function pcf can also be applied to the result of Kmulti.inhom.

274 Kscaled

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function KIJ(r) has been estimated

theo the theoretical value of KIJ(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function KIJ(r)
obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

See Also

Kmulti, Kdot.inhom, Kcross.inhom, pcf

Examples

Finnish Pines data: marked by diameter and height
plot(finpines, which.marks="height")
II <- (marks(finpines)$height <= 2)
JJ <- (marks(finpines)$height > 3)
K <- Kmulti.inhom(finpines, II, JJ)
plot(K)
functions determining subsets
f1 <- function(X) { marks(X)$height <= 2 }
f2 <- function(X) { marks(X)$height > 3 }
K <- Kmulti.inhom(finpines, f1, f2)

Kscaled Locally Scaled K-function

Description

Estimates the locally-rescaled K-function of a point process.

Kscaled 275

Usage

Kscaled(X, lambda=NULL, ..., r = NULL, breaks = NULL,
rmax = 2.5,
correction=c("border", "isotropic", "translate"),
renormalise=FALSE, normpower=1,
sigma=NULL, varcov=NULL)

Lscaled(...)

Arguments

X The observed data point pattern, from which an estimate of the locally scaled K
function will be computed. An object of class "ppp" or in a format recognised
by as.ppp().

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class
"im") giving the intensity values at all locations, a function(x,y) which can
be evaluated to give the intensity value at any location, or a fitted point process
model (object of class "ppm").

... Arguments passed from Lscaled to Kscaled and from Kscaled to density.ppp
if lambda is omitted.

r vector of values for the argument r at which the locally scaled K function should
be evaluated. (These are rescaled distances.) Not normally given by the user;
there is a sensible default.

breaks This argument is for internal use only.

rmax maximum value of the argument r that should be used. (This is the rescaled
distance).

correction A character vector containing any selection of the options "border", "isotropic",
"Ripley", "translate", "translation", "none" or "best". It specifies the
edge correction(s) to be applied. Alternatively correction="all" selects all
options.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

Details

Kscaled computes an estimate of the K function for a locally scaled point process. Lscaled
computes the corresponding L function L(r) =

√
K(r)/π.

Locally scaled point processes are a class of models for inhomogeneous point patterns, introduced
by Hahn et al (2003). They include inhomogeneous Poisson processes, and many other models.

The template K function of a locally-scaled process is a counterpart of the “ordinary” Ripley K
function, in which the distances between points of the process are measured on a spatially-varying
scale (such that the locally rescaled process has unit intensity).

276 Kscaled

The template K function is an indicator of interaction between the points. For an inhomogeneous
Poisson process, the theoretical template K function is approximately equal to K(r) = πr2. Values
Kscaled(r) > πr2 are suggestive of clustering.

Kscaled computes an estimate of the template K function and Lscaled computes the correspond-
ing L function L(r) =

√
K(r)/π.

The locally scaled interpoint distances are computed using an approximation proposed by Hahn
(2007). The Euclidean distance between two points is multiplied by the average of the square roots
of the intensity values at the two points.

The argument lambda should supply the (estimated) values of the intensity function λ. It may be
either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate lambda[i] for the point X[i] is com-
puted by removing X[i] from the point pattern, applying kernel smoothing to the remaining points
using density.ppp, and evaluating the smoothed intensity at the point X[i]. The smoothing kernel
bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp
along with any extra arguments.

If renormalise=TRUE, the estimated intensity lambda is multiplied by c(normpower/2) before
performing other calculations, where c = area(W)/sum[i](1/lambda(x[i])). This renormalisa-
tion has about the same effect as in Kinhom, reducing the variability and bias of the estimate in small
samples and in cases of very strong inhomogeneity.

Edge corrections are used to correct bias in the estimation of Kscaled. First the interpoint distances
are rescaled, and then edge corrections are applied as in Kest. See Kest for details of the edge
corrections and the options for the argument correction.

The pair correlation function can also be applied to the result of Kscaled; see pcf and pcf.fv.

Kscaled 277

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing at least the following columns,

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

theo vector of values of πr2, the theoretical value of Kscaled(r) for an inhomoge-
neous Poisson process

and containing additional columns according to the choice specified in the correction argu-
ment. The additional columns are named border, trans and iso and give the estimated values
of Kscaled(r) using the border correction, translation correction, and Ripley isotropic correction,
respectively.

Author(s)

Ute Hahn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

Hahn, U. (2007) Global and Local Scaling in the Statistics of Spatial Point Processes. Habilitation-
sschrift, Universitaet Augsburg.

Hahn, U., Jensen, E.B.V., van Lieshout, M.N.M. and Nielsen, L.S. (2003) Inhomogeneous spatial
point processes by location-dependent scaling. Advances in Applied Probability 35, 319–336.

Prokes̆ová, M., Hahn, U. and Vedel Jensen, E.B. (2006) Statistics for locally scaled point patterns.
In A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan (eds.) Case Studies in Spatial Point
Pattern Modelling. Lecture Notes in Statistics 185. New York: Springer Verlag. Pages 99–123.

See Also

Kest, pcf

Examples

X <- unmark(bronzefilter)
K <- Kscaled(X)
if(require("spatstat.model")) {

fit <- ppm(X, ~x)
lam <- predict(fit)
K <- Kscaled(X, lam)

}

278 Ksector

Ksector Sector K-function

Description

A directional counterpart of Ripley’s K function, in which pairs of points are counted only when
the vector joining the pair happens to lie in a particular range of angles.

Usage

Ksector(X, begin = 0, end = 360, ...,
units = c("degrees", "radians"),
r = NULL, breaks = NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
domain=NULL, ratio = FALSE, verbose=TRUE)

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

begin, end Numeric values giving the range of angles inside which points will be counted.
Angles are measured in degrees (if units="degrees", the default) or radians (if
units="radians") anti-clockwise from the positive x-axis.

... Ignored.

units Units in which the angles begin and end are expressed.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.

breaks This argument is for internal use only.

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "isotropic", "Ripley", "translate", "translation",
"none", "good" or "best". It specifies the edge correction(s) to be applied. Al-
ternatively correction="all" selects all options.

domain Optional window. The first point xi of each pair of points will be constrained to
lie in domain.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

verbose Logical value indicating whether to print progress reports and warnings.

Details

This is a directional counterpart of Ripley’s K function (see Kest) in which, instead of counting all
pairs of points within a specified distance r, we count only the pairs (xi, xj) for which the vector
xj − xi falls in a particular range of angles.

This can be used to evaluate evidence for anisotropy in the point pattern X.

laslett 279

Value

An object of class "fv" containing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

Kest

Examples

K <- Ksector(swedishpines, 0, 90)
plot(K)

laslett Laslett’s Transform

Description

Apply Laslett’s Transform to a spatial region, returning the original and transformed regions, and
the original and transformed positions of the lower tangent points. This is a diagnostic for the
Boolean model.

Usage

laslett(X, ..., verbose = FALSE, plotit = TRUE, discretise = FALSE,
type=c("lower", "upper", "left", "right"))

Arguments

X Spatial region to be transformed. A window (object of class "owin") or a
logical-valued pixel image (object of class "im").

... Graphics arguments to control the plot (passed to plot.laslett when plotit=TRUE)
or arguments determining the pixel resolution (passed to as.mask).

verbose Logical value indicating whether to print progress reports.

plotit Logical value indicating whether to plot the result.

discretise Logical value indicating whether polygonal windows should first be converted
to pixel masks before the Laslett transform is computed. This should be set to
TRUE for very complicated polygons.

type Type of tangent points to be detected. This also determines the direction of
contraction in the set transformation. Default is type="lower".

280 laslett

Details

This function finds the lower tangent points of the spatial region X, then applies Laslett’s Transform
to the space, and records the transformed positions of the lower tangent points.

Laslett’s transform is a diagnostic for the Boolean Model. A test of the Boolean model can be
performed by applying a test of CSR to the transformed tangent points. See the Examples.

The rationale is that, if the region X was generated by a Boolean model with convex grains, then the
lower tangent points of X, when subjected to Laslett’s transform, become a Poisson point process
(Cressie, 1993, section 9.3.5; Molchanov, 1997; Barbour and Schmidt, 2001).

Intuitively, Laslett’s transform is a way to account for the fact that tangent points of X cannot occur
inside X. It treats the interior of X as empty space, and collapses this empty space so that only the
exterior of X remains. In this collapsed space, the tangent points are completely random.

Formally, Laslett’s transform is a random (i.e. data-dependent) spatial transformation which maps
each spatial location (x, y) to a new location (x′, y) at the same height y. The transformation is
defined so that x′ is the total uncovered length of the line segment from (0, y) to (x, y), that is, the
total length of the parts of this segment that fall outside the region X.

In more colourful terms, suppose we use an abacus to display a pixellated version of X. Each wire
of the abacus represents one horizontal line in the pixel image. Each pixel lying outside the region
X is represented by a bead of the abacus; pixels inside X are represented by the absence of a bead.
Next we find any beads which are lower tangent points of X, and paint them green. Then Laslett’s
Transform is applied by pushing all beads to the left, as far as possible. The final locations of all
the beads provide a new spatial region, inside which is the point pattern of tangent points (marked
by the green-painted beads).

If plotit=TRUE (the default), a before-and-after plot is generated, showing the region X and the tan-
gent points before and after the transformation. This plot can also be generated by calling plot(a)
where a is the object returned by the function laslett.

If the argument type is given, then this determines the type of tangents that will be detected, and also
the direction of contraction in Laslett’s transform. The computation is performed by first rotating X,
applying Laslett’s transform for lower tangent points, then rotating back.

There are separate algorithms for polygonal windows and pixellated windows (binary masks).
The polygonal algorithm may be slow for very complicated polygons. If this happens, setting
discretise=TRUE will convert the polygonal window to a binary mask and invoke the pixel raster
algorithm.

Value

A list, which also belongs to the class "laslett" so that it can immediately be printed and plotted.

The list elements are:

oldX: the original dataset X;

TanOld: a point pattern, whose window is Frame(X), containing the lower tangent points of X;

TanNew: a point pattern, whose window is the Laslett transform of Frame(X), and which contains
the Laslett-transformed positions of the tangent points;

Rect: a rectangular window, which is the largest rectangle lying inside the transformed set;

df: a data frame giving the locations of the tangent points before and after transformation.

type: character string specifying the type of tangents.

Lcross 281

Author(s)

Kassel Hingee and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Barbour, A.D. and Schmidt, V. (2001) On Laslett’s Transform for the Boolean Model. Advances in
Applied Probability 33(1), 1–5.

Cressie, N.A.C. (1993) Statistics for spatial data, second edition. John Wiley and Sons.

Molchanov, I. (1997) Statistics of the Boolean Model for Practitioners and Mathematicians. Wiley.

See Also

plot.laslett

Examples

a <- laslett(heather$coarse)
transformedHeather <- with(a, Window(TanNew))
plot(transformedHeather, invert=TRUE)

with(a, clarkevans.test(TanNew[Rect], correction="D", nsim=39))

X <- discs(runifrect(15) %mark% 0.2, npoly=16)
b <- laslett(X, type="left")
b

Lcross Multitype L-function (cross-type)

Description

Calculates an estimate of the cross-type L-function for a multitype point pattern.

Usage

Lcross(X, i, j, ..., from, to, correction)

Arguments

X The observed point pattern, from which an estimate of the cross-type L function
Lij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

282 Lcross

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

correction, ... Arguments passed to Kcross.

from, to An alternative way to specify i and j respectively.

Details

The cross-type L-function is a transformation of the cross-type K-function,

Lij(r) =

√
Kij(r)

π

where Kij(r) is the cross-type K-function from type i to type j. See Kcross for information about
the cross-type K-function.

The command Lcross first calls Kcross to compute the estimate of the cross-type K-function, and
then applies the square root transformation.

For a marked point pattern in which the points of type i are independent of the points of type j, the
theoretical value of the L-function is Lij(r) = r. The square root also has the effect of stabilising
the variance of the estimator, so that Lij is more appropriate for use in simulation envelopes and
hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function Lij has been esti-
mated

theo the theoretical value Lij(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function Lij obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Kcross, Ldot, Lest

Examples

L <- Lcross(amacrine, "off", "on")
plot(L)

Lcross.inhom 283

Lcross.inhom Inhomogeneous Cross Type L Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross-type L function.

Usage

Lcross.inhom(X, i, j, ..., correction)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type L function Lij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

correction, ... Other arguments passed to Kcross.inhom.

Details

This is a generalisation of the function Lcross to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Linhom.

All the arguments are passed to Kcross.inhom, which estimates the inhomogeneous multitype K
function Kij(r) for the point pattern. The resulting values are then transformed by taking L(r) =√

K(r)/π.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Lij(r) has been estimated

theo the theoretical value of Lij(r) for a marked Poisson process, identically equal
to r

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Lij(r)
obtained by the edge corrections named.

284 Lcross.inhom

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Lcross, Linhom, Kcross.inhom

Examples

Lansing Woods data
woods <- lansing

ma <- split(woods)$maple
wh <- split(woods)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
L <- Lcross.inhom(woods, "whiteoak", "maple", lambdaW, lambdaM)

method (2): fit parametric intensity model
if(require("spatstat.model")) {

fit <- ppm(woods ~marks * polynom(x,y,2))
evaluate fitted intensities at data points
(these are the intensities of the sub-processes of each type)
inten <- fitted(fit, dataonly=TRUE)
split according to types of points
lambda <- split(inten, marks(woods))
L <- Lcross.inhom(woods, "whiteoak", "maple",

lambda$whiteoak, lambda$maple)
}

synthetic example: type A points have intensity 50,
type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
L <- Lcross.inhom(X, "A", "B",

lambdaI=as.im(50, Window(X)), lambdaJ=lamB)

Ldot 285

Ldot Multitype L-function (i-to-any)

Description

Calculates an estimate of the multitype L-function (from type i to any type) for a multitype point
pattern.

Usage

Ldot(X, i, ..., from, correction)

Arguments

X The observed point pattern, from which an estimate of the dot-type L function
Lij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

correction, ... Arguments passed to Kdot.

from An alternative way to specify i.

Details

This command computes

Li•(r) =

√
Ki•(r)

π

where Ki•(r) is the multitype K-function from points of type i to points of any type. See Kdot for
information about Ki•(r).

The command Ldot first calls Kdot to compute the estimate of the i-to-any K-function, and then
applies the square root transformation.

For a marked Poisson point process, the theoretical value of the L-function is Li•(r) = r. The
square root also has the effect of stabilising the variance of the estimator, so that Li• is more
appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function Li• has been esti-
mated

theo the theoretical value Li•(r) = r for a stationary Poisson process

286 Ldot.inhom

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function Li• obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Kdot, Lcross, Lest

Examples

L <- Ldot(amacrine, "off")
plot(L)

Ldot.inhom Inhomogeneous Multitype L Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot L function.

Usage

Ldot.inhom(X, i, ..., correction)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type L function Li•(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

correction, ... Other arguments passed to Kdot.inhom.

Details

This a generalisation of the function Ldot to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Linhom.

All the arguments are passed to Kdot.inhom, which estimates the inhomogeneous multitype K
function Ki•(r) for the point pattern. The resulting values are then transformed by taking L(r) =√
K(r)/π.

Ldot.inhom 287

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Li•(r) has been estimated
theo the theoretical value of Li•(r) for a marked Poisson process, identical to r.

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Li•(r)
obtained by the edge corrections named.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Ldot, Linhom, Kdot.inhom, Lcross.inhom.

Examples

Lansing Woods data
lan <- lansing
lan <- lan[seq(1,npoints(lan), by=10)]
ma <- split(lan)$maple
lg <- unmark(lan)

Estimate intensities by nonparametric smoothing
lambdaM <- density(ma, sigma=0.15, at="points")
lambdadot <- density(lg, sigma=0.15, at="points")
L <- Ldot.inhom(lan, "maple", lambdaI=lambdaM,

lambdadot=lambdadot)

synthetic example: type A points have intensity 50,
type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
lamdot <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
L <- Ldot.inhom(X, "B", lambdaI=lamB, lambdadot=lamdot)

288 Lest

Lest L-function

Description

Calculates an estimate of the L-function (Besag’s transformation of Ripley’s K-function) for a
spatial point pattern.

Usage

Lest(X, ..., correction)

Arguments

X The observed point pattern, from which an estimate of L(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

correction, ... Other arguments passed to Kest to control the estimation procedure.

Details

This command computes an estimate of the L-function for the spatial point pattern X. The L-
function is a transformation of Ripley’s K-function,

L(r) =

√
K(r)

π

where K(r) is the K-function.

See Kest for information about Ripley’s K-function. The transformation to L was proposed by
Besag (1977).

The command Lest first calls Kest to compute the estimate of the K-function, and then applies the
square root transformation.

For a completely random (uniform Poisson) point pattern, the theoretical value of the L-function is
L(r) = r. The square root also has the effect of stabilising the variance of the estimator, so that
L(r) is more appropriate for use in simulation envelopes and hypothesis tests.

See Kest for the list of arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function L has been estimated

theo the theoretical value L(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function L(r) obtained by the
edge corrections named.

Linhom 289

Variance approximations

If the argument var.approx=TRUE is given, the return value includes columns rip and ls contain-
ing approximations to the variance of L̂(r) under CSR. These are obtained by the delta method
from the variance approximations described in Kest.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Besag, J. (1977) Discussion of Dr Ripley’s paper. Journal of the Royal Statistical Society, Series B,
39, 193–195.

See Also

Kest, pcf

Examples

L <- Lest(cells)
plot(L, main="L function for cells")

Linhom Inhomogeneous L-function

Description

Calculates an estimate of the inhomogeneous version of the L-function (Besag’s transformation of
Ripley’s K-function) for a spatial point pattern.

Usage

Linhom(X, ..., correction)

Arguments

X The observed point pattern, from which an estimate of L(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

correction, ... Other arguments passed to Kinhom to control the estimation procedure.

290 Linhom

Details

This command computes an estimate of the inhomogeneous version of the L-function for a spatial
point pattern.

The original L-function is a transformation (proposed by Besag) of Ripley’s K-function,

L(r) =

√
K(r)

π

where K(r) is the Ripley K-function of a spatially homogeneous point pattern, estimated by Kest.

The inhomogeneous L-function is the corresponding transformation of the inhomogeneous K-
function, estimated by Kinhom. It is appropriate when the point pattern clearly does not have a
homogeneous intensity of points. It was proposed by Baddeley, Møller and Waagepetersen (2000).

The command Linhom first calls Kinhom to compute the estimate of the inhomogeneous K-function,
and then applies the square root transformation.

For a Poisson point pattern (homogeneous or inhomogeneous), the theoretical value of the inhomo-
geneous L-function is L(r) = r. The square root also has the effect of stabilising the variance of
the estimator, so that L is more appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function L has been estimated

theo the theoretical value L(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function L(r) obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

See Also

Kest, Lest, Kinhom, pcf

Examples

X <- japanesepines
L <- Linhom(X, sigma=0.1)
plot(L, main="Inhomogeneous L function for Japanese Pines")

localK 291

localK Neighbourhood density function

Description

Computes the neighbourhood density function, a local version of the K-function or L-function,
defined by Getis and Franklin (1987).

Usage

localK(X, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)
localL(X, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)

Arguments

X A point pattern (object of class "ppp").
... Ignored.
rmax Optional. Maximum desired value of the argument r.
correction String specifying the edge correction to be applied. Options are "none", "translate",

"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.
rvalue Optional. A single value of the distance argument r at which the function L or

K should be computed.

Details

The command localL computes the neighbourhood density function, a local version of the L-
function (Besag’s transformation of Ripley’s K-function) that was proposed by Getis and Franklin
(1987). The command localK computes the corresponding local analogue of the K-function.

Given a spatial point pattern X, the neighbourhood density function Li(r) associated with the ith
point in X is computed by

Li(r) =

√
a

(n− 1)π

∑
j

eij

where the sum is over all points j ̸= i that lie within a distance r of the ith point, a is the area of the
observation window, n is the number of points in X, and eij is an edge correction term (as described
in Kest). The value of Li(r) can also be interpreted as one of the summands that contributes to the
global estimate of the L function.

By default, the function Li(r) or Ki(r) is computed for a range of r values for each point i. The re-
sults are stored as a function value table (object of class "fv") with a column of the table containing
the function estimates for each point of the pattern X.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X.

Inhomogeneous counterparts of localK and localL are computed by localKinhom and localLinhom.

292 localK

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Getis, A. and Franklin, J. (1987) Second-order neighbourhood analysis of mapped point patterns.
Ecology 68, 473–477.

See Also

Kest, Lest, localKinhom, localLinhom.

Examples

X <- ponderosa

compute all the local L functions
L <- localL(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 12 metres
L12 <- localL(X, rvalue=12)

Spatially interpolate the values of L12
Compare Figure 5(b) of Getis and Franklin (1987)
X12 <- X %mark% L12
Z <- Smooth(X12, sigma=5, dimyx=128)

plot(Z, col=topo.colors(128), main="smoothed neighbourhood density")
contour(Z, add=TRUE)
points(X, pch=16, cex=0.5)

localKcross 293

localKcross Local Multitype K Function (Cross-Type)

Description

for a multitype point pattern, computes the cross-type version of the local K function.

Usage

localKcross(X, from, to, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL)

localLcross(X, from, to, ..., rmax = NULL, correction = "Ripley")

Arguments

X A multitype point pattern (object of class "ppp" with marks which are a factor).

... Further arguments passed from localLcross to localKcross.

rmax Optional. Maximum desired value of the argument r.

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

to Type of points to which distances should be measured. A single value; one of
the possible levels of marks(X), or an integer indicating which level.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

Details

Given a multitype spatial point pattern X, the local cross-type K function localKcross is the local
version of the multitype K function Kcross. Recall that Kcross(X, from, to) is a sum of con-
tributions from all pairs of points in X where the first point belongs to from and the second point
belongs to type to. The local cross-type K function is defined for each point X[i] that belongs to
type from, and it consists of all the contributions to the cross-type K function that originate from
point X[i]:

Ki,from,to(r) =

√
a

(n− 1)π

∑
j

eij

where the sum is over all points j ̸= i belonging to type to, that lie within a distance r of the ith
point, a is the area of the observation window, n is the number of points in X, and eij is an edge
correction term (as described in Kest). The value of Ki,from,to(r) can also be interpreted as one of
the summands that contributes to the global estimate of the Kcross function.

294 localKcross

By default, the function Ki,from,to(r) is computed for a range of r values for each point i belonging
to type from. The results are stored as a function value table (object of class "fv") with a column
of the table containing the function estimates for each point of the pattern X belonging to type from.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X belonging to type from.

The local cross-type L function localLcross is computed by applying the transformation L(r) =√
K(r)/(2π).

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern that belong to type from.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point of type from. The last two columns contain
the r and theo values.

Author(s)

Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Kcross, Lcross, localK, localL.

Inhomogeneous counterparts of localK and localL are computed by localKcross.inhom and
localLinhom.

Examples

X <- amacrine

compute all the local Lcross functions
L <- localLcross(X)

plot all the local Lcross functions against r
plot(L, main="local Lcross functions for amacrine", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 0.1 metres
L12 <- localLcross(X, rvalue=0.1)

localKcross.inhom 295

localKcross.inhom Inhomogeneous Multitype K Function

Description

Computes spatially-weighted versions of the the local multitype K-function or L-function.

Usage

localKcross.inhom(X, from, to,
lambdaFrom=NULL, lambdaTo=NULL,
..., rmax = NULL,
correction = "Ripley", sigma=NULL, varcov=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

localLcross.inhom(X, from, to,
lambdaFrom=NULL, lambdaTo=NULL, ..., rmax = NULL)

Arguments

X A point pattern (object of class "ppp").

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

to Type of points to which distances should be measured. A single value; one of
the possible levels of marks(X), or an integer indicating which level.

lambdaFrom, lambdaTo
Optional. Values of the estimated intensity function for the points of type from
and to, respectively. Each argument should be either a vector giving the inten-
sity values at the required points, a pixel image (object of class "im") giving
the intensity values at all locations, a fitted point process model (object of class
"ppm") or a function(x,y) which can be evaluated to give the intensity value
at any location.

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

rmax Optional. Maximum desired value of the argument r.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"Ripley", "translation", "isotropic" or "best". Only one correction may
be specified.

sigma, varcov Optional arguments passed to density.ppp to control the kernel smoothing pro-
cedure for estimating lambdaFrom and lambdaTo, if they are missing.

lambdaX Optional. Values of the estimated intensity function for all points of X. Either a
vector giving the intensity values at each point of X, a pixel image (object of class
"im") giving the intensity values at all locations, a list of pixel images giving the
intensity values at all locations for each type of point, or a fitted point process
model (object of class "ppm") or a function(x,y) or function(x,y,m) which
can be evaluated to give the intensity value at any location.

296 localKcross.inhom

update Logical value indicating what to do when lambdaFrom, lambdaTo or lambdaX is
a fitted model (class "ppm", "kppm" or "dppm"). If update=TRUE (the default),
the model will first be refitted to the data X (using update.ppm or update.kppm)
before the fitted intensity is computed. If update=FALSE, the fitted intensity of
the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

The functions localKcross.inhom and localLcross.inhom are inhomogeneous or weighted ver-
sions of the local multitype K and L functions implemented in localKcross and localLcross.

Given a multitype spatial point pattern X, and two designated types from and to, the local multitype
K function is defined for each point X[i] that belongs to type from, and is computed by

Ki(r) =

√
1

π

∑
j

eij
λj

where the sum is over all points j ̸= i of type to that lie within a distance r of the ith point, λj

is the estimated intensity of the point pattern at the point j, and eij is an edge correction term (as
described in Kest).

The function Ki(r) is computed for a range of r values for each point i. The results are stored
as a function value table (object of class "fv") with a column of the table containing the function
estimates for each point of the pattern X of type from.

The corresponding L function Li(r) is computed by applying the transformation L(r) =
√
K(r)/(2π).

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv. Essentially
a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern of type from. The last two columns contain the r and theo values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Kinhom, Linhom, localK, localL.

localKdot 297

Examples

X <- amacrine

compute all the local L functions
L <- localLcross.inhom(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

localKdot Local Multitype K Function (Dot-Type)

Description

for a multitype point pattern, computes the dot-type version of the local K function.

Usage

localKdot(X, from, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL)

localLdot(X, from, ..., rmax = NULL, correction = "Ripley")

Arguments

X A multitype point pattern (object of class "ppp" with marks which are a factor).

... Further arguments passed from localLdot to localKdot.

rmax Optional. Maximum desired value of the argument r.

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

Details

Given a multitype spatial point pattern X, the local dot-type K function localKdot is the local
version of the multitype K function Kdot. Recall that Kdot(X, from) is a sum of contributions
from all pairs of points in X where the first point belongs to from. The local dot-type K function is

298 localKdot

defined for each point X[i] that belongs to type from, and it consists of all the contributions to the
dot-type K function that originate from point X[i]:

Ki,from,to(r) =

√
a

(n− 1)π

∑
j

eij

where the sum is over all points j ̸= i that lie within a distance r of the ith point, a is the area of the
observation window, n is the number of points in X, and eij is an edge correction term (as described
in Kest). The value of Ki,from(r) can also be interpreted as one of the summands that contributes
to the global estimate of the Kdot function.

By default, the function Ki,from(r) is computed for a range of r values for each point i belonging
to type from. The results are stored as a function value table (object of class "fv") with a column
of the table containing the function estimates for each point of the pattern X belonging to type from.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X belonging to type from.

The local dot-type L function localLdot is computed by applying the transformation L(r) =√
K(r)/(2π).

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern that belong to type from.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point of type from. The last two columns contain
the r and theo values.

Author(s)

Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Kdot, Ldot, localK, localL.

Examples

X <- amacrine

compute all the local Ldot functions
L <- localLdot(X)

localKinhom 299

plot all the local Ldot functions against r
plot(L, main="local Ldot functions for amacrine", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 0.1 metres
L12 <- localLdot(X, rvalue=0.1)

localKinhom Inhomogeneous Neighbourhood Density Function

Description

Computes spatially-weighted versions of the the local K-function or L-function.

Usage

localKinhom(X, lambda, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL,
sigma = NULL, varcov = NULL, update=TRUE, leaveoneout=TRUE)

localLinhom(X, lambda, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL,
sigma = NULL, varcov = NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X A point pattern (object of class "ppp").

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm" or "kppm" or "dppm") or a function(x,y) which can be evaluated
to give the intensity value at any location.

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

rmax Optional. Maximum desired value of the argument r.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"Ripley", "translation", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

sigma, varcov Optional arguments passed to density.ppp to control the kernel smoothing pro-
cedure for estimating lambda, if lambda is missing.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

300 localKinhom

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

Details

The functions localKinhom and localLinhom are inhomogeneous or weighted versions of the
neighbourhood density function implemented in localK and localL.

Given a spatial point pattern X, the inhomogeneous neighbourhood density function Li(r) associ-
ated with the ith point in X is computed by

Li(r) =

√
1

π

∑
j

eij
λj

where the sum is over all points j ̸= i that lie within a distance r of the ith point, λj is the estimated
intensity of the point pattern at the point j, and eij is an edge correction term (as described in Kest).
The value of Li(r) can also be interpreted as one of the summands that contributes to the global
estimate of the inhomogeneous L function (see Linhom).

By default, the function Li(r) or Ki(r) is computed for a range of r values for each point i. The re-
sults are stored as a function value table (object of class "fv") with a column of the table containing
the function estimates for each point of the pattern X.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X.

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

Author(s)

Mike Kuhn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Kinhom, Linhom, localK, localL.

localpcf 301

Examples

X <- ponderosa

compute all the local L functions
L <- localLinhom(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 12 metres
L12 <- localL(X, rvalue=12)

localpcf Local pair correlation function

Description

Computes individual contributions to the pair correlation function from each data point.

Usage

localpcf(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15, rvalue=NULL)

localpcfinhom(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15,
lambda=NULL, sigma=NULL, varcov=NULL,
update=TRUE, leaveoneout=TRUE, rvalue=NULL)

Arguments

X A point pattern (object of class "ppp").

delta Smoothing bandwidth for pair correlation. The halfwidth of the Epanechnikov
kernel.

rmax Optional. Maximum value of distance r for which pair correlation values g(r)
should be computed.

nr Optional. Number of values of distance r for which pair correlation g(r) should
be computed.

stoyan Optional. The value of the constant c in Stoyan’s rule of thumb for selecting the
smoothing bandwidth delta.

lambda Optional. Values of the estimated intensity function, for the inhomogeneous
pair correlation. Either a vector giving the intensity values at the points of the
pattern X, a pixel image (object of class "im") giving the intensity values at all
locations, a fitted point process model (object of class "ppm", "kppm" or "dppm")
or a function(x,y) which can be evaluated to give the intensity value at any
location.

302 localpcf

sigma, varcov, ...
These arguments are ignored by localpcf but are passed by localpcfinhom
(when lambda=NULL) to the function density.ppp to control the kernel smooth-
ing estimation of lambda.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

rvalue Optional. A single value of the distance argument r at which the local pair
correlation should be computed.

Details

localpcf computes the contribution, from each individual data point in a point pattern X, to the
empirical pair correlation function of X. These contributions are sometimes known as LISA (local
indicator of spatial association) functions based on pair correlation.

localpcfinhom computes the corresponding contribution to the inhomogeneous empirical pair cor-
relation function of X.

Given a spatial point pattern X, the local pcf gi(r) associated with the ith point in X is computed by

gi(r) =
a

2πn

∑
j

k(di,j − r)

where the sum is over all points j ̸= i, a is the area of the observation window, n is the number of
points in X, and dij is the distance between points i and j. Here k is the Epanechnikov kernel,

k(t) =
3

4δ
max(0, 1− t2

δ2
).

Edge correction is performed using the border method (for the sake of computational efficiency):
the estimate gi(r) is set to NA if r > bi, where bi is the distance from point i to the boundary of the
observation window.

The smoothing bandwidth δ may be specified. If not, it is chosen by Stoyan’s rule of thumb δ = c/λ̂

where λ̂ = n/a is the estimated intensity and c is a constant, usually taken to be 0.15. The value of
c is controlled by the argument stoyan.

For localpcfinhom, the optional argument lambda specifies the values of the estimated intensity
function. If lambda is given, it should be either a numeric vector giving the intensity values at the
points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations,
a fitted point process model (object of class "ppm", "kppm" or "dppm") or a function(x,y) which
can be evaluated to give the intensity value at any location. If lambda is not given, then it will be
estimated using a leave-one-out kernel density smoother as described in pcfinhom.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X.

localpcf 303

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv. Essentially
a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the local pair correlation function for each point in
the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

localK, localKinhom, pcf, pcfinhom

Examples

X <- ponderosa

g <- localpcf(X, stoyan=0.5)
colo <- c(rep("grey", npoints(X)), "blue")
a <- plot(g, main=c("local pair correlation functions", "Ponderosa pines"),

legend=FALSE, col=colo, lty=1)

plot only the local pair correlation function for point number 7
plot(g, est007 ~ r)

Extract the local pair correlation at distance 15 metres, for each point
g15 <- localpcf(X, rvalue=15, stoyan=0.5)
g15[1:10]
Check that the value for point 7 agrees with the curve for point 7:
points(15, g15[7], col="red")

Inhomogeneous
gi <- localpcfinhom(X, stoyan=0.5)
a <- plot(gi, main=c("inhomogeneous local pair correlation functions",

"Ponderosa pines"),
legend=FALSE, col=colo, lty=1)

304 lohboot

lohboot Bootstrap Confidence Bands for Summary Function

Description

Computes a bootstrap confidence band for a summary function of a point process.

Usage

lohboot(X,
fun=c("pcf", "Kest", "Lest", "pcfinhom", "Kinhom", "Linhom",

"Kcross", "Lcross", "Kdot", "Ldot",
"Kcross.inhom", "Lcross.inhom"),

...,
block=FALSE, global=FALSE, basicboot=FALSE, Vcorrection=FALSE,
confidence=0.95, nx = 4, ny = nx, nsim=200, type=7)

Arguments

X A point pattern (object of class "ppp").

fun Name of the summary function for which confidence intervals are desired: one
of the strings "pcf", "Kest", "Lest", "pcfinhom", "Kinhom" "Linhom", "Kcross",
"Lcross", "Kdot", "Ldot", "Kcross.inhom" or "Lcross.inhom". Alterna-
tively, the function itself; it must be one of the functions listed here.

... Arguments passed to the corresponding local version of the summary function
(see Details).

block Logical value indicating whether to use Loh’s block bootstrap as originally pro-
posed. Default is FALSE for consistency with older code. See Details.

global Logical. If FALSE (the default), pointwise confidence intervals are constructed.
If TRUE, a global (simultaneous) confidence band is constructed.

basicboot Logical value indicating whether to use the so-called basic bootstrap confidence
interval. See Details.

Vcorrection Logical value indicating whether to use a variance correction when fun="Kest"
or fun="Kinhom". See Details.

confidence Confidence level, as a fraction between 0 and 1.

nx, ny Integers. If block=TRUE, divide the window into nx*ny rectangles.

nsim Number of bootstrap simulations.

type Integer. Type of quantiles. Argument passed to quantile.default controlling
the way the quantiles are calculated.

lohboot 305

Details

This algorithm computes confidence bands for the true value of the summary function fun using the
bootstrap method of Loh (2008) and a modification described in Baddeley, Rubak, Turner (2015).

If fun="pcf", for example, the algorithm computes a pointwise (100 * confidence)% confidence
interval for the true value of the pair correlation function for the point process, normally estimated
by pcf. It starts by computing the array of local pair correlation functions, localpcf, of the data
pattern X. This array consists of the contributions to the estimate of the pair correlation function
from each data point.

If block=FALSE, these contributions are resampled nsim times with replacement as described in
Baddeley, Rubak, Turner (2015); from each resampled dataset the total contribution is computed,
yielding nsim random pair correlation functions.

If block=TRUE, the calculation is performed as originally proposed by Loh (2008, 2010). The
(bounding box of the) window is divided into nx∗ny rectangles (blocks). The average contribution
of a block is obtained by averaging the contribution of each point included in the block. Then, the
average contributions on each block are resampled nsim times with replacement as described in Loh
(2008) and Loh (2010); from each resampled dataset the total contribution is computed, yielding
nsim random pair correlation functions. Notice that for non-rectangular windows any blocks not
fully contained in the window are discarded before doing the resampling, so the effective number
of blocks may be substantially smaller than nx ∗ ny in this case.

The pointwise alpha/2 and 1 - alpha/2 quantiles of these functions are computed, where alpha
= 1 - confidence. The average of the local functions is also computed as an estimate of the pair
correlation function.

There are several ways to define a bootstrap confidence interval. If basicbootstrap=TRUE, the
so-called basic confidence bootstrap interval is used as described in Loh (2008).

It has been noticed in Loh (2010) that when the intensity of the point process is unknown, the
bootstrap error estimate is larger than it should be. When the K function is used, an adjustment
procedure has been proposed in Loh (2010) that is used if Vcorrection=TRUE. In this case, the
basic confidence bootstrap interval is implicitly used.

To control the estimation algorithm, use the arguments ..., which are passed to the local version
of the summary function, as shown below:

fun local version
pcf localpcf
Kest localK
Lest localL
pcfinhom localpcfinhom
Kinhom localKinhom
Linhom localLinhom
Kcross localKcross
Lcross localLcross
Kdot localKdot
Ldot localLdot
Kcross.inhom localKcross.inhom
Lcross.inhom localLcross.inhom

For fun="Lest", the calculations are first performed as if fun="Kest", and then the square-root

306 lohboot

transformation is applied to obtain the L-function. Similarly for fun="Linhom", "Lcross", "Ldot",
"Lcross.inhom".

Note that the confidence bands computed by lohboot(fun="pcf") may not contain the estimate
of the pair correlation function computed by pcf, because of differences between the algorithm pa-
rameters (such as the choice of edge correction) in localpcf and pcf. If you are using lohboot, the
appropriate point estimate of the pair correlation itself is the pointwise mean of the local estimates,
which is provided in the result of lohboot and is shown in the default plot.

If the confidence bands seem unbelievably narrow, this may occur because the point pattern has a
hard core (the true pair correlation function is zero for certain values of distance) or because of an
optical illusion when the function is steeply sloping (remember the width of the confidence bands
should be measured vertically).

An alternative to lohboot is varblock.

Value

A function value table (object of class "fv") containing columns giving the estimate of the summary
function, the upper and lower limits of the bootstrap confidence interval, and the theoretical value
of the summary function for a Poisson process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Christophe Biscio.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Loh, J.M. (2008) A valid and fast spatial bootstrap for correlation functions. The Astrophysical
Journal, 681, 726–734.

Loh, J.M. (2010) Bootstrapping an inhomogeneous point process. Journal of Statistical Planning
and Inference, 140, 734–749.

See Also

Summary functions Kest, pcf, Kinhom, pcfinhom, localK, localpcf, localKinhom, localpcfinhom,
localKcross, localKdot, localLcross, localLdot. localKcross.inhom, localLcross.inhom.

See varblock for an alternative bootstrap technique.

Examples

p <- lohboot(simdat, stoyan=0.5)
g <- lohboot(simdat, stoyan=0.5, block=TRUE)
g
plot(g)

markconnect 307

markconnect Mark Connection Function

Description

Estimate the marked connection function of a multitype point pattern.

Usage

markconnect(X, i, j, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured.

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured.

r numeric vector. The values of the argument r at which the mark connection
function pij(r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to markcorr, or passed to the density estimation routine
(density, loess or sm.density) selected by method.

normalise If TRUE, normalise the pair connection function by dividing it by pipj , the esti-
mated probability that randomly-selected points will have marks i and j.

Details

The mark connection function pij(r) of a multitype point process X is a measure of the dependence
between the types of two points of the process a distance r apart.

Informally pij(r) is defined as the conditional probability, given that there is a point of the process
at a location u and another point of the process at a location v separated by a distance ||u− v|| = r,
that the first point is of type i and the second point is of type j. See Stoyan and Stoyan (1994).

If the marks attached to the points of X are independent and identically distributed, then pij(r) ≡
pipj where pi denotes the probability that a point is of type i. Values larger than this, pij(r) >
pipj , indicate positive association between the two types, while smaller values indicate negative
association.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a multitype point pattern (a marked point pattern with factor-valued marks).

308 markconnect

The argument r is the vector of values for the distance r at which pij(r) is estimated. There is a
sensible default.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks) and is slow for
complicated polygons.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.
none No edge correction.

The option correction="none" should only be used if the number of data points is extremely large
(otherwise an edge correction is needed to correct bias).

Note that the estimator assumes the process is stationary (spatially homogeneous).

The mark connection function is estimated using density estimation techniques. The user can
choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;
"sm" which uses the function sm.density in the package sm and is extremely slow;
"smrep" which uses the function sm.density in the package sm and is relatively fast, but may

require manual control of the smoothing parameter hmult.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark connection function pij(r) has
been estimated

theo the theoretical value of pij(r) when the marks attached to different points are
independent

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function pij(r) obtained by the edge correc-
tions named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

markcorr 309

See Also

Multitype pair correlation pcfcross and multitype K-functions Kcross, Kdot.

Use alltypes to compute the mark connection functions between all pairs of types.

Mark correlation markcorr and mark variogram markvario for numeric-valued marks.

Examples

Hughes' amacrine data
Cells marked as 'on'/'off'
M <- markconnect(amacrine, "on", "off")
plot(M)

Compute for all pairs of types at once
plot(alltypes(amacrine, markconnect))

markcorr Mark Correlation Function

Description

Estimate the marked correlation function of a marked point pattern.

Usage

markcorr(X, f = function(m1, m2) { m1 * m2}, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., weights=NULL,
f1=NULL, normalise=TRUE, fargs=NULL, internal=NULL)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

f Optional. Test function f used in the definition of the mark correlation function.
An R function with at least two arguments. There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley",
"translate", "translation", "none" or "best". It specifies the edge correc-
tion(s) to be applied. Alternatively correction="all" selects all options.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

310 markcorr

weights Optional. Numeric weights for each data point in X. A numeric vector, a pixel
image, or a function(x,y). Alternatively, an expression to be evaluated to
yield the weights; the expression may involve the variables x,y,marks repre-
senting the coordinates and marks ofX.

f1 An alternative to f. If this argument is given, then f is assumed to take the form
f(u, v) = f1(u)f1(v).

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

fargs Optional. A list of extra arguments to be passed to the function f or f1.

internal Do not use this argument.

Details

By default, this command calculates an estimate of Stoyan’s mark correlation kmm(r) for the point
pattern.

Alternatively if the argument f or f1 is given, then it calculates Stoyan’s generalised mark correla-
tion kf (r) with test function f .

Theoretical definitions are as follows (see Stoyan and Stoyan (1994, p. 262)):

• For a point process X with numeric marks, Stoyan’s mark correlation function kmm(r), is

kmm(r) =
E0u[M(0)M(u)]

E[M,M ′]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r, and where M(0),M(u) denote the marks attached
to these two points. On the denominator, M,M ′ are random marks drawn independently from
the marginal distribution of marks, and E is the usual expectation.

• For a multitype point process X , the mark correlation is

kmm(r) =
P0u[M(0)M(u)]

P [M = M ′]

where P and P0u denote the probability and conditional probability.

• The generalised mark correlation function kf (r) of a marked point process X , with test func-
tion f , is

kf (r) =
E0u[f(M(0),M(u))]

E[f(M,M ′)]

The test function f is any function f(m1,m2) with two arguments which are possible marks of
the pattern, and which returns a nonnegative real value. Common choices of f are: for continuous
nonnegative real-valued marks,

f(m1,m2) = m1m2

for discrete marks (multitype point patterns),

f(m1,m2) = 1(m1 = m2)

markcorr 311

and for marks taking values in [0, 2π),

f(m1,m2) = sin(m1 −m2)

.

Note that kf (r) is not a “correlation” in the usual statistical sense. It can take any nonnegative
real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of X
are independent and identically distributed, then kf (r) ≡ 1. The interpretation of values larger or
smaller than 1 depends on the choice of function f .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern.

The argument f determines the function to be applied to pairs of marks. It has a sensible default,
which depends on the kind of marks in X. If the marks are numeric values, then f <- function(m1,
m2) { m1 * m2} computes the product of two marks. If the marks are a factor (i.e. if X is a multitype
point pattern) then f <- function(m1, m2) { m1 == m2} yields the value 1 when the two marks are
equal, and 0 when they are unequal. These are the conventional definitions for numerical marks and
multitype points respectively.

The argument f may be specified by the user. It must be an R function, accepting two arguments
m1 and m2 which are vectors of equal length containing mark values (of the same type as the marks
of X). (It may also take additional arguments, passed through fargs). It must return a vector of
numeric values of the same length as m1 and m2. The values must be non-negative, and NA values
are not permitted.

Alternatively the user may specify the argument f1 instead of f. This indicates that the test function
f should take the form f(u, v) = f1(u)f1(v) where f1(u) is given by the argument f1. The
argument f1 should be an R function with at least one argument. (It may also take additional
arguments, passed through fargs).

The argument r is the vector of values for the distance r at which kf (r) is estimated.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks).

translate Translation correction (Ohser, 1983). Implemented for all window geometries, but slow
for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are
estimated using density estimation techniques. The user can choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

312 markcorr

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

If normalise=FALSE then the algorithm will compute only the numerator

cf (r) = E0uf(M(0),M(u))

of the expression for the mark correlation function. In this case, negative values of f are permitted.

Value

A function value table (object of class "fv") or a list of function value tables, one for each column
of marks.

An object of class "fv" (see fv.object) is essentially a data frame containing numeric columns

r the values of the argument r at which the mark correlation function kf (r) has
been estimated

theo the theoretical value of kf (r) when the marks attached to different points are
independent, namely 1

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the mark correlation function kf (r) obtained by
the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Mark variogram markvario for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Mark cross-correlation function markcrosscorr for point patterns with several columns of marks.

Kmark to estimate a cumulative function related to the mark correlation function.

Examples

CONTINUOUS-VALUED MARKS:
(1) Spruces
marks represent tree diameter
mark correlation function
ms <- markcorr(spruces)
plot(ms)

markcrosscorr 313

(2) simulated data with independent marks

X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Xc <- markcorr(X)
plot(Xc)

MULTITYPE DATA:
Hughes' amacrine data
Cells marked as 'on'/'off'
X <- if(interactive()) amacrine else amacrine[c(FALSE, TRUE)]
(3) Kernel density estimate with Epanecnikov kernel
(as proposed by Stoyan & Stoyan)
M <- markcorr(X, function(m1,m2) {m1==m2},

correction="translate", method="density",
kernel="epanechnikov")

Note: kernel="epanechnikov" comes from help(density)

(4) Same again with explicit control over bandwidth

M <- markcorr(X,
correction="translate", method="density",
kernel="epanechnikov", bw=0.02)

see help(density) for correct interpretation of 'bw'

weighted mark correlation
X <- if(interactive()) betacells else betacells[c(TRUE,FALSE)]
Y <- subset(X, select=type)
a <- marks(X)$area
v <- markcorr(Y, weights=a)

markcrosscorr Mark Cross-Correlation Function

Description

Given a spatial point pattern with several columns of marks, this function computes the mark cor-
relation function between each pair of columns of marks.

Usage

markcrosscorr(X, r = NULL,
correction = c("isotropic", "Ripley", "translate"),
method = "density", ..., normalise = TRUE, Xname = NULL)

314 markcrosscorr

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley",
"translate", "translation", "none" or "best". It specifies the edge correc-
tion(s) to be applied. Alternatively correction="all" selects all options.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

Xname Optional character string name for the dataset X.

Details

First, all columns of marks are converted to numerical values. A factor with m possible levels is
converted to m columns of dummy (indicator) values.

Next, each pair of columns is considered, and the mark cross-correlation is defined as

kmm(r) =
E0u[Mi(0)Mj(u)]

E[Mi,Mj]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r. On the numerator, Mi(0) and Mj(u) are the marks
attached to locations 0 and u respectively in the ith and jth columns of marks respectively. On the
denominator, Mi and Mj are independent random values drawn from the ith and jth columns of
marks, respectively, and E is the usual expectation.

Note that kmm(r) is not a “correlation” in the usual statistical sense. It can take any nonnegative
real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of X are
independent and identically distributed, then kmm(r) ≡ 1.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern.

The cross-correlations are estimated in the same manner as for markcorr.

Value

A function array (object of class "fasp") containing the mark cross-correlation functions for each
possible pair of columns of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

markmarkscatter 315

See Also

markcorr

Examples

The dataset 'betacells' has two columns of marks:
'type' (factor)
'area' (numeric)
if(interactive()) plot(betacells)
plot(markcrosscorr(betacells))

markmarkscatter Mark-Mark Scatter Plot

Description

Generates the mark-mark scatter plot of a point pattern.

Usage

markmarkscatter(X, rmax, ..., col = NULL, symap = NULL, transform=I, jit=FALSE)

Arguments

X A point pattern (object of class "ppp", "pp3", "lpp" or "ppx") with numeric
marks.

rmax Maximum distance between pairs of points which contribute to the plot.

... Additional arguments passed to plot.ppp to control the scatterplot.

transform Optional. A function which should be applied to the mark values.

jit Logical value indicating whether mark values should be randomly perturbed
using jitter.

col Optional. A vector of colour values, or a colourmap to be used to portray the
pairwise distance values. Ignored if symap is given.

symap Optional. A symbolmap to be used to portray the pairwise distance values. Over-
rides col.

Details

The mark-mark scatter plot (Ballani et al, 2019) is a scatterplot of the mark values of all pairs of
distinct points in X which are closer than the distance rmax. The dots in the scatterplot are coloured
according to the pairwise distance between the two spatial points. The plot is augmented by three
curves explained by Ballani et al (2019).

If the marks only take a few different values, then it is usually appropriate to apply random pertur-
bation (jitter) to the mark values, by setting jit=TRUE.

316 marktable

Value

Null.

Author(s)

Adrian Baddeley (coded from the description in Ballani et al.)

References

Ballani, F., Pommerening, A. and Stoyan, D. (2019) Mark-mark scatterplots improve pattern anal-
ysis in spatial plant ecology. Ecological Informatics 49, 13–21.

Examples

markmarkscatter(longleaf, 10)

markmarkscatter(spruces, 10, jit=TRUE)

marktable Tabulate Marks in Neighbourhood of Every Point in a Point Pattern

Description

Visit each point in a multitype point pattern, find the neighbouring points, and compile a frequency
table of the marks of these neighbour points.

Usage

marktable(X, R, N, exclude=TRUE, collapse=FALSE)

Arguments

X A multitype point pattern. An object of class "ppp", "lpp", "pp3" or "ppx",
with marks which are a factor.

R Neighbourhood radius. Incompatible with N.

N Number of neighbours of each point. Incompatible with R.

exclude Logical. If exclude=TRUE, the neighbours of a point do not include the point
itself. If exclude=FALSE, a point belongs to its own neighbourhood.

collapse Logical. If collapse=FALSE (the default) the results for each point are returned
as separate rows of a table. If collapse=TRUE, the results are aggregated ac-
cording to the type of point.

markvario 317

Details

This algorithm visits each point in the point pattern X, inspects all the neighbouring points within
a radius R of the current point (or the N nearest neighbours of the current point), and compiles a
frequency table of the marks attached to the neighbours.

The dataset X must be a multitype point pattern, that is, marks(X) must be a factor.

If collapse=FALSE (the default), the result is a two-dimensional contingency table with one row
for each point in the pattern, and one column for each possible mark value. The [i,j] entry in the
table gives the number of neighbours of point i that have mark j.

If collapse=TRUE, this contingency table is aggregated according to the type of point, so that the
result is a contingency table with one row and one column for each possible mark value. The [i,j]
entry in the table gives the number of neighbours of a point with mark i that have mark j.

To perform more complicated calculations on the neighbours of every point, use markstat or
applynbd.

Value

A contingency table (object of class "table"). If collapse=FALSE, the table has one row for each
point in X, and one column for each possible mark value. If collapse=TRUE, the table has one row
and one column for each possible mark value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

markstat, applynbd, Kcross, ppp.object, table

Examples

head(marktable(amacrine, 0.1))
head(marktable(amacrine, 0.1, exclude=FALSE))
marktable(amacrine, N=1, collapse=TRUE)

markvario Mark Variogram

Description

Estimate the mark variogram of a marked point pattern.

Usage

markvario(X, correction = c("isotropic", "Ripley", "translate"),
r = NULL, method = "density", ..., normalise=FALSE)

318 markvario

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp. It must have marks which are numeric.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

r numeric vector. The values of the argument r at which the mark variogram γ(r)
should be evaluated. There is a sensible default.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Other arguments passed to markcorr, or passed to the density estimation routine
(density, loess or sm.density) selected by method.

normalise If TRUE, normalise the variogram by dividing it by the estimated mark variance.

Details

The mark variogram γ(r) of a marked point process X is a measure of the dependence between the
marks of two points of the process a distance r apart. It is informally defined as

γ(r) = E[
1

2
(M1 −M2)

2]

where E[] denotes expectation and M1,M2 are the marks attached to two points of the process a
distance r apart.

The mark variogram of a marked point process is analogous, but not equivalent, to the variogram
of a random field in geostatistics. See Waelder and Stoyan (1996).

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark variogram γ(r) has been esti-
mated

theo the theoretical value of γ(r) when the marks attached to different points are
independent; equal to the sample variance of the marks

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function γ(r) obtained by the edge corrections
named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

Math.fasp 319

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Mase, S. (1996) The threshold method for estimating annual rainfall. Annals of the Institute of
Statistical Mathematics 48 (1996) 201-213.

Waelder, O. and Stoyan, D. (1996) On variograms in point process statistics. Biometrical Journal
38 (1996) 895-905.

See Also

Mark correlation function markcorr for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Examples

Longleaf Pine data
marks represent tree diameter
Subset of this large pattern
swcorner <- owin(c(0,100),c(0,100))
sub <- longleaf[, swcorner]
mark correlation function
mv <- markvario(sub)
plot(mv)

Math.fasp S3 Group Generic Methods for Function Arrays

Description

These are group generic methods for objects of class "fasp", which allows for usual mathematical
functions and operators to be applied directly to function arrays. See Details for a list of imple-
mented functions.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm=FALSE, drop=TRUE)

Arguments

x, z, e1, e2 objects of class "fasp".

... further arguments passed to methods.

na.rm Logical value specifying whether missing values should be removed.

320 Math.fasp

Details

Below is a list of mathematical functions and operators which are defined for objects of class
"fasp". The methods are implemented using eval.fasp, which tries to harmonise the functions
via harmonise.fv if they aren’t compatible to begin with.

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log, expm1, log1p,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

• lgamma, gamma, digamma, trigamma
• cumsum, cumprod, cummax, cummin

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"
• "&", "|", "!"
• "==", "!=", "<", "<=", ">=", ">"

3. Group "Summary":

• all, any
• sum, prod
• min, max
• range

4. Group "Complex":

• Arg, Conj, Im, Mod, Re

For the Ops group, one of the arguments is permitted to be a single atomic value, or a function table,
instead of a function array.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

eval.fasp for evaluating expressions involving function arrays.

Examples

convert array of K functions to array of L functions
K <- alltypes(amacrine, "K")
L <- sqrt(K/pi)

Math.fv 321

Math.fv S3 Group Generic Methods for Function Tables

Description

These are group generic methods for objects of class "fv", which allows for usual mathematical
functions and operators to be applied directly to function tables. See Details for a list of imple-
mented functions.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm=FALSE, drop=TRUE)

Arguments

x, z, e1, e2 objects of class "fv".

... further arguments passed to methods.

na.rm Logical value specifying whether missing values should be removed.

Details

Below is a list of mathematical functions and operators which are defined for objects of class
"fv". The methods are implemented using eval.fv, which tries to harmonise the functions via
harmonise.fv if they aren’t compatible to begin with.

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log, expm1, log1p,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

• lgamma, gamma, digamma, trigamma
• cumsum, cumprod, cummax, cummin

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"
• "&", "|", "!"
• "==", "!=", "<", "<=", ">=", ">"

322 methods.rho2hat

3. Group "Summary":

• all, any
• sum, prod
• min, max
• range

4. Group "Complex":

• Arg, Conj, Im, Mod, Re

For the Ops group, one of the arguments is permitted to be a single atomic value instead of a function
table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

eval.fv for evaluating expressions involving function tables.

Examples

Convert K function to L function
K <- Kest(cells)
L <- sqrt(K/pi)
Manually calculate J function
FR <- Fest(redwood)
GR <- Gest(redwood)
suppressWarnings(JR <- (1-GR)/(1-FR))

methods.rho2hat Methods for Intensity Functions of Two Spatial Covariates

Description

These are methods for the class "rho2hat".

Usage

S3 method for class 'rho2hat'
plot(x, ..., do.points=FALSE)

S3 method for class 'rho2hat'
print(x, ...)

S3 method for class 'rho2hat'
predict(object, ..., relative=FALSE)

methods.rho2hat 323

Arguments

x, object An object of class "rho2hat".

... Arguments passed to other methods.

do.points Logical value indicating whether to plot the observed values of the covariates at
the data points.

relative Logical value indicating whether to compute the estimated point process inten-
sity (relative=FALSE) or the relative risk (relative=TRUE) in the case of a
relative risk estimate.

Details

These functions are methods for the generic commands print, predict and plot for the class
"rho2hat".

An object of class "rho2hat" is an estimate of the intensity of a point process, as a function of two
given spatial covariates. See rho2hat.

The method plot.rho2hat displays the estimated function ρ using plot.fv, and optionally adds a
rug plot of the observed values of the covariate. In this plot the two axes represent possible values
of the two covariates.

The method predict.rho2hat computes a pixel image of the intensity ρ(Z1(u), Z2(u)) at each
spatial location u, where Z1(u) and Z2(u) are the two spatial covariates.

Value

For predict.rho2hat the value is a pixel image (object of class "im"). For other functions, the
value is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rho2hat

Examples

r2 <- with(bei.extra, rho2hat(bei, elev, grad))
r2
plot(r2)
plot(predict(r2))

324 methods.rhohat

methods.rhohat Methods for Intensity Functions of Spatial Covariate

Description

These are methods for the class "rhohat".

Usage

S3 method for class 'rhohat'
print(x, ...)

S3 method for class 'rhohat'
plot(x, ..., do.rug=TRUE)

S3 method for class 'rhohat'
predict(object, ..., relative=FALSE,

what=c("rho", "lo", "hi", "se"))

S3 method for class 'rhohat'
simulate(object, nsim=1, ..., drop=TRUE)

Arguments

x, object An object of class "rhohat" representing a smoothed estimate of the intensity
function of a point process.

... Arguments passed to other methods.

do.rug Logical value indicating whether to plot the observed values of the covariate as
a rug plot along the horizontal axis.

relative Logical value indicating whether to compute the estimated point process inten-
sity (relative=FALSE) or the relative risk (relative=TRUE) in the case of a
relative risk estimate.

nsim Number of simulations to be generated.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
a point pattern is returned. If drop=FALSE, a list of length 1 containing a point
pattern is returned.

what Optional character string (partially matched) specifying which value should be
calculated: either the function estimate (what="rho", the default), the lower or
upper end of the confidence interval (what="lo" or what="hi") or the standard
error (what="se").

Details

These functions are methods for the generic commands print, plot, predict and simulate for
the class "rhohat".

methods.ssf 325

An object of class "rhohat" is an estimate of the intensity of a point process, as a function of a
given spatial covariate. See rhohat.

The method plot.rhohat displays the estimated function ρ using plot.fv, and optionally adds a
rug plot of the observed values of the covariate.

The method predict.rhohat computes a pixel image of the intensity ρ(Z(u)) at each spatial
location u, where Z is the spatial covariate.

The method simulate.rhohat invokes predict.rhohat to determine the predicted intensity, and
then simulates a Poisson point process with this intensity.

Value

For predict.rhohat the value is a pixel image (object of class "im" or "linim"). For simulate.rhohat
the value is a point pattern (object of class "ppp" or "lpp"). For other functions, the value is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rhohat

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, function(x,y){x})
rho
plot(rho)
Y <- predict(rho)
plot(Y)
plot(simulate(rho), add=TRUE)
#
if(require("spatstat.model")) {

fit <- ppm(X, ~x)
rho <- rhohat(fit, "y")
opa <- par(mfrow=c(1,2))
plot(predict(rho))
plot(predict(rho, relative=TRUE))
par(opa)
plot(predict(rho, what="se"))

}

methods.ssf Methods for Spatially Sampled Functions

Description

Methods for various generic commands, for the class "ssf" of spatially sampled functions.

326 methods.ssf

Usage

S3 method for class 'ssf'
marks(x, ...)

S3 replacement method for class 'ssf'
marks(x, ...) <- value

S3 method for class 'ssf'
unmark(X)

S3 method for class 'ssf'
as.im(X, ...)

S3 method for class 'ssf'
as.function(x, ...)

S3 method for class 'ssf'
as.ppp(X, ...)

S3 method for class 'ssf'
print(x, ..., brief=FALSE)

S3 method for class 'ssf'
summary(object, ...)

S3 method for class 'ssf'
range(x, ...)

S3 method for class 'ssf'
min(x, ...)

S3 method for class 'ssf'
max(x, ...)

S3 method for class 'ssf'
integral(f, domain=NULL, ..., weights=attr(f, "weights"))

Arguments

x, X, f, object A spatially sampled function (object of class "ssf").

... Arguments passed to the default method.

brief Logical value controlling the amount of detail printed.

value Matrix of replacement values for the function.

domain Optional. Domain of integration. An object of class"owin" or "tess".

weights Optional. Numeric vector of quadrature weights associated with the sample
points.

methods.ssf 327

Details

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points.

The commands documented here are methods for this class, for the generic commands marks,
marks<-, unmark, as.im, as.function, as.ppp, print, summary, range, min, max and integral.

Value

marks returns a matrix.

marks(x) <- value returns an object of class "ssf".

as.owin returns a window (object of class "owin").

as.ppp and unmark return a point pattern (object of class "ppp").

as.function returns a function(x,y) of class "funxy".

print returns NULL.

summary returns an object of class "summary.ssf" which has a print method.

range returns a numeric vector of length 2. min and max return a single numeric value.

integral returns a numeric or complex value, vector, or matrix. integral(f) returns a numeric or
complex value (if f had numeric or complex values) or a numeric vector (if f had vector values). If
domain is a tessellation then integral(f, domain) returns a numeric or complex vector with one
entry for each tile (if f had numeric or complex values) or a numeric matrix with one row for each
tile (if f had vector values).

Author(s)

Adrian Baddeley

See Also

ssf

Examples

g <- distfun(cells[1:4])
X <- rsyst(Window(cells), 10)
f <- ssf(X, g(X))
f
summary(f)
marks(f)
as.ppp(f)
as.im(f)
integral(f)
integral(f, quadrats(Window(f), 3))

328 miplot

miplot Morisita Index Plot

Description

Displays the Morisita Index Plot of a spatial point pattern.

Usage

miplot(X, ...)

Arguments

X A point pattern (object of class "ppp") or something acceptable to as.ppp.

... Optional arguments to control the appearance of the plot.

Details

Morisita (1959) defined an index of spatial aggregation for a spatial point pattern based on quadrat
counts. The spatial domain of the point pattern is first divided into Q subsets (quadrats) of equal
size and shape. The numbers of points falling in each quadrat are counted. Then the Morisita Index
is computed as

MI = Q

∑Q
i=1 ni(ni − 1)

N(N − 1)

where ni is the number of points falling in the i-th quadrat, and N is the total number of points. If
the pattern is completely random, MI should be approximately equal to 1. Values of MI greater than
1 suggest clustering.

The Morisita Index plot is a plot of the Morisita Index MI against the linear dimension of the
quadrats. The point pattern dataset is divided into 2 × 2 quadrats, then 3 × 3 quadrats, etc, and
the Morisita Index is computed each time. This plot is an attempt to discern different scales of
dependence in the point pattern data.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

M. Morisita (1959) Measuring of the dispersion of individuals and analysis of the distributional
patterns. Memoir of the Faculty of Science, Kyushu University, Series E: Biology. 2: 215–235.

nnclean 329

See Also

quadratcount

Examples

miplot(longleaf)
opa <- par(mfrow=c(2,3))
plot(cells)
plot(japanesepines)
plot(redwood)
miplot(cells)
miplot(japanesepines)
miplot(redwood)
par(opa)

nnclean Nearest Neighbour Clutter Removal

Description

Detect features in a 2D or 3D spatial point pattern using nearest neighbour clutter removal.

Usage

nnclean(X, k, ...)

S3 method for class 'ppp'
nnclean(X, k, ...,

edge.correct = FALSE, wrap = 0.1,
convergence = 0.001, plothist = FALSE,
verbose = TRUE, maxit = 50)

S3 method for class 'pp3'
nnclean(X, k, ...,

convergence = 0.001, plothist = FALSE,
verbose = TRUE, maxit = 50)

Arguments

X A two-dimensional spatial point pattern (object of class "ppp") or a three-dimensional
point pattern (object of class "pp3").

k Degree of neighbour: k=1 means nearest neighbour, k=2 means second nearest,
etc.

... Arguments passed to hist.default to control the appearance of the histogram,
if plothist=TRUE.

edge.correct Logical flag specifying whether periodic edge correction should be performed
(only implemented in 2 dimensions).

330 nnclean

wrap Numeric value specifying the relative size of the margin in which data will be
replicated for the periodic edge correction (if edge.correct=TRUE). A fraction
of window width and window height.

convergence Relative tolerance threshold for testing convergence of EM algorithm.

maxit Maximum number of iterations for EM algorithm.

plothist Logical flag specifying whether to plot a diagnostic histogram of the nearest
neighbour distances and the fitted distribution.

verbose Logical flag specifying whether to print progress reports.

Details

Byers and Raftery (1998) developed a technique for recognising features in a spatial point pattern
in the presence of random clutter.

For each point in the pattern, the distance to the kth nearest neighbour is computed. Then the E-M
algorithm is used to fit a mixture distribution to the kth nearest neighbour distances. The mixture
components represent the feature and the clutter. The mixture model can be used to classify each
point as belong to one or other component.

The function nnclean is generic, with methods for two-dimensional point patterns (class "ppp")
and three-dimensional point patterns (class "pp3") currently implemented.

The result is a point pattern (2D or 3D) with two additional columns of marks:

class A factor, with levels "noise" and "feature", indicating the maximum likelihood classifica-
tion of each point.

prob Numeric vector giving the estimated probabilities that each point belongs to a feature.

The object also has extra information stored in attributes: "theta" contains the fitted parameters of
the mixture model, "info" contains information about the fitting procedure, and "hist" contains
the histogram structure returned from hist.default if plothist = TRUE.

Value

An object of the same kind as X, obtained by attaching marks to the points of X.

The object also has attributes, as described under Details.

Author(s)

Original by Simon Byers and Adrian Raftery. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Byers, S. and Raftery, A.E. (1998) Nearest-neighbour clutter removal for estimating features in
spatial point processes. Journal of the American Statistical Association 93, 577–584.

See Also

nndist, split.ppp, cut.ppp

nncorr 331

Examples

shapley galaxy cluster
X <- nnclean(shapley, k=17, plothist=TRUE)
plot(X, which.marks=1, chars=c(".", "+"), cols=1:2,

main="Shapley data, cluster and noise")
plot(X, which.marks=2, cols=function(x)hsv(0.2+0.8*(1-x),1,1),

main="Shapley data, probability of cluster")
Y <- split(X, un=TRUE)
plot(Y, chars="+", cex=0.5)
marks(X) <- marks(X)$prob
plot(cut(X, breaks=3), chars=c(".", "+", "+"), cols=1:3)

nncorr Nearest-Neighbour Correlation Indices of Marked Point Pattern

Description

Computes nearest-neighbour correlation indices of a marked point pattern, including the nearest-
neighbour mark product index (default case of nncorr), the nearest-neighbour mark index (nnmean),
and the nearest-neighbour variogram index (nnvario).

Usage

nncorr(X,
f = function(m1, m2) { m1 * m2 },
k = 1,
...,
use = "all.obs", method = c("pearson", "kendall", "spearman"),
denominator=NULL, na.action="warn")

nnmean(X, k=1, na.action="warn")

nnvario(X, k=1, na.action="warn")

Arguments

X The observed point pattern. An object of class "ppp".

f Function f used in the definition of the nearest neighbour correlation. There is
a sensible default that depends on the type of marks of X.

k Integer. The k-th nearest neighbour of each point will be used.

... Extra arguments passed to f.

use, method Arguments passed to the standard correlation function cor.

denominator Internal use only.

na.action Character string (passed to is.marked.ppp) specifying what to do if the marks
contain NA values.

332 nncorr

Details

The nearest neighbour correlation index n̄f of a marked point process X is a number measuring the
dependence between the mark of a typical point and the mark of its nearest neighbour.

The command nncorr computes the nearest neighbour correlation index based on any test function
f provided by the user. The default behaviour of nncorr is to compute the nearest neighbour mark
product index. The commands nnmean and nnvario are convenient abbreviations for other special
choices of f.

In the default case, nncorr(X) computes three different versions of the nearest-neighbour correla-
tion index: the unnormalised, normalised, and classical correlations.

unnormalised: The unnormalised nearest neighbour correlation (Stoyan and Stoyan, 1994, sec-
tion 14.7) is defined as

n̄f = E[f(M,M∗)]

where E[] denotes mean value, M is the mark attached to a typical point of the point process,
and M∗ is the mark attached to its nearest neighbour (i.e. the nearest other point of the point
process).
Here f is any function f(m1,m2) with two arguments which are possible marks of the pattern,
and which returns a nonnegative real value. Common choices of f are: for continuous real-
valued marks,

f(m1,m2) = m1m2

for discrete marks (multitype point patterns),

f(m1,m2) = 1(m1 = m2)

and for marks taking values in [0, 2π),

f(m1,m2) = sin(m1 −m2)

For example, in the second case, the unnormalised nearest neighbour correlation n̄f equals
the proportion of points in the pattern which have the same mark as their nearest neighbour.
Note that n̄f is not a “correlation” in the usual statistical sense. It can take values greater than
1.

normalised: We can define a normalised nearest neighbour correlation by

m̄f =
E[f(M,M∗)]

E[f(M,M ′)]

where again M is the mark attached to a typical point, M∗ is the mark attached to its nearest
neighbour, and M ′ is an independent copy of M with the same distribution. This normalisa-
tion is also not a “correlation” in the usual statistical sense, but is normalised so that the value
1 suggests “lack of correlation”: if the marks attached to the points of X are independent and
identically distributed, then m̄f = 1. The interpretation of values larger or smaller than 1
depends on the choice of function f .

classical: Finally if the marks of X are real numbers, we can also compute the classical correlation,
that is, the correlation coefficient of the two random variables M and M∗. The classical
correlation has a value between −1 and 1. Values close to −1 or 1 indicate strong dependence
between the marks.

nncorr 333

In the default case where f is not given, nncorr(X) computes

• If the marks of X are real numbers, the unnormalised and normalised versions of the nearest-
neighbour product index E[M M∗], and the classical correlation between M and M∗.

• If the marks of X are factor valued, the unnormalised and normalised versions of the nearest-
neighbour equality index P [M = M∗].

The wrapper functions nnmean and nnvario compute the correlation indices for two special choices
of the function f(m1,m2). They are defined only when the marks are numeric.

• nnmean computes the correlation indices for f(m1,m2) = m1. The unnormalised index is
simply the mean value of the mark of the neighbour of a typical point, E[M∗], while the
normalised index is E[M∗]/E[M], the ratio of the mean mark of the neighbour of a typical
point to the mean mark of a typical point.

• nnvario computes the correlation indices for f(m1,m2) = (1/2)(m1 −m2)
2.

The argument X must be a point pattern (object of class "ppp") and must be a marked point pattern.
(The marks may be a data frame, containing several columns of mark variables; each column is
treated separately.)

If the argument f is given, it must be a function, accepting two arguments m1 and m2 which are
vectors of equal length containing mark values (of the same type as the marks of X). It must return
a vector of numeric values of the same length as m1 and m2. The values must be non-negative.

The arguments use and method control the calculation of the classical correlation using cor, as
explained in the help file for cor.

Other arguments may be passed to f through the ... argument.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape. Biases due to edge effects are treated
using the ‘border method’ edge correction.

Value

Labelled vector of length 2 or 3 containing the unnormalised and normalised nearest neighbour
correlations, and the classical correlation if appropriate. Alternatively a matrix with 2 or 3 rows,
containing this information for each mark variable.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

334 nndensity.ppp

Examples

nnmean(finpines)
nnvario(finpines)
nncorr(finpines)
heights of neighbouring trees are slightly negatively correlated

nncorr(amacrine)
neighbouring cells are usually of different type

nndensity.ppp Estimate Intensity of Point Pattern Using Nearest Neighbour Dis-
tances

Description

Estimates the intensity of a point pattern using the distance from each spatial location to the kth
nearest data point.

Usage

nndensity(x, ...)

S3 method for class 'ppp'
nndensity(x, k, ..., verbose = TRUE)

Arguments

x A point pattern (object of class "ppp") or some other spatial object.

k Integer. The distance to the kth nearest data point will be computed. There is a
sensible default.

... Arguments passed to nnmap and as.mask controlling the pixel resolution.

verbose Logical. If TRUE, print the value of k when it is automatically selected. If FALSE,
remain silent.

Details

This function computes a quick estimate of the intensity of the point process that generated the
point pattern x.

For each spatial location s, let d(s) be the distance from s to the k-th nearest point in the dataset x.
If the data came from a homogeneous Poisson process with intensity λ, then πd(s)2 would follow a
negative exponential distribution with mean 1/λ, and the maximum likelihood estimate of λ would
be 1/(πd(s)2). This is the estimate computed by nndensity, apart from an edge effect correction.

See Cressie (1991, equation (8.5.14), p. 654) and Silverman (1986, p. 96).

This estimator of intensity is relatively fast to compute, and is spatially adaptive (so that it can handle
wide variation in the intensity function). However, it implicitly assumes the points are independent,
so it does not perform well if the pattern is strongly clustered or strongly inhibited.

nnorient 335

In normal use, the value of k should be at least 3. (Theoretically the estimator has infinite expected
value if k = 1, and infinite variance if k = 2. The computed intensity estimate will have infinite
peaks around each data point if k = 1.) The default value of k is the square root of the number of
points in x, which seems to work well in many cases.

The window of x is digitised using as.mask and the values d(s) are computed using nnmap. To
control the pixel resolution, see as.mask.

Value

A pixel image (object of class "im") giving the estimated intensity of the point process at each
spatial location. Pixel values are intensities (number of points per unit area).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, New York.

Silverman, B.W. (1986) Density Estimation. Chapman and Hall, New York.

See Also

density.ppp, intensity.ppp for alternative estimates of point process intensity.

Examples

plot(nndensity(swedishpines))

nnorient Nearest Neighbour Orientation Distribution

Description

Computes the distribution of the orientation of the vectors from each point to its nearest neighbour.

Usage

nnorient(X, ..., cumulative = FALSE, correction, k = 1,
unit = c("degree", "radian"),
domain = NULL, ratio = FALSE)

336 nnorient

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to circdensity to control the kernel smoothing, if cumulative=FALSE.

cumulative Logical value specifying whether to estimate the probability density (cumulative=FALSE,
the default) or the cumulative distribution function (cumulative=TRUE).

correction Character vector specifying edge correction or corrections. Options are "none",
"bord.modif", "good" and "best". Alternatively correction="all" selects
all options.

k Integer. The kth nearest neighbour will be used.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

unit Unit in which the angles should be expressed. Either "degree" or "radian".

domain Optional window. The first point xi of each pair of points will be constrained to
lie in domain.

Details

This algorithm considers each point in the pattern X and finds its nearest neighbour (or kth nearest
neighour). The direction of the arrow joining the data point to its neighbour is measured, as an
angle in degrees or radians, anticlockwise from the x axis.

If cumulative=FALSE (the default), a kernel estimate of the probability density of the angles is
calculated using circdensity. This is the function ϑ(ϕ) defined in Illian et al (2008), equation
(4.5.3), page 253.

If cumulative=TRUE, then the cumulative distribution function of these angles is calculated.

In either case the result can be plotted as a rose diagram by rose, or as a function plot by plot.fv.

The algorithm gives each observed direction a weight, determined by an edge correction, to adjust
for the fact that some interpoint distances are more likely to be observed than others. The choice of
edge correction or corrections is determined by the argument correction.

It is also possible to calculate an estimate of the probability density from the cumulative distribution
function, by numerical differentiation. Use deriv.fv with the argument Dperiodic=TRUE.

Value

A function value table (object of class "fv") containing the estimates of the probability density
or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if
unit="radian").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

pairMean 337

References

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of
Spatial Point Patterns. Wiley.

See Also

pairorient

Examples

rose(nnorient(redwood, adjust=0.6), col="grey")
plot(CDF <- nnorient(redwood, cumulative=TRUE))

pairMean Mean of a Function of Interpoint Distance

Description

Computes the mean value, or the double integral, of a specified function of the distance between
two independent random points in a given window or windows.

Usage

pairMean(fun, W, V = NULL, ..., normalise = TRUE)

Arguments

fun A function in the R language which takes one argument.

W A window (object of class "owin") containing the first random point.

V Optional. Another window containing the second random point. Defaults to W.

... Further optional arguments passed to distcdf to determine the pixel resolution
for the calculation and the probability distributions of the random points.

normalise Logical value specifying whether to calculate the mean value (normalise=TRUE,
the default) or the double integral (normalise=FALSE).

Details

This command computes the mean value of fun(T) where T is the Euclidean distance T = ∥X1 −
X2∥ between two independent random points X1 and X2.

In the simplest case, the command pairMean(fun, W), the random points are assumed to be uni-
formly distributed in the same window W. Alternatively the two random points may be uniformly
distributed in two different windows W and V. Other options are described in distcdf.

The algorithm uses distcdf to compute the cumulative distribution function of T, and stieltjes
to compute the mean value of fun(T).

If normalise=TRUE (the default) the result is the mean value of fun(T). If normalise=FALSE the
result is the double integral.

338 pairorient

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

distcdf

Examples

pairMean(function(d) { d^2 }, disc())

pairorient Point Pair Orientation Distribution

Description

Computes the distribution of the orientation of vectors joining pairs of points at a particular range
of distances.

Usage

pairorient(X, r1, r2, ..., cumulative=FALSE,
correction, ratio = FALSE,
unit=c("degree", "radian"), domain=NULL)

Arguments

X Point pattern (object of class "ppp").

r1, r2 Minimum and maximum values of distance to be considered.

... Arguments passed to circdensity to control the kernel smoothing, if cumulative=FALSE.

cumulative Logical value specifying whether to estimate the probability density (cumulative=FALSE,
the default) or the cumulative distribution function (cumulative=TRUE).

correction Character vector specifying edge correction or corrections. Options are "none",
"isotropic", "translate", "border", "bord.modif", "good" and "best".
Alternatively correction="all" selects all options. The default is to compute
all edge corrections except "none".

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

unit Unit in which the angles should be expressed. Either "degree" or "radian".

domain Optional window. The first point xi of each pair of points will be constrained to
lie in domain.

pairorient 339

Details

This algorithm considers all pairs of points in the pattern X that lie more than r1 and less than r2
units apart. The direction of the arrow joining the points is measured, as an angle in degrees or
radians, anticlockwise from the x axis.

If cumulative=FALSE (the default), a kernel estimate of the probability density of the orientations
is calculated using circdensity.

If cumulative=TRUE, then the cumulative distribution function of these directions is calculated.
This is the function Or1,r2(ϕ) defined in Stoyan and Stoyan (1994), equation (14.53), page 271.

In either case the result can be plotted as a rose diagram by rose, or as a function plot by plot.fv.

The algorithm gives each observed direction a weight, determined by an edge correction, to ad-
just for the fact that some interpoint distances are more likely to be observed than others. The
choice of edge correction or corrections is determined by the argument correction. See the help
for Kest for details of edge corrections, and explanation of the options available. The choice
correction="none" is not recommended; it is included for demonstration purposes only. The
default is to compute all corrections except "none".

It is also possible to calculate an estimate of the probability density from the cumulative distribution
function, by numerical differentiation. Use deriv.fv with the argument Dperiodic=TRUE.

Value

A function value table (object of class "fv") containing the estimates of the probability density
or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if
unit="radian").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D. and Stoyan, H. (1994) Fractals, Random Shapes and Point Fields: Methods of Geomet-
rical Statistics. John Wiley and Sons.

See Also

Kest, Ksector, nnorient

Examples

rose(pairorient(redwood, 0.05, 0.15, sigma=8), col="grey")
plot(CDF <- pairorient(redwood, 0.05, 0.15, cumulative=TRUE))
plot(f <- deriv(CDF, spar=0.6, Dperiodic=TRUE))

340 pairs.im

pairs.im Scatterplot Matrix for Pixel Images

Description

Produces a scatterplot matrix of the pixel values in two or more pixel images.

Usage

S3 method for class 'im'
pairs(..., plot=TRUE, drop=TRUE)

Arguments

... Any number of arguments, each of which is either a pixel image (object of class
"im") or a named argument to be passed to pairs.default. Alternatively, a
single argument which is a list of pixel images.

plot Logical. If TRUE, the scatterplot matrix is plotted.

drop Logical value specifying whether pixel values that are NA should be removed
from the data frame that is returned by the function. This does not affect the
plot.

Details

This is a method for the generic function pairs for the class of pixel images.

It produces a square array of plot panels, in which each panel shows a scatterplot of the pixel values
of one image against the corresponding pixel values of another image.

At least two of the arguments ... should be pixel images (objects of class "im"). Their spatial
domains must overlap, but need not have the same pixel dimensions.

First the pixel image domains are intersected, and converted to a common pixel resolution. Then
the corresponding pixel values of each image are extracted. Then pairs.default is called to plot
the scatterplot matrix.

Any arguments in ... which are not pixel images will be passed to pairs.default to control the
plot.

The return value of pairs.im is a data frame, returned invisibly. The data frame has one column for
each image. Each row contains the pixel values of the different images for one pixel in the raster. If
drop=TRUE (the default), any row which contains NA is deleted. The plot is not affected by the value
of drop.

Value

Invisible. A data.frame containing the corresponding pixel values for each image. The return
value also belongs to the class plotpairsim which has a plot method, so that it can be re-plotted.

panel.contour 341

Image or Contour Plots

Since the scatterplots may show very dense concentrations of points, it may be useful to set panel=panel.image
or panel=panel.contour to draw a colour image or contour plot of the kernel-smoothed density
of the scatterplot in each panel. The argument panel is passed to pairs.default. See the help for
panel.image and panel.contour.

Low Level Control of Graphics

To control the appearance of the individual scatterplot panels, see pairs.default, points or par.
To control the plotting symbol for the points in the scatterplot, use the arguments pch, col, bg as
described under points (because the default panel plotter is the function points). To suppress the
tick marks on the plot axes, type par(xaxt="n", yaxt="n") before calling pairs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pairs, pairs.default, panel.contour, panel.image, plot.im, cov.im, im, par

Examples

X <- density(rpoispp(30))
Y <- density(rpoispp(40))
Z <- density(rpoispp(30))
p <- pairs(X,Y,Z)
p
plot(p)

panel.contour Panel Plots using Colour Image or Contour Lines

Description

These functions can be passed to pairs or coplot to determine what kind of plotting is done in
each panel of a multi-panel graphical display.

Usage

panel.contour(x, y, ..., sigma = NULL)

panel.image(x, y, ..., sigma = NULL)

panel.histogram(x, ...)

342 panel.contour

Arguments

x, y Coordinates of points in a scatterplot.

... Extra graphics arguments, passed to contour.im, plot.im or rect, respec-
tively, to control the appearance of the panel.

sigma Bandwidth of kernel smoother, on a scale where x and y range between 0 and 1.

Details

These functions can serve as one of the arguments panel, lower.panel, upper.panel, diag.panel
passed to graphics commands like pairs or coplot, to determine what kind of plotting is done in
each panel of a multi-panel graphical display. In particular they work with pairs.im.

The functions panel.contour and panel.contour are suitable for the off-diagonal plots which
involve two datasets x and y. They first rescale x and y to the unit square, then apply kernel
smoothing with bandwidth sigma using density.ppp. Then panel.contour draws a contour plot
while panel.image draws a colour image.

The function panel.histogram is suitable for the diagonal plots which involve a single dataset x.
It displays a histogram of the data.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pairs.im, pairs.default, panel.smooth

Examples

pairs(bei.extra,
panel = panel.contour,
diag.panel = panel.histogram)

with(bei.extra,
pairs(grad, elev,

panel = panel.image,
diag.panel = panel.histogram))

pairs(marks(finpines), panel=panel.contour, diag.panel=panel.histogram)

pcf 343

pcf Pair Correlation Function

Description

Estimate the pair correlation function.

Usage

pcf(X, ...)

Arguments

X Either the observed data point pattern, or an estimate of its K function, or an
array of multitype K functions (see Details).

... Other arguments passed to the appropriate method.

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical K function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) either directly from a point pattern, or indirectly from an
estimate of K(r) or one of its variants.

This function is generic, with methods for the classes "ppp", "fv" and "fasp".

If X is a point pattern (object of class "ppp") then the pair correlation function is estimated using a
traditional kernel smoothing method (Stoyan and Stoyan, 1994). See pcf.ppp for details.

If X is a function value table (object of class "fv"), then it is assumed to contain estimates of the K
function or one of its variants (typically obtained from Kest or Kinhom). This routine computes an
estimate of g(r) using smoothing splines to approximate the derivative. See pcf.fv for details.

If X is a function value array (object of class "fasp"), then it is assumed to contain estimates of
several K functions (typically obtained from Kmulti or alltypes). This routine computes an
estimate of g(r) for each cell in the array, using smoothing splines to approximate the derivatives.
See pcf.fasp for details.

344 pcf.fasp

Value

Either a function value table (object of class "fv", see fv.object) representing a pair correlation
function, or a function array (object of class "fasp", see fasp.object) representing an array of
pair correlation functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf.ppp, pcf.fv, pcf.fasp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes

Examples

ppp object
X <- simdat

p <- pcf(X)
plot(p)

fv object
K <- Kest(X)
p2 <- pcf(K, spar=0.8, method="b")
plot(p2)

multitype pattern; fasp object
amaK <- alltypes(amacrine, "K")
amap <- pcf(amaK, spar=1, method="b")
plot(amap)

pcf.fasp Pair Correlation Function obtained from array of K functions

Description

Estimates the (bivariate) pair correlation functions of a point pattern, given an array of (bivariate) K
functions.

Usage

S3 method for class 'fasp'
pcf(X, ..., method="c")

pcf.fasp 345

Arguments

X An array of multitype K functions (object of class "fasp").
... Arguments controlling the smoothing spline function smooth.spline.
method Letter "a", "b", "c" or "d" indicating the method for deriving the pair correla-

tion function from the K function.

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical K function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) from an array of estimates of K(r) or its variants, using
smoothing splines to approximate the derivatives. It is a method for the generic function pcf.

The argument X should be a function array (object of class "fasp", see fasp.object) containing
several estimates of K functions. This should have been obtained from alltypes with the argument
fun="K".

The smoothing spline operations are performed by smooth.spline and predict.smooth.spline
from the modreg library. Four numerical methods are available:

• "a" apply smoothing to K(r), estimate its derivative, and plug in to the formula above;

• "b" apply smoothing to Y (r) = K(r)
2πr constraining Y (0) = 0, estimate the derivative of Y ,

and solve;
• "c" apply smoothing to Z(r) = K(r)

πr2 constraining Z(0) = 1, estimate its derivative, and
solve.

• "d" apply smoothing to V (r) =
√

K(r), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of r. However it effec-
tively constrains g(0) = 1. If the point pattern seems to have inhibition at small distances, you may
wish to experiment with method "b" which effectively constrains g(0) = 0. Method "a" seems
comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter spar and the
degrees of freedom df. See smooth.spline for details.

Value

A function array (object of class "fasp", see fasp.object) representing an array of pair correlation
functions. This can be thought of as a matrix Y each of whose entries Y[i,j] is a function value
table (class "fv") representing the pair correlation function between points of type i and points of
type j.

346 pcf.fv

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

Examples

multitype point pattern
KK <- alltypes(amacrine, "K")
p <- pcf.fasp(KK, spar=0.5, method="b")
plot(p)
strong inhibition between points of the same type

pcf.fv Pair Correlation Function obtained from K Function

Description

Estimates the pair correlation function of a point pattern, given an estimate of the K function.

Usage

S3 method for class 'fv'
pcf(X, ..., method="c")

Arguments

X An estimate of the K function or one of its variants. An object of class "fv".

... Arguments controlling the smoothing spline function smooth.spline.

method Letter "a", "b", "c" or "d" indicating the method for deriving the pair correla-
tion function from the K function.

pcf.fv 347

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classical K function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) from an estimate of K(r) or its variants, using smoothing
splines to approximate the derivative. It is a method for the generic function pcf for the class "fv".

The argument X should be an estimated K function, given as a function value table (object of
class "fv", see fv.object). This object should be the value returned by Kest, Kcross, Kmulti or
Kinhom.

The smoothing spline operations are performed by smooth.spline and predict.smooth.spline
from the modreg library. Four numerical methods are available:

• "a" apply smoothing to K(r), estimate its derivative, and plug in to the formula above;

• "b" apply smoothing to Y (r) = K(r)
2πr constraining Y (0) = 0, estimate the derivative of Y ,

and solve;

• "c" apply smoothing to Z(r) = K(r)
πr2 constraining Z(0) = 1, estimate its derivative, and

solve.

• "d" apply smoothing to V (r) =
√

K(r), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of r. However it effec-
tively constrains g(0) = 1. If the point pattern seems to have inhibition at small distances, you may
wish to experiment with method "b" which effectively constrains g(0) = 0. Method "a" seems
comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter spar and the
degrees of freedom df. See smooth.spline for details.

Value

A function value table (object of class "fv", see fv.object) representing a pair correlation func-
tion.

Essentially a data frame containing (at least) the variables

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

pcf vector of values of g(r)

348 pcf.ppp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf, pcf.ppp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

Examples

univariate point pattern
X <- simdat

K <- Kest(X)
p <- pcf.fv(K, spar=0.5, method="b")
plot(p, main="pair correlation function for simdat")
indicates inhibition at distances r < 0.3

pcf.ppp Pair Correlation Function of Point Pattern

Description

Estimates the pair correlation function of a point pattern using kernel methods.

Usage

S3 method for class 'ppp'
pcf(X, ..., r = NULL, kernel="epanechnikov", bw=NULL,

stoyan=0.15,
correction=c("translate", "Ripley"),
divisor = c("r", "d"),
var.approx = FALSE,
domain=NULL,
ratio=FALSE, close=NULL)

pcf.ppp 349

Arguments

X A point pattern (object of class "ppp").

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default. Either a single
numeric value giving the standard deviation of the kernel, or a character string
specifying a bandwidth selection rule recognised by density.default. If bw
is missing or NULL, the default value is computed using Stoyan’s rule of thumb:
see Details.

... Other arguments passed to the kernel density estimation function density.default.

stoyan Coefficient for Stoyan’s bandwidth selection rule; see Details.

correction Edge correction. A character vector specifying the choice (or choices) of edge
correction. See Details.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

var.approx Logical value indicating whether to compute an analytic approximation to the
variance of the estimated pair correlation.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

close Advanced use only. Precomputed data. See section on Advanced Use.

Details

The pair correlation function g(r) is a summary of the dependence between points in a spatial point
process. The best intuitive interpretation is the following: the probability p(r) of finding two points
at locations x and y separated by a distance r is equal to

p(r) = λ2g(r) dxdy

where λ is the intensity of the point process. For a completely random (uniform Poisson) process,
p(r) = λ2 dxdy so g(r) = 1. Formally, the pair correlation function of a stationary point process
is defined by

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r).

For a stationary Poisson process, the pair correlation function is identically equal to 1. Values
g(r) < 1 suggest inhibition between points; values greater than 1 suggest clustering.

This routine computes an estimate of g(r) by kernel smoothing.

• If divisor="r" (the default), then the standard kernel estimator (Stoyan and Stoyan, 1994,
pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are
followed exactly.

350 pcf.ppp

• If divisor="d" then a modified estimator is used (Guan, 2007): the contribution from an
interpoint distance dij to the estimate of g(r) is divided by dij instead of dividing by r. This
usually improves the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window):

• If correction="translate" or correction="translation" then the translation correction
is used. For divisor="r" the translation-corrected estimate is given in equation (15.15), page
284 of Stoyan and Stoyan (1994).

• If correction="Ripley" or correction="isotropic" then Ripley’s isotropic edge correc-
tion is used. For divisor="r" the isotropic-corrected estimate is given in equation (15.18),
page 285 of Stoyan and Stoyan (1994).

• If correction="none" then no edge correction is used, that is, an uncorrected estimate is
computed.

Multiple corrections can be selected. The default is correction=c("translate", "Ripley").

Alternatively correction="all" selects all options; correction="best" selects the option which
has the best statistical performance; correction="good" selects the option which is the best com-
promise between statistical performance and speed of computation.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.default.
The default is the Epanechnikov kernel, recommended by Stoyan and Stoyan (1994, page 285).

The bandwidth of the smoothing kernel can be controlled by the argument bw. Bandwidth is defined
as the standard deviation of the kernel; see the documentation for density.default. For the
Epanechnikov kernel with half-width h, the argument bw is equivalent to h/

√
5.

Stoyan and Stoyan (1994, page 285) recommend using the Epanechnikov kernel with support
[−h, h] chosen by the rule of thumn h = c/

√
λ, where λ is the (estimated) intensity of the point

process, and c is a constant in the range from 0.1 to 0.2. See equation (15.16). If bw is missing or
NULL, then this rule of thumb will be applied. The argument stoyan determines the value of c. The
smoothing bandwidth that was used in the calculation is returned as an attribute of the final result.

The argument r is the vector of values for the distance r at which g(r) should be evaluated. There
is a sensible default. If it is specified, r must be a vector of increasing numbers starting from r[1]
= 0, and max(r) must not exceed half the diameter of the window.

If the argument domain is given, estimation will be restricted to this region. That is, the estimate of
g(r) will be based on pairs of points in which the first point lies inside domain and the second point
is unrestricted. The argument domain should be a window (object of class "owin") or something
acceptable to as.owin. It must be a subset of the window of the point pattern X.

To compute a confidence band for the true value of the pair correlation function, use lohboot.

If var.approx = TRUE, the variance of the estimate of the pair correlation will also be calculated
using an analytic approximation (Illian et al, 2008, page 234) which is valid for stationary point
processes which are not too clustered. This calculation is not yet implemented when the argument
domain is given.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

pcf.ppp 351

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

theo vector of values equal to 1, the theoretical value of g(r) for the Poisson process

trans vector of values of g(r) estimated by translation correction

iso vector of values of g(r) estimated by Ripley isotropic correction

v vector of approximate values of the variance of the estimate of g(r)

as required.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of g(r).

The return value also has an attribute "bw" giving the smoothing bandwidth that was used.

Advanced Use

To perform the same computation using several different bandwidths bw, it is efficient to use the
argument close. This should be the result of closepairs(X, rmax) for a suitably large value of
rmax, namely rmax >= max(r) + 3 * bw.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Martin Hazelton <Martin.Hazelton@otago.ac.nz>.

References

Guan, Y. (2007) A least-squares cross-validation bandwidth selection approach in pair correlation
function estimation. Statistics and Probability Letters 77 (18) 1722–1729.

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of
Spatial Point Patterns. Wiley.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, pcf, density.default, bw.stoyan, bw.pcf, lohboot.

Examples

X <- simdat

p <- pcf(X)
plot(p, main="pair correlation function for X")
indicates inhibition at distances r < 0.3

pd <- pcf(X, divisor="d")

compare estimates
plot(p, cbind(iso, theo) ~ r, col=c("blue", "red"),

352 pcf3est

ylim.covers=0, main="", lwd=c(2,1), lty=c(1,3), legend=FALSE)
plot(pd, iso ~ r, col="green", lwd=2, add=TRUE)
legend("center", col=c("blue", "green"), lty=1, lwd=2,

legend=c("divisor=r","divisor=d"))

calculate approximate variance and show POINTWISE confidence bands
pv <- pcf(X, var.approx=TRUE)
plot(pv, cbind(iso, iso+2*sqrt(v), iso-2*sqrt(v)) ~ r)

pcf3est Pair Correlation Function of a Three-Dimensional Point Pattern

Description

Estimates the pair correlation function from a three-dimensional point pattern.

Usage

pcf3est(X, ..., rmax = NULL, nrval = 128,
correction = c("translation", "isotropic"),
delta=NULL, adjust=1, biascorrect=TRUE)

Arguments

X Three-dimensional point pattern (object of class "pp3").
... Ignored.
rmax Optional. Maximum value of argument r for which g3(r) will be estimated.
nrval Optional. Number of values of r for which g3(r) will be estimated.
correction Optional. Character vector specifying the edge correction(s) to be applied. See

Details.
delta Optional. Half-width of the Epanechnikov smoothing kernel.
adjust Optional. Adjustment factor for the default value of delta.
biascorrect Logical value. Whether to correct for underestimation due to truncation of the

kernel near r = 0.

Details

For a stationary point process Φ in three-dimensional space, the pair correlation function is

g3(r) =
K ′

3(r)

4πr2

where K ′
3 is the derivative of the three-dimensional K-function (see K3est).

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point pro-
cess Φ. The distance between each pair of distinct points is computed. Kernel smoothing is applied
to these distance values (weighted by an edge correction factor) and the result is renormalised to
give the estimate of g3(r).

The available edge corrections are:

pcf3est 353

"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)

"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley,
1977; Baddeley et al, 1993).

Kernel smoothing is performed using the Epanechnikov kernel with half-width delta. If delta is
missing, the default is to use the rule-of-thumb δ = 0.26/λ1/3 where λ = n/v is the estimated
intensity, computed from the number n of data points and the volume v of the enclosing box. This
default value of delta is multiplied by the factor adjust.

The smoothing estimate of the pair correlation g3(r) is typically an underestimate when r is small,
due to truncation of the kernel at r = 0. If biascorrect=TRUE, the smoothed estimate is approx-
imately adjusted for this bias. This is advisable whenever the dataset contains a sufficiently large
number of points.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Additionally the value of delta is returned as an attribute of this object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

F3est, G3est, K3est for other summary functions of a three-dimensional point pattern.

pcf to estimate the pair correlation function of point patterns in two dimensions or other spaces.

Examples

X <- rpoispp3(250)
Z <- pcf3est(X)
Zbias <- pcf3est(X, biascorrect=FALSE)
if(interactive()) {

opa <- par(mfrow=c(1,2))
plot(Z, ylim.covers=c(0, 1.2))
plot(Zbias, ylim.covers=c(0, 1.2))
par(opa)

354 pcfcross

}
attr(Z, "delta")

pcfcross Multitype pair correlation function (cross-type)

Description

Calculates an estimate of the cross-type pair correlation function for a multitype point pattern.

Usage

pcfcross(X, i, j, ...,
r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("isotropic", "Ripley", "translate"),
divisor = c("r", "d"),
ratio = FALSE)

Arguments

X The observed point pattern, from which an estimate of the cross-type pair corre-
lation function gij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule; see Details.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

pcfcross 355

Details

The cross-type pair correlation function is a generalisation of the pair correlation function pcf to
multitype point patterns.

For two locations x and y separated by a distance r, the probability p(r) of finding a point of type i
at location x and a point of type j at location y is

p(r) = λiλjgi,j(r) dxdy

where λi is the intensity of the points of type i. For a completely random Poisson marked point
process, p(r) = λiλj so gi,j(r) = 1. Indeed for any marked point pattern in which the points of
type i are independent of the points of type j, the theoretical value of the cross-type pair correlation
is gi,j(r) = 1.

For a stationary multitype point process, the cross-type pair correlation function between marks i
and j is formally defined as

gi,j(r) =
K ′

i,j(r)

2πr

where K ′
i,j is the derivative of the cross-type K function Ki,j(r). of the point process. See Kest

for information about K(r).

The command pcfcross computes a kernel estimate of the cross-type pair correlation function
between marks i and j.

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285) applied to the points of type j. That is, h = c/

√
λ, where λ is the

(estimated) intensity of the point process of type j, and c is a constant in the range from 0.1 to 0.2.
The argument stoyan determines the value of c.

The companion function pcfdot computes the corresponding analogue of Kdot.

356 pcfcross.inhom

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function gi,j has been esti-
mated

theo the theoretical value gi,j(r) = 1 for independent marks.

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function gi,j obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Mark connection function markconnect.

Multitype pair correlation pcfdot, pcfmulti.

Pair correlation pcf,pcf.ppp.

Kcross

Examples

p <- pcfcross(amacrine, "off", "on")
p <- pcfcross(amacrine, "off", "on", stoyan=0.1)
plot(p)

pcfcross.inhom Inhomogeneous Multitype Pair Correlation Function (Cross-Type)

Description

Estimates the inhomogeneous cross-type pair correlation function for a multitype point pattern.

Usage

pcfcross.inhom(X, i, j, lambdaI = NULL, lambdaJ = NULL, ...,
r = NULL, breaks = NULL,
kernel="epanechnikov", bw=NULL, adjust.bw = 1, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
sigma = NULL, adjust.sigma = 1, varcov = NULL)

pcfcross.inhom 357

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross-
type pair correlation function gij(r) will be computed. It must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

lambdaI Optional. Values of the estimated intensity function of the points of type i. Ei-
ther a vector giving the intensity values at the points of type i, a pixel image (ob-
ject of class "im") giving the intensity values at all locations, or a function(x,y)
which can be evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the estimated intensity function of the points of type j. A
numeric vector, pixel image or function(x,y).

r Vector of values for the argument r at which gij(r) should be evaluated. There
is a sensible default.

breaks This argument is for internal use only.

kernel Choice of one-dimensional smoothing kernel, passed to density.default.

bw Bandwidth for one-dimensional smoothing kernel, passed to density.default.

adjust.bw Numeric value. bw will be multiplied by this value.

... Other arguments passed to the one-dimensional kernel density estimation func-
tion density.default.

stoyan Bandwidth coefficient; see Details.

correction Choice of edge correction.

sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambdaI or lambdaJ is estimated by spatial kernel smoothing.

adjust.sigma Numeric value. sigma will be multiplied by this value.

Details

The inhomogeneous cross-type pair correlation function gij(r) is a summary of the dependence
between two types of points in a multitype spatial point process that does not have a uniform density
of points.

The best intuitive interpretation is the following: the probability p(r) of finding two points, of types
i and j respectively, at locations x and y separated by a distance r is equal to

p(r) = λi(x)lambdaj(y)g(r) dx dy

where λi is the intensity function of the process of points of type i. For a multitype Poisson point
process, this probability is p(r) = λi(x)λj(y) so gij(r) = 1.

The command pcfcross.inhom estimates the inhomogeneous pair correlation using a modified
version of the algorithm in pcf.ppp. The arguments bw and adjust.bw control the degree of one-
dimensional smoothing of the estimate of pair correlation.

358 pcfdot

If the arguments lambdaI and/or lambdaJ are missing or null, they will be estimated from X by spa-
tial kernel smoothing using a leave-one-out estimator, computed by density.ppp. The arguments
sigma, varcov and adjust.sigma control the degree of spatial smoothing.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the inhomogeneous cross-type
pair correlation function gij(r) has been estimated

theo vector of values equal to 1, the theoretical value of gij(r) for the Poisson process

trans vector of values of gij(r) estimated by translation correction

iso vector of values of gij(r) estimated by Ripley isotropic correction

as required.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

pcf.ppp, pcfinhom, pcfcross, pcfdot.inhom

Examples

plot(pcfcross.inhom(amacrine, "on", "off", stoyan=0.1),
legendpos="bottom")

pcfdot Multitype pair correlation function (i-to-any)

Description

Calculates an estimate of the multitype pair correlation function (from points of type i to points of
any type) for a multitype point pattern.

Usage

pcfdot(X, i, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("isotropic", "Ripley", "translate"),
divisor = c("r", "d"),
ratio=FALSE)

pcfdot 359

Arguments

X The observed point pattern, from which an estimate of the dot-type pair corre-
lation function gi•(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule; see Details.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

Details

This is a generalisation of the pair correlation function pcf to multitype point patterns.

For two locations x and y separated by a nonzero distance r, the probability p(r) of finding a point
of type i at location x and a point of any type at location y is

p(r) = λiλgi•(r) dx dy

where λ is the intensity of all points, and λi is the intensity of the points of type i. For a completely
random Poisson marked point process, p(r) = λiλ so gi•(r) = 1.

For a stationary multitype point process, the type-i-to-any-type pair correlation function between
marks i and j is formally defined as

gi•(r) =
K ′

i•(r)

2πr

where K ′
i• is the derivative of the type-i-to-any-type K function Ki•(r). of the point process. See

Kdot for information about Ki•(r).

The command pcfdot computes a kernel estimate of the multitype pair correlation function from
points of type i to points of any type.

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

360 pcfdot

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285). That is, h = c/

√
λ, where λ is the (estimated) intensity of the unmarked

point process, and c is a constant in the range from 0.1 to 0.2. The argument stoyan determines the
value of c.

The companion function pcfcross computes the corresponding analogue of Kcross.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function gi• has been esti-
mated

theo the theoretical value gi•(r) = 1 for independent marks.

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function gi,j obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Mark connection function markconnect.

Multitype pair correlation pcfcross, pcfmulti.

Pair correlation pcf,pcf.ppp.

Kdot

Examples

p <- pcfdot(amacrine, "on")
p <- pcfdot(amacrine, "on", stoyan=0.1)
plot(p)

pcfdot.inhom 361

pcfdot.inhom Inhomogeneous Multitype Pair Correlation Function (Type-i-To-Any-
Type)

Description

Estimates the inhomogeneous multitype pair correlation function (from type i to any type) for a
multitype point pattern.

Usage

pcfdot.inhom(X, i, lambdaI = NULL, lambdadot = NULL, ...,
r = NULL, breaks = NULL,
kernel="epanechnikov", bw=NULL, adjust.bw=1, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
sigma = NULL, adjust.sigma = 1, varcov = NULL)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous mul-
titype pair correlation function gi•(r) will be computed. It must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

lambdaI Optional. Values of the estimated intensity function of the points of type i. Ei-
ther a vector giving the intensity values at the points of type i, a pixel image (ob-
ject of class "im") giving the intensity values at all locations, or a function(x,y)
which can be evaluated to give the intensity value at any location.

lambdadot Optional. Values of the estimated intensity function of the point pattern X. A
numeric vector, pixel image or function(x,y).

r Vector of values for the argument r at which gi•(r) should be evaluated. There
is a sensible default.

breaks This argument is for internal use only.
kernel Choice of one-dimensional smoothing kernel, passed to density.default.
bw Bandwidth for one-dimensional smoothing kernel, passed to density.default.
adjust.bw Numeric value. bw will be multiplied by this value.
... Other arguments passed to the one-dimensional kernel density estimation func-

tion density.default.
stoyan Bandwidth coefficient; see Details.
correction Choice of edge correction.
sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-

width, when lambdaI and/or lambdadot is estimated by spatial kernel smooth-
ing.

adjust.sigma Numeric value. sigma will be multiplied by this value.

362 pcfdot.inhom

Details

The inhomogeneous multitype (type i to any type) pair correlation function gi•(r) is a summary of
the dependence between different types of points in a multitype spatial point process that does not
have a uniform density of points.

The best intuitive interpretation is the following: the probability p(r) of finding a point of type i at
location x and another point of any type at location y, where x and y are separated by a distance r,
is equal to

p(r) = λi(x)lambda(y)g(r) dxdy

where λi is the intensity function of the process of points of type i, and where λ is the intensity
function of the points of all types. For a multitype Poisson point process, this probability is p(r) =
λi(x)λ(y) so gi•(r) = 1.

The command pcfdot.inhom estimates the inhomogeneous multitype pair correlation using a mod-
ified version of the algorithm in pcf.ppp. The arguments bw and adjust.bw control the degree of
one-dimensional smoothing of the estimate of pair correlation.

If the arguments lambdaI and/or lambdadot are missing or null, they will be estimated from X by
spatial kernel smoothing using a leave-one-out estimator, computed by density.ppp. The argu-
ments sigma, varcov and adjust.sigma control the degree of spatial smoothing.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the inhomogeneous multitype
pair correlation function gi•(r) has been estimated

theo vector of values equal to 1, the theoretical value of gi•(r) for the Poisson process

trans vector of values of gi•(r) estimated by translation correction

iso vector of values of gi•(r) estimated by Ripley isotropic correction

as required.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

pcf.ppp, pcfinhom, pcfdot, pcfcross.inhom

Examples

plot(pcfdot.inhom(amacrine, "on", stoyan=0.1), legendpos="bottom")

pcfinhom 363

pcfinhom Inhomogeneous Pair Correlation Function

Description

Estimates the inhomogeneous pair correlation function of a point pattern using kernel methods.

Usage

pcfinhom(X, lambda = NULL, ..., r = NULL,
kernel = "epanechnikov",
bw = NULL, adjust.bw=1, stoyan = 0.15,
correction = c("translate", "Ripley"),
divisor = c("r", "d"),
renormalise = TRUE, normpower=1,
update = TRUE, leaveoneout = TRUE,
reciplambda = NULL,
sigma = NULL, adjust.sigma = 1,
varcov = NULL, close=NULL)

Arguments

X A point pattern (object of class "ppp").

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm", "kppm" or "dppm") or a function(x,y) which can be evaluated
to give the intensity value at any location.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for one-dimensional smoothing kernel, passed to density.default.
Either a single numeric value, or a character string specifying a bandwidth selec-
tion rule recognised by density.default. If bw is missing or NULL, the default
value is computed using Stoyan’s rule of thumb: see bw.stoyan.

adjust.bw Numeric value. bw will be multiplied by this value.

... Other arguments passed to the kernel density estimation function density.default.

stoyan Coefficient for Stoyan’s bandwidth selection rule; see bw.stoyan.

correction Character string or character vector specifying the choice of edge correction.
See Kest for explanation and options.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
pcf.ppp.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

364 pcfinhom

update Logical. If lambda is a fitted model (class "ppm", "kppm" or "dppm") and
update=TRUE (the default), the model will first be refitted to the data X (us-
ing update.ppm or update.kppm) before the fitted intensity is computed. If
update=FALSE, the fitted intensity of the model will be computed without re-
fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

reciplambda Alternative to lambda. Values of the estimated reciprocal 1/λ of the intensity
function. Either a vector giving the reciprocal intensity values at the points of
the pattern X, a pixel image (object of class "im") giving the reciprocal intensity
values at all locations, or a function(x,y) which can be evaluated to give the
reciprocal intensity value at any location.

sigma, varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

adjust.sigma Numeric value. sigma will be multiplied by this value.

close Advanced use only. Precomputed data. See section on Advanced Use.

Details

The inhomogeneous pair correlation function ginhom(r) is a summary of the dependence between
points in a spatial point process that does not have a uniform density of points.

The best intuitive interpretation is the following: the probability p(r) of finding two points at loca-
tions x and y separated by a distance r is equal to

p(r) = λ(x)lambda(y)g(r) dxdy

where λ is the intensity function of the point process. For a Poisson point process with intensity
function λ, this probability is p(r) = λ(x)λ(y) so ginhom(r) = 1.

The inhomogeneous pair correlation function is related to the inhomogeneous K function through

ginhom(r) =
K ′

inhom(r)

2πr

where K ′
inhom(r) is the derivative of Kinhom(r), the inhomogeneous K function. See Kinhom for

information about Kinhom(r).

The command pcfinhom estimates the inhomogeneous pair correlation using a modified version of
the algorithm in pcf.ppp.

If renormalise=TRUE (the default), then the estimates are multiplied by cnormpower where c =
area(W)/

∑
(1/λ(xi)). This rescaling reduces the variability and bias of the estimate in small sam-

ples and in cases of very strong inhomogeneity. The default value of normpower is 1 but the most
sensible value is 2, which would correspond to rescaling the lambda values so that

∑
(1/λ(xi)) =

area(W).

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

pcfinhom 365

r the vector of values of the argument r at which the inhomogeneous pair correla-
tion function ginhom(r) has been estimated

theo vector of values equal to 1, the theoretical value of ginhom(r) for the Poisson
process

trans vector of values of ginhom(r) estimated by translation correction

iso vector of values of ginhom(r) estimated by Ripley isotropic correction

as required.

Advanced Use

To perform the same computation using several different bandwidths bw, it is efficient to use the
argument close. This should be the result of closepairs(X, rmax) for a suitably large value of
rmax, namely rmax >= max(r) + 3 * bw.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pcf, pcf.ppp, bw.stoyan, bw.pcf, Kinhom

Examples

X <- residualspaper$Fig4b
online <- interactive()
if(!online) {

reduce size of dataset
X <- X[c(FALSE, TRUE)]

}
plot(pcfinhom(X, stoyan=0.2, sigma=0.1))
if(require("spatstat.model")) {

if(online) {
fit <- ppm(X ~ polynom(x,y,2))

} else {
simpler model, faster computation
fit <- ppm(X ~ x)

}
plot(pcfinhom(X, lambda=fit, normpower=2))

}

366 pcfmulti

pcfmulti Marked pair correlation function

Description

For a marked point pattern, estimate the multitype pair correlation function using kernel methods.

Usage

pcfmulti(X, I, J, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("translate", "Ripley"),
divisor = c("r", "d"),
Iname = "points satisfying condition I",
Jname = "points satisfying condition J",
ratio = FALSE)

Arguments

X The observed point pattern, from which an estimate of the cross-type pair corre-
lation function gij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

I Subset index specifying the points of X from which distances are measured.

J Subset index specifying the points in X to which distances are measured.

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d".

Iname, Jname Optional. Character strings describing the members of the subsets I and J.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

Details

This is a generalisation of pcfcross to arbitrary collections of points.

The algorithm measures the distance from each data point in subset I to each data point in subset J,
excluding identical pairs of points. The distances are kernel-smoothed and renormalised to form a
pair correlation function.

pcfmulti 367

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The arguments I and J specify two subsets of the point pattern X. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285) applied to the points of type j. That is, h = c/

√
λ, where λ is the

(estimated) intensity of the point process of type j, and c is a constant in the range from 0.1 to 0.2.
The argument stoyan determines the value of c.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

pcfcross, pcfdot, pcf.ppp.

Examples

adult <- (marks(longleaf) >= 30)
juvenile <- !adult
p <- pcfmulti(longleaf, adult, juvenile)

368 plot.bermantest

plot.bermantest Plot Result of Berman Test

Description

Plot the result of Berman’s test of goodness-of-fit

Usage

S3 method for class 'bermantest'
plot(x, ...,

lwd=par("lwd"), col=par("col"), lty=par("lty"),
lwd0=lwd, col0=2, lty0=2)

Arguments

x Object to be plotted. An object of class "bermantest" produced by berman.test.
... extra arguments that will be passed to the plotting function plot.ecdf.
col, lwd, lty The width, colour and type of lines used to plot the empirical distribution curve.
col0, lwd0, lty0 The width, colour and type of lines used to plot the predicted (null) distribution

curve.

Details

This is the plot method for the class "bermantest". An object of this class represents the out-
come of Berman’s test of goodness-of-fit of a spatial Poisson point process model, computed by
berman.test.

For the Z1 test (i.e. if x was computed using berman.test(,which="Z1")), the plot displays
the two cumulative distribution functions that are compared by the test: namely the empirical cu-
mulative distribution function of the covariate at the data points, F̂ , and the predicted cumulative
distribution function of the covariate under the model, F0, both plotted against the value of the co-
variate. Two vertical lines show the mean values of these two distributions. If the model is correct,
the two curves should be close; the test is based on comparing the two vertical lines.

For the Z2 test (i.e. if x was computed using berman.test(,which="Z2")), the plot displays the
empirical cumulative distribution function of the values Ui = F0(Yi) where Yi is the value of the
covariate at the i-th data point. The diagonal line with equation y = x is also shown. Two vertical
lines show the mean of the values Ui and the value 1/2. If the model is correct, the two curves
should be close. The test is based on comparing the two vertical lines.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

plot.cdftest 369

See Also

berman.test

Examples

plot(berman.test(cells, "x"))

if(require("spatstat.model")) {
synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(-x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X ~1)

test covariate = x coordinate
xcoord <- function(x,y) { x }

test wrong model
k <- berman.test(fit0, xcoord, "Z1")

plot result of test
plot(k, col="red", col0="green")

Z2 test
k2 <- berman.test(fit0, xcoord, "Z2")
plot(k2, col="red", col0="green")

}

plot.cdftest Plot a Spatial Distribution Test

Description

Plot the result of a spatial distribution test computed by cdf.test.

Usage

S3 method for class 'cdftest'
plot(x, ...,

style=c("cdf", "PP", "QQ"),
lwd=par("lwd"), col=par("col"), lty=par("lty"),
lwd0=lwd, col0=2, lty0=2,
do.legend)

Arguments

x Object to be plotted. An object of class "cdftest" produced by a method for
cdf.test.

370 plot.cdftest

... extra arguments that will be passed to the plotting function plot.default.

style Style of plot. See Details.

col, lwd, lty The width, colour and type of lines used to plot the empirical curve (the empiri-
cal distribution, or PP plot or QQ plot).

col0, lwd0, lty0 The width, colour and type of lines used to plot the reference curve (the predicted
distribution, or the diagonal).

do.legend Logical value indicating whether to add an explanatory legend. Applies only
when style="cdf".

Details

This is the plot method for the class "cdftest". An object of this class represents the outcome of
a spatial distribution test, computed by cdf.test, and based on either the Kolmogorov-Smirnov,
Cramér-von Mises or Anderson-Darling test.

If style="cdf" (the default), the plot displays the two cumulative distribution functions that are
compared by the test: namely the empirical cumulative distribution function of the covariate at
the data points, and the predicted cumulative distribution function of the covariate under the model,
both plotted against the value of the covariate. The Kolmogorov-Smirnov test statistic (for example)
is the maximum vertical separation between the two curves.

If style="PP" then the P-P plot is drawn. The x coordinates of the plot are cumulative probabilities
for the covariate under the model. The y coordinates are cumulative probabilities for the covariate
at the data points. The diagonal line y = x is also drawn for reference. The Kolmogorov-Smirnov
test statistic is the maximum vertical separation between the P-P plot and the diagonal reference
line.

If style="QQ" then the Q-Q plot is drawn. The x coordinates of the plot are quantiles of the
covariate under the model. The y coordinates are quantiles of the covariate at the data points. The
diagonal line y = x is also drawn for reference. The Kolmogorov-Smirnov test statistic cannot be
read off the Q-Q plot.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

cdf.test

Examples

op <- options(useFancyQuotes=FALSE)

plot(cdf.test(cells, "x"))

if(require("spatstat.model")) {

plot.envelope 371

synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X ~1)

test covariate = x coordinate
xcoord <- function(x,y) { x }

test wrong model
k <- cdf.test(fit0, xcoord)

plot result of test
plot(k, lwd0=3)

plot(k, style="PP")

plot(k, style="QQ")
}

options(op)

plot.envelope Plot a Simulation Envelope

Description

Plot method for the class "envelope".

Usage

S3 method for class 'envelope'
plot(x, ..., main)

Arguments

x An object of class "envelope", containing the variables to be plotted or vari-
ables from which the plotting coordinates can be computed.

main Main title for plot.

... Extra arguments passed to plot.fv.

Details

This is the plot method for the class "envelope" of simulation envelopes. Objects of this class are
created by the command envelope.

This plot method is currently identical to plot.fv.

372 plot.fasp

Its default behaviour is to shade the region between the upper and lower envelopes in a light grey
colour. To suppress the shading and plot the upper and lower envelopes as curves, set shade=NULL.
To change the colour of the shading, use the argument shadecol which is passed to plot.fv.

See plot.fv for further information on how to control the plot.

Value

Either NULL, or a data frame giving the meaning of the different line types and colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

envelope, plot.fv

Examples

E <- envelope(cells, Kest, nsim=19)
plot(E)
plot(E, sqrt(./pi) ~ r)

plot.fasp Plot a Function Array

Description

Plots an array of summary functions, usually associated with a point pattern, stored in an object of
class "fasp". A method for plot.

Usage

S3 method for class 'fasp'
plot(x,formule=NULL, ...,

subset=NULL, title=NULL, banner=TRUE,
transpose=FALSE,
samex=FALSE, samey=FALSE,
mar.panel=NULL,
outerlabels=TRUE, cex.outerlabels=1.25,
legend=FALSE)

plot.fasp 373

Arguments

x An object of class "fasp" representing a function array.
formule A formula or list of formulae indicating what variables are to be plotted against

what variable. Each formula is either an R language formula object, or a string
that can be parsed as a formula. If formule is a list, its kth component should
be applicable to the (i, j)th plot where x$which[i,j]=k. If the formula is left
as NULL, then plot.fasp attempts to use the component default.formula of
x. If that component is NULL as well, it gives up.

... Arguments passed to plot.fv to control the individual plot panels.
subset A logical vector, or a vector of indices, or an expression or a character string,

or a list of such, indicating a subset of the data to be included in each plot. If
subset is a list, its kth component should be applicable to the (i, j)th plot where
x$which[i,j]=k.

title Overall title for the plot.
banner Logical. If TRUE, the overall title is plotted. If FALSE, the overall title is not

plotted and no space is allocated for it.
transpose Logical. If TRUE, rows and columns will be exchanged.
samex, samey Logical values indicating whether all individual plot panels should have the

same x axis limits and the same y axis limits, respectively. This makes it easier
to compare the plots.

mar.panel Vector of length 4 giving the value of the graphics parameter mar controlling the
size of plot margins for each individual plot panel. See par.

outerlabels Logical. If TRUE, the row and column names of the array of functions are plotted
in the margins of the array of plot panels. If FALSE, each individual plot panel is
labelled by its row and column name.

cex.outerlabels

Character expansion factor for row and column labels of array.
legend Logical flag determining whether to plot a legend in each panel.

Details

An object of class "fasp" represents an array of summary functions, usually associated with a point
pattern. See fasp.object for details. Such an object is created, for example, by alltypes.

The function plot.fasp is a method for plot. It calls plot.fv to plot the individual panels.

For information about the interpretation of the arguments formule and subset, see plot.fv.

Arguments that are often passed through ... include col to control the colours of the different lines
in a panel, and lty and lwd to control the line type and line width of the different lines in a panel.
The argument shade can also be used to display confidence intervals or significance bands as filled
grey shading. See plot.fv.

The argument title, if present, will determine the overall title of the plot. If it is absent, it defaults
to x$title. Titles for the individual plot panels will be taken from x$titles.

Value

None.

374 plot.fv

Warnings

(Each component of) the subset argument may be a logical vector (of the same length as the
vectors of data which are extracted from x), or a vector of indices, or an expression such as
expression(r<=0.2), or a text string, such as "r<=0.2".

Attempting a syntax such as subset = r<=0.2 (without wrapping r<=0.2 either in quote marks or
in expression()) will cause this function to fall over.

Variables referred to in any formula must exist in the data frames stored in x. What the names of
these variables are will of course depend upon the nature of x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

alltypes, plot.fv, fasp.object

Examples

if(interactive()) {
X.G <- alltypes(amacrine,"G")
plot(X.G)
plot(X.G,subset="r<=0.2")
plot(X.G,formule=asin(sqrt(cbind(km,theo))) ~ asin(sqrt(theo)))
plot(X.G,fo=cbind(km,theo) - theo~r, subset="theo<=0.9")
}

plot.fv Plot Function Values

Description

Plot method for the class "fv".

Usage

S3 method for class 'fv'
plot(x, fmla, ..., subset=NULL, lty=NULL, col=NULL, lwd=NULL,

xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL,
clip.xlim=TRUE, ylim.covers=NULL,
legend=!add, legendpos="topleft", legendavoid=missing(legendpos),
legendmath=TRUE, legendargs=list(),
shade=fvnames(x, ".s"), shadecol="grey",
add=FALSE, log="",
mathfont=c("italic", "plain", "bold", "bolditalic"),
limitsonly=FALSE)

plot.fv 375

Arguments

x An object of class "fv", containing the variables to be plotted or variables from
which the plotting coordinates can be computed.

fmla an R language formula determining which variables or expressions are plotted.
Either a formula object, or a string that can be parsed as a formula. See Details.

subset (optional) subset of rows of the data frame that will be plotted.

lty (optional) numeric vector of values of the graphical parameter lty controlling
the line style of each plot.

col (optional) numeric vector of values of the graphical parameter col controlling
the colour of each plot.

lwd (optional) numeric vector of values of the graphical parameter lwd controlling
the line width of each plot.

xlim (optional) range of x axis

ylim (optional) range of y axis

xlab (optional) label for x axis

ylab (optional) label for y axis

... Extra arguments passed to plot.default.

clip.xlim Logical value specifying whether the range of the horizontal axis xlim should
be automatically restricted to a subset of the range of the available data. See the
section on Controlling the horizontal axis limits below.

ylim.covers Optional vector of y values that must be included in the y axis. For example
ylim.covers=0 will ensure that the y axis includes the origin.

legend Logical flag or NULL. If legend=TRUE, the algorithm plots a legend in the top left
corner of the plot, explaining the meaning of the different line types and colours.

legendpos The position of the legend. Either a character string keyword (see legend for
keyword options) or a pair of coordinates in the format list(x,y). Alterna-
tively if legendpos="float", a location will be selected inside the plot region,
avoiding the graphics.

legendavoid Whether to avoid collisions between the legend and the graphics. Logical value.
If TRUE, the code will check for collisions between the legend box and the graph-
ics, and will override legendpos if a collision occurs. If FALSE, the value of
legendpos is always respected.

legendmath Logical. If TRUE, the legend will display the mathematical notation for each
curve. If FALSE, the legend text is the identifier (column name) for each curve.

legendargs Named list containing additional arguments to be passed to legend controlling
the appearance of the legend.

shade A character vector giving the names of two columns of x, or another type of
index that identifies two columns. When the corresponding curves are plotted,
the region between the curves will be shaded in light grey. The object x may or
may not contain two columns which are designated as boundaries for shading;
they are identified by fvnames(x, ".s"). The default is to shade between these
two curves if they exist. To suppress this behaviour, set shade=NULL.

376 plot.fv

shadecol The colour to be used in the shade plot. A character string or an integer speci-
fying a colour.

add Logical. Whether the plot should be added to an existing plot

log A character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

mathfont Character string. The font to be used for mathematical expressions in the axis
labels and the legend.

limitsonly Logical. If FALSE, plotting is performed normally. If TRUE, no plotting is per-
formed at all; just the x and y limits of the plot are computed and returned.

Details

This is the plot method for the class "fv".

An object of class "fv" is a convenient way of storing several different statistical estimates of a
summary function; see fv.object. The default behaviour, executed by plot(x), displays these
different estimates as curves with different colours and line styles, and plots a legend explaining
them.

The use of the argument fmla is like plot.formula, but offers some extra functionality.

The left and right hand sides of fmla are evaluated, and the results are plotted against each other
(the left side on the y axis against the right side on the x axis).

The left and right hand sides of fmla may be the names of columns of the data frame x, or expres-
sions involving these names. If a variable in fmla is not the name of a column of x, the algorithm
will search for an object of this name in the environment where plot.fv was called, and then in the
enclosing environment, and so on.

Multiple curves may be specified by a single formula of the form cbind(y1,y2,...,yn) ~ x, where
x,y1,y2,...,yn are expressions involving the variables in the data frame. Each of the variables
y1,y2,...,yn in turn will be plotted against x. See the examples.

Convenient abbreviations which can be used in the formula are

• the symbol . which represents all the columns in the data frame that will be plotted by default;

• the symbol .x which represents the function argument;

• the symbol .y which represents the recommended value of the function.

For further information, see fvnames.

The value returned by this plot function indicates the meaning of the line types and colours in the
plot. It can be used to make a suitable legend for the plot if you want to do this by hand. See the
examples.

The argument shade can be used to display critical bands or confidence intervals. If it is not NULL,
then it should be a subset index for the columns of x, that identifies exactly 2 columns. When the
corresponding curves are plotted, the region between the curves will be shaded in light grey. See
the Examples.

The default values of lty, col and lwd can be changed using spatstat.options("plot.fv").

Use type = "n" to create the plot region and draw the axes without plotting any data.

plot.fv 377

Use limitsonly=TRUE to suppress all plotting and just compute the x and y limits. This can be
used to calculate common x and y scales for several plots.

To change the kind of parenthesis enclosing the explanatory text about the unit of length, use
spatstat.options('units.paren')

Value

Invisible: either NULL, or a data frame giving the meaning of the different line types and colours.

Controlling the horizontal axis limits

The plot generated by plot(x) does not necessarily display all the data that is contained in the
object. The range of values of the function argument r displayed in the plot may be narrower than
the range of values actually contained in the data frame.

To override this behaviour and display all the available data, set clip.xlim=FALSE.

Statistical literature for summary functions of spatial data recommends that, when the function is
plotted, the values of the function argument on the horizontal axis should be restricted to a limited
range of values. For example, Ripley recommends that the K-function K(r) should be plotted only
for values of distance r between 0 and b/4 where b is the shortest side of the enclosing rectangle of
the data.

This may be desirable so that the interesting detail is clearly visible in the plot. It may be necessary
because values outside the recommended range are theoretically invalid, or unreliable due to high
variance or large bias.

To support this standard practice, each object of class "fv" may include data specifying a “recom-
mended range” of values of the function argument. The object produced by Kest includes a recom-
mended range following Ripley’s recommendation above. Similarly for Gest, Fest and many other
commands.

When plot(x) is executed, the horizontal axis is restricted to the recommended range of values.
This recommendation can be overridden by setting clip.xlim=FALSE or by specifying the numer-
ical limits xlim.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

fv.object, Kest

Examples

K <- Kest(cells)
K is an object of class "fv"

plot(K, iso ~ r) # plots iso against r

plot(K, sqrt(iso/pi) ~ r) # plots sqrt(iso/r) against r

378 plot.laslett

plot(K, cbind(iso,theo) ~ r) # plots iso against r AND theo against r

plot(K, . ~ r) # plots all available estimates of K against r

plot(K, sqrt(./pi) ~ r) # plots all estimates of L-function
L(r) = sqrt(K(r)/pi)

plot(K, cbind(iso,theo) ~ r, col=c(2,3))
plots iso against r in colour 2
and theo against r in colour 3

plot(K, iso ~ r, subset=quote(r < 0.2))
plots iso against r for r < 10

Can't remember the names of the columns? No problem..
plot(K, sqrt(./pi) ~ .x)

making a legend by hand
v <- plot(K, . ~ r, legend=FALSE)
legend("topleft", legend=v$meaning, lty=v$lty, col=v$col)

significance bands
KE <- envelope(cells, Kest, nsim=19)
plot(KE, shade=c("hi", "lo"))

how to display two functions on a common scale
Kr <- Kest(redwood)
a <- plot(K, limitsonly=TRUE)
b <- plot(Kr, limitsonly=TRUE)
xlim <- range(a$xlim, b$xlim)
ylim <- range(a$ylim, b$ylim)
opa <- par(mfrow=c(1,2))
plot(K, xlim=xlim, ylim=ylim)
plot(Kr, xlim=xlim, ylim=ylim)
par(opa)
For a shortcut, try plot(anylist(K, Kr), equal.scales=TRUE)

plot.laslett Plot Laslett Transform

Description

Plot the result of Laslett’s Transform.

Usage

S3 method for class 'laslett'
plot(x, ...,

Xpars = list(box = TRUE, col = "grey"),
pointpars = list(pch = 3, cols = "blue"),
rectpars = list(lty = 3, border = "green"))

plot.quadrattest 379

Arguments

x Object of class "laslett" produced by laslett representing the result of Laslett’s
transform.

... Additional plot arguments passed to plot.solist.

Xpars A list of plot arguments passed to plot.owin or plot.im to display the original
region X before transformation.

pointpars A list of plot arguments passed to plot.ppp to display the tangent points.

rectpars A list of plot arguments passed to plot.owin to display the maximal rectangle.

Details

This is the plot method for the class "laslett".

The function laslett applies Laslett’s Transform to a spatial region X and returns an object of class
"laslett" representing the result of the transformation. The result is plotted by this method.

The plot function plot.solist is used to align the before-and-after pictures. See plot.solist for
further options to control the plot.

Value

None.

Author(s)

Kassel Hingee and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

laslett

Examples

b <- laslett(heather$coarse, plotit=FALSE)
plot(b, main="Heather Data")

plot.quadrattest Display the result of a quadrat counting test.

Description

Given the result of a quadrat counting test, graphically display the quadrats that were used, the
observed and expected counts, and the residual in each quadrat.

Usage

S3 method for class 'quadrattest'
plot(x, ..., textargs=list())

380 plot.scan.test

Arguments

x Object of class "quadrattest" containing the result of quadrat.test.

... Additional arguments passed to plot.tess to control the display of the quadrats.

textargs List of additional arguments passed to text.default to control the appearance
of the text.

Details

This is the plot method for objects of class "quadrattest". Such an object is produced by
quadrat.test and represents the result of a χ2 test for a spatial point pattern.

The quadrats are first plotted using plot.tess. Then in each quadrat, the observed and expected
counts and the Pearson residual are displayed as text using text.default. Observed count is
displayed at top left; expected count at top right; and Pearson residual at bottom.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

quadrat.test, plot.tess, text.default, plot.quadratcount

Examples

plot(quadrat.test(swedishpines, 3))

plot.scan.test Plot Result of Scan Test

Description

Computes or plots an image showing the likelihood ratio test statistic for the scan test, or the optimal
circle radius.

Usage

S3 method for class 'scan.test'
plot(x, ..., what=c("statistic", "radius"),

do.window = TRUE)

S3 method for class 'scan.test'
as.im(X, ..., what=c("statistic", "radius"))

plot.scan.test 381

Arguments

x, X Result of a scan test. An object of class "scan.test" produced by scan.test.

... Arguments passed to plot.im to control the appearance of the plot.

what Character string indicating whether to produce an image of the (profile) like-
lihood ratio test statistic (what="statistic", the default) or an image of the
optimal value of circle radius (what="radius").

do.window Logical value indicating whether to plot the original window of the data as well.

Details

These functions extract, and plot, the spatially-varying value of the likelihood ratio test statistic
which forms the basis of the scan test.

If the test result X was based on circles of the same radius r, then as.im(X) is a pixel image of the
likelihood ratio test statistic as a function of the position of the centre of the circle.

If the test result X was based on circles of several different radii r, then as.im(X) is a pixel image
of the profile (maximum value over all radii r) likelihood ratio test statistic as a function of the
position of the centre of the circle, and as.im(X, what="radius") is a pixel image giving for each
location u the value of r which maximised the likelihood ratio test statistic at that location.

The plot method plots the corresponding image.

Value

The value of as.im.scan.test is a pixel image (object of class "im"). The value of plot.scan.test
is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

scan.test, scanLRTS

Examples

online <- interactive()
Nsim <- if(online) 19 else 2
r <- if(online) seq(0.04, 0.1, by=0.01) else c(0.05, 0.1)
a <- scan.test(redwood, r=r, method="poisson", nsim=Nsim)
plot(a)
as.im(a)
plot(a, what="radius")

382 plot.ssf

plot.ssf Plot a Spatially Sampled Function

Description

Plot a spatially sampled function object.

Usage

S3 method for class 'ssf'
plot(x, ...,

how = c("smoothed", "nearest", "points"),
style = c("image", "contour", "imagecontour"),
sigma = NULL, contourargs=list())

S3 method for class 'ssf'
image(x, ...)

S3 method for class 'ssf'
contour(x, ..., main, sigma = NULL)

Arguments

x Spatially sampled function (object of class "ssf").
... Arguments passed to image.default or plot.ppp to control the plot.
how Character string determining whether to display the function values at the data

points (how="points"), a smoothed interpolation of the function (how="smoothed"),
or the function value at the nearest data point (how="nearest").

style Character string indicating whether to plot the smoothed function as a colour
image, a contour map, or both.

contourargs Arguments passed to contour.default to control the contours, if style="contour"
or style="imagecontour".

sigma Smoothing bandwidth for smooth interpolation.
main Optional main title for the plot.

Details

These are methods for the generic plot, image and contour for the class "ssf".

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points.

For plot.ssf there are three types of display. If how="points" the exact function values will be
displayed as circles centred at the locations where they were computed. If how="smoothed" (the
default) these values will be kernel-smoothed using Smooth.ppp and displayed as a pixel image.
If how="nearest" the values will be interpolated by nearest neighbour interpolation using nnmark
and displayed as a pixel image.

For image.ssf and contour.ssf the values are kernel-smoothed before being displayed.

plot.studpermutest 383

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A. (2017) Local composite likelihood for spatial point processes. Spatial Statistics 22,
261–295.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

ssf

Examples

a <- ssf(cells, nndist(cells, k=1:3))
plot(a, how="points")
plot(a, how="smoothed")
plot(a, how="nearest")

plot.studpermutest Plot a Studentised Permutation Test

Description

Plot the result of the studentised permutation test.

Usage

S3 method for class 'studpermutest'
plot(x, fmla, ...,

lty = NULL, col = NULL, lwd = NULL,
lty.theo = NULL, col.theo = NULL, lwd.theo = NULL,
lwd.mean = if (meanonly) 1 else NULL,
lty.mean = lty, col.mean = col,
separately = FALSE, meanonly = FALSE,
main = if (meanonly) "group means" else NULL,
xlim = NULL, ylim = NULL, ylab = NULL,
legend = !add, legendpos = "topleft", lbox = FALSE, add = FALSE)

384 plot.studpermutest

Arguments

x An object of class "studpermutest" generated by studpermu.test and rep-
resenting the result of a studentised permutation test for spatial point pattern
data.

fmla Plot formula used in plot.fv.
... Additional graphical arguments passed to plot.fv.
lty, col, lwd Line type, colour, and line width of the curves plotting the summary function

for each point pattern in the original data. Either a single value or a vector of
length equal to the number of point patterns.

lty.theo, col.theo, lwd.theo
Line type, colour, and line width of the curve representing the theoretical value
of the summary function.

lty.mean, col.mean, lwd.mean
Line type, colour, and line width (as a multiple of lwd) of the curve representing
the group mean of the summary function.

separately Logical value indicating whether to plot each group of data in a separate panel.
meanonly Logical value indicating whether to plot only the group means of the summary

function.
main Character string giving a main title for the plot.
xlim, ylim Numeric vectors of length 2 giving the limits for the x and y coordinates of the

plot or plots.
ylab Character string or expression to be used for the label on the y axis.
legend Logical value indicating whether to plot a legend explaining the meaning of each

curve.
legendpos Position of legend. See plot.fv.
lbox Logical value indicating whether to plot a box around the plot.
add Logical value indicating whether the plot should be added to the existing plot

(add=TRUE) or whether a new frame should be created (add=FALSE, the default).

Details

This is the plot method for objects of class "studpermutest" which represent the result of a stu-
dentised permutation test applied to several point patterns. The test is performed by studpermu.test.

The plot shows the summary functions for each point pattern, coloured according to group. Op-
tionally it can show the different groups in separate plot panels, or show only the group means in a
single panel.

Value

Null.

Author(s)

Ute Hahn.

Modified for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner
<rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

pool 385

See Also

studpermu.test

Examples

np <- if(interactive()) 99 else 19
testpyramidal <- studpermu.test(pyramidal, Neurons ~ group, nperm=np)
plot(testpyramidal)
plot(testpyramidal, meanonly=TRUE)
plot(testpyramidal, col.theo=8, lwd.theo=4, lty.theo=1)
plot(testpyramidal, . ~ pi * r^2)
op <- par(mfrow=c(1,3))
plot(testpyramidal, separately=TRUE)
plot(testpyramidal, separately=TRUE, col=2, lty=1, lwd.mean=2, col.mean=4)
par(op)

pool Pool Data

Description

Pool the data from several objects of the same class.

Usage

pool(...)

Arguments

... Objects of the same type.

Details

The function pool is generic. There are methods for several classes, listed below.

pool is used to combine the data from several objects of the same type, and to compute statistics
based on the combined dataset. It may be used to pool the estimates obtained from replicated
datasets. It may also be used in high-performance computing applications, when the objects ...
have been computed on different processors or in different batch runs, and we wish to combine
them.

Value

An object of the same class as the arguments

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

386 pool.anylist

See Also

pool.envelope, pool.fasp, pool.rat, pool.fv

pool.anylist Pool Data from a List of Objects

Description

Pool the data from the objects in a list.

Usage

S3 method for class 'anylist'
pool(x, ...)

Arguments

x A list, belonging to the class "anylist", containing objects that can be pooled.

... Optional additional objects which can be pooled with the elements of x.

Details

The function pool is generic. Its purpose is to combine data from several objects of the same type
(typically computed from different datasets) into a common, pooled estimate.

The function pool.anyist is the method for the class "anylist". It is used when the objects to be
pooled are given in a list x.

Each of the elements of the list x, and each of the subsequent arguments ... if provided, must be
an object of the same class.

Value

An object of the same class as each of the entries in x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

anylist, pool.

Examples

Keach <- anylapply(waterstriders, Kest, ratio=TRUE, correction="iso")
K <- pool(Keach)

pool.envelope 387

pool.envelope Pool Data from Several Envelopes

Description

Pool the simulation data from several simulation envelopes (objects of class "envelope") and com-
pute a new envelope.

Usage

S3 method for class 'envelope'
pool(..., savefuns=FALSE, savepatterns=FALSE)

Arguments

... Objects of class "envelope".

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

Details

The function pool is generic. This is the method for the class "envelope" of simulation envelopes.
It is used to combine the simulation data from several simulation envelopes and to compute an
envelope based on the combined data.

Each of the arguments ... must be an object of class "envelope". These envelopes must be
compatible, in that they are envelopes for the same function, and were computed using the same
options.

• In normal use, each envelope object will have been created by running the command envelope
with the argument savefuns=TRUE. This ensures that each object contains the simulated data
(summary function values for the simulated point patterns) that were used to construct the
envelope.
The simulated data are extracted from each object and combined. A new envelope is computed
from the combined set of simulations.

• Alternatively, if each envelope object was created by running envelope with VARIANCE=TRUE,
then the saved functions are not required.
The sample means and sample variances from each envelope will be pooled. A new envelope
is computed from the pooled mean and variance.

Warnings or errors will be issued if the envelope objects ... appear to be incompatible. Apart from
these basic checks, the code is not smart enough to decide whether it is sensible to pool the data.

To modify the envelope parameters or the type of envelope that is computed, first pool the envelope
data using pool.envelope, then use envelope.envelope to modify the envelope parameters.

Value

An object of class "envelope".

388 pool.fasp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

envelope, envelope.envelope, pool, pool.fasp

Examples

E1 <- envelope(cells, Kest, nsim=10, savefuns=TRUE)
E2 <- envelope(cells, Kest, nsim=20, savefuns=TRUE)
pool(E1, E2)

V1 <- envelope(E1, VARIANCE=TRUE)
V2 <- envelope(E2, VARIANCE=TRUE)
pool(V1, V2)

pool.fasp Pool Data from Several Function Arrays

Description

Pool the simulation data from several function arrays (objects of class "fasp") and compute a new
function array.

Usage

S3 method for class 'fasp'
pool(...)

Arguments

... Objects of class "fasp".

Details

The function pool is generic. This is the method for the class "fasp" of function arrays. It is used
to combine the simulation data from several arrays of simulation envelopes and to compute a new
array of envelopes based on the combined data.

Each of the arguments ... must be a function array (object of class "fasp") containing simula-
tion envelopes. This is typically created by running the command alltypes with the arguments
envelope=TRUE and savefuns=TRUE. This ensures that each object is an array of simulation en-
velopes, and that each envelope contains the simulated data (summary function values) that were
used to construct the envelope.

The simulated data are extracted from each object and combined. A new array of envelopes is
computed from the combined set of simulations.

pool.fv 389

Warnings or errors will be issued if the objects ... appear to be incompatible. However, the code
is not smart enough to decide whether it is sensible to pool the data.

Value

An object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

fasp, alltypes, pool.envelope, pool

Examples

A1 <- alltypes(amacrine,"K",nsim=9,envelope=TRUE,savefuns=TRUE)
A2 <- alltypes(amacrine,"K",nsim=10,envelope=TRUE,savefuns=TRUE)
pool(A1, A2)

pool.fv Pool Several Functions

Description

Combine several summary functions into a single function.

Usage

S3 method for class 'fv'
pool(..., weights=NULL, relabel=TRUE, variance=TRUE)

Arguments

... Objects of class "fv".
weights Optional numeric vector of weights for the functions.
relabel Logical value indicating whether the columns of the resulting function should

be labelled to show that they were obtained by pooling.
variance Logical value indicating whether to compute the sample variance and related

terms.

Details

The function pool is generic. This is the method for the class "fv" of summary functions. It is used
to combine several estimates of the same function into a single function.

Each of the arguments ... must be an object of class "fv". They must be compatible, in that they
are estimates of the same function, and were computed using the same options.

The sample mean and sample variance of the corresponding estimates will be computed.

390 pool.quadrattest

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pool, pool.anylist, pool.rat

Examples

K <- lapply(waterstriders, Kest, correction="iso")
Kall <- pool(K[[1]], K[[2]], K[[3]])
Kall <- pool(as.anylist(K))
plot(Kall, cbind(pooliso, pooltheo) ~ r,

shade=c("loiso", "hiiso"),
main="Pooled K function of waterstriders")

pool.quadrattest Pool Several Quadrat Tests

Description

Pool several quadrat tests into a single quadrat test.

Usage

S3 method for class 'quadrattest'
pool(..., df=NULL, df.est=NULL, nsim=1999,

Xname=NULL, CR=NULL)

Arguments

... Any number of objects, each of which is a quadrat test (object of class "quadrattest").

df Optional. Number of degrees of freedom of the test statistic. Relevant only for
χ2 tests. Incompatible with df.est.

df.est Optional. The number of fitted parameters, or the number of degrees of freedom
lost by estimation of parameters. Relevant only for χ2 tests. Incompatible with
df.

nsim Number of simulations, for Monte Carlo test.

Xname Optional. Name of the original data.

CR Optional. Numeric value of the Cressie-Read exponent CR overriding the value
used in the tests.

pool.rat 391

Details

The function pool is generic. This is the method for the class "quadrattest".

An object of class "quadrattest" represents a χ2 test or Monte Carlo test of goodness-of-fit
for a point process model, based on quadrat counts. Such objects are created by the command
quadrat.test.

Each of the arguments ... must be an object of class "quadrattest". They must all be the same
type of test (chi-squared test or Monte Carlo test, conditional or unconditional) and must all have
the same type of alternative hypothesis.

The test statistic of the pooled test is the Pearson X2 statistic taken over all cells (quadrats) of all
tests. The p value of the pooled test is then computed using either a Monte Carlo test or a χ2 test.

For a pooled χ2 test, the number of degrees of freedom of the combined test is computed by adding
the degrees of freedom of all the tests (equivalent to assuming the tests are independent) unless it is
determined by the arguments df or df.est. The resulting p value is computed to obtain the pooled
test.

For a pooled Monte Carlo test, new simulations are performed to determine the pooled Monte Carlo
p value.

Value

Another object of class "quadrattest".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

pool, quadrat.test

Examples

Y <- split(humberside)
test1 <- quadrat.test(Y[[1]])
test2 <- quadrat.test(Y[[2]])
pool(test1, test2, Xname="Humberside")

pool.rat Pool Data from Several Ratio Objects

Description

Pool the data from several ratio objects (objects of class "rat") and compute a pooled estimate.

392 pool.rat

Usage

S3 method for class 'rat'
pool(..., weights=NULL, relabel=TRUE, variance=TRUE)

Arguments

... Objects of class "rat".

weights Numeric vector of weights.

relabel Logical value indicating whether the result should be relabelled to show that it
was obtained by pooling.

variance Logical value indicating whether to compute the sample variance and related
terms.

Details

The function pool is generic. This is the method for the class "rat" of ratio objects. It is used to
combine several estimates of the same quantity when each estimate is a ratio.

Each of the arguments ... must be an object of class "rat" representing a ratio object (basically a
numerator and a denominator; see rat). We assume that these ratios are all estimates of the same
quantity.

If the objects are called R1, . . . , Rn and if Ri has numerator Yi and denominator Xi, so that no-
tionally Ri = Yi/Xi, then the pooled estimate is the ratio-of-sums estimator

R =

∑
i Yi∑
i Xi

.

The standard error of R is computed using the delta method as described in Baddeley et al. (1993)
or Cochran (1977, pp 154, 161).

If the argument weights is given, it should be a numeric vector of length equal to the number of
objects to be pooled. The pooled estimator is the ratio-of-sums estimator

R =

∑
i wiYi∑
i wiXi

where wi is the ith weight.

This calculation is implemented only for certain classes of objects where the arithmetic can be
performed.

This calculation is currently implemented only for objects which also belong to the class "fv"
(function value tables). For example, if Kest is called with argument ratio=TRUE, the result is a
suitable object (belonging to the classes "rat" and "fv").

Warnings or errors will be issued if the ratio objects ... appear to be incompatible. However, the
code is not smart enough to decide whether it is sensible to pool the data.

Value

An object of the same class as the input.

PPversion 393

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Cochran, W.G. (1977) Sampling techniques, 3rd edition. New York: John Wiley and Sons.

See Also

rat, pool, pool.fv, Kest

Examples

K1 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K2 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K3 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K <- pool(K1, K2, K3)
plot(K, pooliso ~ r, shade=c("hiiso", "loiso"))

PPversion Transform a Function into its P-P or Q-Q Version

Description

Given a function object f containing both the estimated and theoretical versions of a summary
function, these operations combine the estimated and theoretical functions into a new function.
When plotted, the new function gives either the P-P plot or Q-Q plot of the original f.

Usage

PPversion(f, theo = "theo", columns = ".")

QQversion(f, theo = "theo", columns = ".")

Arguments

f The function to be transformed. An object of class "fv".

theo The name of the column of f that should be treated as the theoretical value of
the function.

columns Character vector, specifying the columns of f to which the transformation will
be applied. Either a vector of names of columns of f, or one of the abbreviations
recognised by fvnames.

394 quadrat.test

Details

The argument f should be an object of class "fv", containing both empirical estimates f̂(r) and a
theoretical value f0(r) for a summary function.

The P–P version of f is the function g(x) = f̂(f−1
0 (x)) where f−1

0 is the inverse function of f0.
A plot of g(x) against x is equivalent to a plot of f̂(r) against f0(r) for all r. If f is a cumulative
distribution function (such as the result of Fest or Gest) then this is a P–P plot, a plot of the
observed versus theoretical probabilities for the distribution. The diagonal line y = x corresponds
to perfect agreement between observed and theoretical distribution.

The Q–Q version of f is the function h(x) = f−1
0 (f̂(x)). If f is a cumulative distribution func-

tion, a plot of h(x) against x is a Q–Q plot, a plot of the observed versus theoretical quantiles of
the distribution. The diagonal line y = x corresponds to perfect agreement between observed and
theoretical distribution. Another straight line corresponds to the situation where the observed vari-
able is a linear transformation of the theoretical variable. For a point pattern X, the Q–Q version of
Kest(X) is essentially equivalent to Lest(X).

Value

Another object of class "fv".

Author(s)

Tom Lawrence and Adrian Baddeley.

Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.fv

Examples

opa <- par(mar=0.1+c(5,5,4,2))
G <- Gest(redwoodfull)
plot(PPversion(G))
plot(QQversion(G))
par(opa)

quadrat.test Dispersion Test for Spatial Point Pattern Based on Quadrat Counts

Description

Performs a test of Complete Spatial Randomness for a given point pattern, based on quadrat counts.
Alternatively performs a goodness-of-fit test of a fitted inhomogeneous Poisson model. By default
performs chi-squared tests; can also perform Monte Carlo based tests.

quadrat.test 395

Usage

quadrat.test(X, ...)

S3 method for class 'ppp'
quadrat.test(X, nx=5, ny=nx,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1,
lambda=NULL, df.est=NULL,
...,
xbreaks=NULL, ybreaks=NULL, tess=NULL,
nsim=1999)

S3 method for class 'quadratcount'
quadrat.test(X,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1,
lambda=NULL, df.est=NULL,
...,
nsim=1999)

Arguments

X A point pattern (object of class "ppp") to be subjected to the goodness-of-fit test.
Alternatively a fitted point process model (object of class "ppm" or "slrm") to
be tested. Alternatively X can be the result of applying quadratcount to a point
pattern.

nx, ny Numbers of quadrats in the x and y directions. Incompatible with xbreaks and
ybreaks.

alternative Character string (partially matched) specifying the alternative hypothesis.

method Character string (partially matched) specifying the test to use: either method="Chisq"
for the chi-squared test (the default), or method="MonteCarlo" for a Monte
Carlo test.

conditional Logical. Should the Monte Carlo test be conducted conditionally upon the ob-
served number of points of the pattern? Ignored if method="Chisq".

CR Optional. Numerical value. The exponent for the Cressie-Read test statistic. See
Details.

lambda Optional. Pixel image (object of class "im") or function (class "funxy") giving
the predicted intensity of the point process.

df.est Optional. Advanced use only. The number of fitted parameters, or the number
of degrees of freedom lost by estimation of parameters.

... Ignored.

xbreaks Optional. Numeric vector giving the x coordinates of the boundaries of the
quadrats. Incompatible with nx.

396 quadrat.test

ybreaks Optional. Numeric vector giving the y coordinates of the boundaries of the
quadrats. Incompatible with ny.

tess Tessellation (object of class "tess" or something acceptable to as.tess) deter-
mining the quadrats. Incompatible with nx, ny, xbreaks, ybreaks.

nsim The number of simulated samples to generate when method="MonteCarlo".

Details

These functions perform χ2 tests or Monte Carlo tests of goodness-of-fit for a point process model,
based on quadrat counts.

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point
patterns (class "splitppp"), point process models (class "ppm" or "slrm") and quadrat count tables
(class "quadratcount").

• if X is a point pattern, we test the null hypothesis that the data pattern is a realisation of
Complete Spatial Randomness (the uniform Poisson point process). Marks in the point pattern
are ignored. (If lambda is given then the null hypothesis is the Poisson process with intensity
lambda.)

• if X is a split point pattern, then for each of the component point patterns (taken separately)
we test the null hypotheses of Complete Spatial Randomness. See quadrat.test.splitppp
for documentation.

• If X is a fitted point process model, then it should be a Poisson point process model. The data
to which this model was fitted are extracted from the model object, and are treated as the data
point pattern for the test. We test the null hypothesis that the data pattern is a realisation of the
(inhomogeneous) Poisson point process specified by X.

In all cases, the window of observation is divided into tiles, and the number of data points in each
tile is counted, as described in quadratcount. The quadrats are rectangular by default, or may be
regions of arbitrary shape specified by the argument tess. The expected number of points in each
quadrat is also calculated, as determined by CSR (in the first case) or by the fitted model (in the
second case). Then the Pearson X2 statistic

X2 = sum((observed− expected)2/expected)

is computed.

If method="Chisq" then a χ2 test of goodness-of-fit is performed by comparing the test statistic to
the χ2 distribution with m− k degrees of freedom, where m is the number of quadrats and k is the
number of fitted parameters (equal to 1 for quadrat.test.ppp). The default is to compute the two-
sided p-value, so that the test will be declared significant if X2 is either very large or very small.
One-sided p-values can be obtained by specifying the alternative. An important requirement of
the χ2 test is that the expected counts in each quadrat be greater than 5.

If method="MonteCarlo" then a Monte Carlo test is performed, obviating the need for all expected
counts to be at least 5. In the Monte Carlo test, nsim random point patterns are generated from
the null hypothesis (either CSR or the fitted point process model). The Pearson X2 statistic is
computed as above. The p-value is determined by comparing the X2 statistic for the observed
point pattern, with the values obtained from the simulations. Again the default is to compute the
two-sided p-value.

quadrat.test 397

If conditional is TRUE then the simulated samples are generated from the multinomial distribution
with the number of “trials” equal to the number of observed points and the vector of probabilities
equal to the expected counts divided by the sum of the expected counts. Otherwise the simulated
samples are independent Poisson counts, with means equal to the expected counts.

If the argument CR is given, then instead of the Pearson X2 statistic, the Cressie-Read (1984) power
divergence test statistic

2nI =
2

CR(CR+ 1)

∑
i

[(
Xi

Ei

)C

R− 1

]

is computed, where Xi is the ith observed count and Ei is the corresponding expected count. The
value CR=1 gives the Pearson X2 statistic; CR=0 gives the likelihood ratio test statistic G2; CR=-1/2
gives the Freeman-Tukey statistic T 2; CR=-1 gives the modified likelihood ratio test statistic GM2;
and CR=-2 gives Neyman’s modified statistic NM2. In all cases the asymptotic distribution of this
test statistic is the same χ2 distribution as above.

The return value is an object of class "htest". Printing the object gives comprehensible output
about the outcome of the test.

The return value also belongs to the special class "quadrat.test". Plotting the object will display
the quadrats, annotated by their observed and expected counts and the Pearson residuals. See the
examples.

Value

An object of class "htest". See chisq.test for explanation.

The return value is also an object of the special class "quadrattest", and there is a plot method
for this class. See the examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Cressie, N. and Read, T.R.C. (1984) Multinomial goodness-of-fit tests. Journal of the Royal Statis-
tical Society, Series B 46, 440–464.

See Also

quadrat.test.splitppp, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific alternative, use anova.ppm.

Examples

quadrat.test(simdat)
quadrat.test(simdat, 4, 3)

quadrat.test(simdat, alternative="regular")
quadrat.test(simdat, alternative="clustered")

398 quadrat.test.splitppp

Likelihood ratio test
quadrat.test(simdat, CR=0)
Power divergence tests
quadrat.test(simdat, CR=-1)$p.value
quadrat.test(simdat, CR=-2)$p.value

Using Monte Carlo p-values
quadrat.test(swedishpines) # Get warning, small expected values.
Nsim <- if(interactive()) 4999 else 9
quadrat.test(swedishpines, method="M", nsim=Nsim)
quadrat.test(swedishpines, method="M", nsim=Nsim, conditional=FALSE)

quadrat counts
qS <- quadratcount(simdat, 4, 3)
quadrat.test(qS)

te <- quadrat.test(simdat, 4)
residuals(te) # Pearson residuals

plot(te)

plot(simdat, pch="+", cols="green", lwd=2)
plot(te, add=TRUE, col="red", cex=1.4, lty=2, lwd=3)

sublab <- eval(substitute(expression(p[chi^2]==z),
list(z=signif(te$p.value,3))))

title(sub=sublab, cex.sub=3)

quadrats of irregular shape
B <- dirichlet(runifpoint(6, Window(simdat)))
qB <- quadrat.test(simdat, tess=B)
plot(simdat, main="quadrat.test(simdat, tess=B)", pch="+")
plot(qB, add=TRUE, col="red", lwd=2, cex=1.2)

quadrat.test.splitppp Dispersion Test of CSR for Split Point Pattern Based on Quadrat
Counts

Description

Performs a test of Complete Spatial Randomness for each of the component patterns in a split point
pattern, based on quadrat counts. By default performs chi-squared tests; can also perform Monte
Carlo based tests.

Usage

S3 method for class 'splitppp'
quadrat.test(X, ..., df=NULL, df.est=NULL, Xname=NULL)

radcumint 399

Arguments

X A split point pattern (object of class "splitppp"), each component of which
will be subjected to the goodness-of-fit test.

... Arguments passed to quadrat.test.ppp.
df, df.est, Xname

Arguments passed to pool.quadrattest.

Details

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point
patterns (class "splitppp") and point process models (class "ppm").

If X is a split point pattern, then for each of the component point patterns (taken separately) we test
the null hypotheses of Complete Spatial Randomness, then combine the result into a single test.

The method quadrat.test.ppp is applied to each component point pattern. Then the results are
pooled using pool.quadrattest to obtain a single test.

Value

An object of class "quadrattest" which can be printed and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

quadrat.test, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific Poisson alternative, use anova.ppm.

Examples

qH <- quadrat.test(split(humberside), 2, 3)
plot(qH)
qH

radcumint Radial Cumulative Integral

Description

Compute the cumulative integral of an image over increasing radial distances from the origin.

Usage

radcumint(X, ..., origin, Xname, result = c("fv", "im"))

400 radcumint

Arguments

X A pixel image (object of class "im") with numerical or logical values.

... Ignored.

origin Optional. Origin about which the rotations should be performed. Either a nu-
meric vector or a character string as described in the help for shift.owin.

Xname Optional name for X to be used in the function labels.

result Character string specifying the kind of result required: either a function object
or a pixel image.

Details

This command computes, for each possible distance r, the integral of the pixel values lying inside
the disc of radius r centred at the origin.

If result="fv" (the default) the result is a function object f of class "fv". For each value of radius
r, the function value f(r) is the integral of X over the disc of radius r.

If result="im" the result is a pixel image, with the same dimensions as X. At a given pixel, the
result is equal to f(r) where r is the distance from the given pixel to the origin. That is, at any
given pixel, the resulting value is the integral of X over the disc centred at the origin whose boundary
passes through the given pixel.

Value

An object of class "fv" or "im", with the same coordinate units as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rotmean, spatialcdf

Examples

D <- density(redwood)
plot(radcumint(D))
plot(radcumint(D, result="im"))

rat 401

rat Ratio object

Description

Stores the numerator, denominator, and value of a ratio as a single object.

Usage

rat(ratio, numerator, denominator, check = TRUE)

Arguments

ratio, numerator, denominator
Three objects belonging to the same class.

check Logical. Whether to check that the objects are compatible.

Details

The class "rat" is a simple mechanism for keeping track of the numerator and denominator when
calculating a ratio. Its main purpose is simply to signal that the object is a ratio.

The function rat creates an object of class "rat" given the numerator, the denominator and the
ratio. No calculation is performed; the three objects are simply stored together.

The arguments ratio, numerator, denominator can be objects of any kind. They should belong
to the same class. It is assumed that the relationship

ratio =
numerator

denominator

holds in some version of arithmetic. However, no calculation is performed.

By default the algorithm checks whether the three arguments ratio, numerator, denominator are
compatible objects, according to compatible.

The result is equivalent to ratio except for the addition of extra information.

Value

An object equivalent to the object ratio except that it also belongs to the class "rat" and has
additional attributes numerator and denominator.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

compatible, pool

402 rectcontact

rectcontact Contact Distribution Function using Rectangular Structuring Element

Description

Computes an estimate of the contact distribution function of a set, using a rectangular structuring
element.

Usage

rectcontact(X, ..., asp = 1, npasses=4,
eps = NULL, r = NULL, breaks = NULL, correction = c("rs", "km"))

Arguments

X Logical-valued image. The TRUE values in the image determine the spatial re-
gion whose contact distribution function should be estimated.

... Ignored.

asp Aspect ratio for the rectangular metric. A single positive number. See rectdistmap
for explanation.

npasses Number of passes to perform in the distance algorithm. A positive integer. See
rectdistmap for explanation.

eps Pixel size, if the image should be converted to a finer grid.

r Optional vector of distance values. Do Not Use This.

breaks Do Not Use This.

correction Character vector specifying the edge correction.

Details

To be written.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Hest

reload.or.compute 403

Examples

make an image which is TRUE/FALSE inside/outside the letter R
V <- letterR
Frame(V) <- grow.rectangle(Frame(V), 0.5)
Z <- as.im(V, value=TRUE, na.replace=FALSE)
analyse
plot(rectcontact(Z))

reload.or.compute Perform Computations or Retrieve Results From File

Description

This utility either performs computations and saves the results in a file, or retrieves the results of
previous computations stored in a file. If the designated file does not yet exist, the expression will
be evaluated, and the results will be saved in the file. If the file already exists, the results will be
re-loaded from the file.

Usage

reload.or.compute(filename, expr, objects = NULL,
context = parent.frame(),
destination = parent.frame(),
force=FALSE, verbose=TRUE, exclude=NULL)

Arguments

filename Name of data file. A character string.

expr R language expression to be evaluated.

objects Optional character vector of names of objects to be saved in filename after
evaluating expr, or names of objects that should be present in filename when
loaded.

exclude Optional character vector of names of objects that should not be saved in filename
and are not expected to be present in filename.

context Environment containing objects that are mentioned in expr (other than objects
in the global environment).

destination Environment into which the resulting objects should be assigned.

force Logical value indicating whether to perform the computation in any case.

verbose Logical value indicating whether to print a message indicating whether the data
were recomputed or reloaded from the file.

404 relrisk

Details

This facility is useful for saving, and later re-loading, the results of time-consuming computations.
It would typically be used in an R script file or an Sweave document.

If the file called filename does not yet exist (or if force=TRUE), then expr will be evaluated and
the results will be saved in filename using save. By default, all objects that were created by
evaluating the expression will be saved in the file. The optional argument objects specifies which
results should be saved to the file. The optional argument exclude specifies results which should
not be saved.

If the file called filename already exists (and if force=FALSE, the default), then this file will be
loaded into R using load. The optional argument objects specifies the names of objects that must
be present in the file; a warning is issued if any of them are missing.

The resulting objects (either evaluated or loaded from file) can be assigned into any desired destination
environment. The default behaviour is equivalent to evaluating expr in the current environment.

If force=TRUE then expr will be evaluated (regardless of whether the file already exists or not)
and the results will be saved in filename, overwriting any previously-existing file with that name.
This is a convenient way to force the code to re-compute everything in an R script file or Sweave
document.

Value

Character vector (invisible) giving the names of the objects computed or loaded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

Examples

Demonstration using a temporary file
(For real applications, use a permanent file in your own filespace)
myfile <- paste0(tempdir(), .Platform$file.sep, "mydata.rda")
reload.or.compute(myfile, {

some very long computation ending with ..
x <- 42
intermediateWorking <- 12345
y <- sqrt(x)

}, exclude="intermediateWorking")
the values x and y are saved

relrisk Estimate of Spatially-Varying Relative Risk

Description

Generic command to estimate the spatially-varying probability of each type of point, or the ratios
of such probabilities.

relrisk.ppp 405

Usage

relrisk(X, ...)

Arguments

X Either a point pattern (class "ppp") or a fitted point process model (class "ppm")
from which the probabilities will be estimated.

... Additional arguments appropriate to the method.

Details

In a point pattern containing several different types of points, we may be interested in the spatially-
varying probability of each possible type, or the relative risks which are the ratios of such probabil-
ities.

The command relrisk is generic and can be used to estimate relative risk in different ways.

The function relrisk.ppp is the method for point pattern datasets. It computes nonparametric
estimates of relative risk by kernel smoothing.

The function relrisk.ppm is the method for fitted point process models (class "ppm"). It computes
parametric estimates of relative risk, using the fitted model.

Value

A pixel image, or a list of pixel images, or a numeric vector or matrix, containing the requested
estimates of relative risk.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

relrisk.ppp, relrisk.ppm.

relrisk.ppp Nonparametric Estimate of Spatially-Varying Relative Risk

Description

Given a multitype point pattern, this function estimates the spatially-varying probability of each
type of point, or the ratios of such probabilities, using kernel smoothing. The default smoothing
bandwidth is selected by cross-validation.

406 relrisk.ppp

Usage

S3 method for class 'ppp'
relrisk(X, sigma = NULL, ...,

at = c("pixels", "points"),
weights = NULL, varcov = NULL,
relative=FALSE,
adjust=1, edge=TRUE, diggle=FALSE,
se=FALSE, wtype=c("value", "multiplicity"),
casecontrol=TRUE, control=1, case, fudge=0)

Arguments

X A multitype point pattern (object of class "ppp" which has factor valued marks).

sigma Optional. The numeric value of the smoothing bandwidth (the standard devi-
ation of isotropic Gaussian smoothing kernel). Alternatively sigma may be a
function which can be used to select a different bandwidth for each type of
point. See Details.

... Arguments passed to bw.relrisk to select the bandwidth, or passed to density.ppp
to control the pixel resolution.

at Character string specifying whether to compute the probability values at a grid
of pixel locations (at="pixels") or only at the points of X (at="points").

weights Optional. Weights for the data points of X. A numeric vector, an expression,
or a pixel image.

varcov Optional. Variance-covariance matrix of anisotopic Gaussian smoothing kernel.
Incompatible with sigma.

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each
type of point. If TRUE, it computes the relative risk, the ratio of probabilities of
each type relative to the probability of a control.

adjust Optional. Adjustment factor for the bandwidth sigma.

edge Logical value indicating whether to apply edge correction.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more
accurate but slower to compute than the default correction.

se Logical value indicating whether to compute standard errors as well.

wtype Character string (partially matched) specifying how the weights should be inter-
preted for the calculation of standard error. See Details.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and
controls, and return only the probability or relative risk of a case. Ignored if
there are more than 2 types of points. See Details.

control Integer, or character string, identifying which mark value corresponds to a con-
trol.

case Integer, or character string, identifying which mark value corresponds to a case
(rather than a control) in a bivariate point pattern. This is an alternative to the
argument control in a bivariate point pattern. Ignored if there are more than 2
types of points.

relrisk.ppp 407

fudge Optional. A single numeric value, or a numeric vector with one entry for each
type of point. This value will be added to the estimates of point process intensity,
before calculation of the relative risk.

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.ppp is the method for point pattern datasets. It computes nonparametric
estimates of relative risk by kernel smoothing (Bithell, 1990, 1991; Diggle, 2003; Baddeley, Rubak
and Turner, 2015).

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by
default, the points of the first type (the first level of marks(X)) are treated as controls or non-events,
and points of the second type are treated as cases or events. Then by default this command computes
the spatially-varying probability of a case, i.e. the probability p(u) that a point at spatial location u
will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case relative
to a control, r(u) = p(u)/(1− p(u)).

If X is a multitype point pattern with m > 2 types, or if X is a bivariate point pattern and casecontrol=FALSE,
then by default this command computes, for each type j, a nonparametric estimate of the spatially-
varying probability of an event of type j. This is the probability pj(u) that a point at spatial location
u will belong to type j. If relative=TRUE, the command computes the relative risk of an event of
type j relative to a control, rj(u) = pj(u)/pk(u), where events of type k are treated as controls.
The argument control determines which type k is treated as a control.

If at = "pixels" the calculation is performed for every spatial location u on a fine pixel grid, and
the result is a pixel image representing the function p(u) or a list of pixel images representing the
functions pj(u) or rj(u) for j = 1, . . . ,m. An infinite value of relative risk (arising because the
probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points xi. By default the result is
a vector of values p(xi) giving the estimated probability of a case at each data point, or a matrix
of values pj(xi) giving the estimated probability of each possible type j at each data point. If
relative=TRUE then the relative risks r(xi) or rj(xi) are returned. An infinite value of relative risk
(arising because the probability of a control is zero) will be returned as Inf.

Estimation is performed by a simple Nadaraja-Watson type kernel smoother (Bithell, 1990, 1991;
Diggle, 2003; Baddeley, Rubak and Turner, 2015, section 14.4). The smoothing bandwidth can be
specified in any of the following ways:

• sigma is a single numeric value, giving the standard deviation of the isotropic Gaussian kernel.

• sigma is a numeric vector of length 2, giving the standard deviations in the x and y directions
of a Gaussian kernel.

• varcov is a 2 by 2 matrix giving the variance-covariance matrix of the Gaussian kernel.

• sigma is a function which selects the bandwidth. Bandwidth selection will be applied sepa-
rately to each type of point. An example of such a function is bw.diggle.

• sigma and varcov are both missing or null. Then a common smoothing bandwidth sigma
will be selected by cross-validation using bw.relrisk.

• An infinite smoothing bandwidth, sigma=Inf, is permitted and yields a constant estimate of
relative risk.

408 relrisk.ppp

If se=TRUE then standard errors will also be computed, based on asymptotic theory, assuming a
Poisson process.

The optional argument weights may provide numerical weights for the points of X. It should be a
numeric vector of length equal to npoints(X).

The argument weights can also be an expression. It will be evaluated in the data frame as.data.frame(X)
to obtain a vector of weights. The expression may involve the symbols x and y representing the
Cartesian coordinates, and the symbol marks representing the mark values.

The argument weights can also be a pixel image (object of class "im"). numerical weights for the
data points will be extracted from this image (by looking up the pixel values at the locations of the
data points in X).

Value

If se=FALSE (the default), the format is described below. If se=TRUE, the result is a list of two
entries, estimate and SE, each having the format described below.

If X consists of only two types of points, and if casecontrol=TRUE, the result is a pixel image (if
at="pixels") or a vector (if at="points"). The pixel values or vector values are the probabilities
of a case if relative=FALSE, or the relative risk of a case (probability of a case divided by the
probability of a control) if relative=TRUE.

If X consists of more than two types of points, or if casecontrol=FALSE, the result is:

• (if at="pixels") a list of pixel images, with one image for each possible type of point. The
result also belongs to the class "solist" so that it can be printed and plotted.

• (if at="points") a matrix of probabilities, with rows corresponding to data points xi, and
columns corresponding to types j.

The pixel values or matrix entries are the probabilities of each type of point if relative=FALSE,
or the relative risk of each type (probability of each type divided by the probability of a control) if
relative=TRUE.

If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results
are either non-negative numbers, or the values Inf or NA.

Standard error

If se=TRUE, the standard error of the estimate will also be calculated. The calculation assumes a
Poisson point process.

If weights are given, then the calculation of standard error depends on the interpretation of the
weights. This is controlled by the argument wtype.

• If wtype="value" (the default), the weights are interpreted as numerical values observed at
the data locations. Roughly speaking, standard errors are proportional to the absolute values
of the weights.

• If wtype="multiplicity" the weights are interpreted as multiplicities so that a weight of
2 is equivalent to having a pair of duplicated points at the data location. Roughly speaking,
standard errors are proportional to the square roots of the weights. Negative weights are not
permitted.

The default rule is now wtype="value" but previous versions of relrisk.ppp (in spatstat.explore
versions 3.1-0 and earlier) effectively used wtype="multiplicity".

relriskHeat 409

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Bithell, J.F. (1990) An application of density estimation to geographical epidemiology. Statistics in
Medicine 9, 691–701.

Bithell, J.F. (1991) Estimation of relative risk functions. Statistics in Medicine 10, 1745–1751.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Diggle, P.J., Zheng, P. and Durr, P. (2005) Non-parametric estimation of spatial segregation in a
multivariate point process: bovine tuberculosis in Cornwall, UK. Applied Statistics 54, 645–658.

See Also

There is another method relrisk.ppm for point process models which computes parametric esti-
mates of relative risk, using the fitted model.

See also bw.relrisk, density.ppp, Smooth.ppp, eval.im

Examples

p.oak <- relrisk(urkiola, 20)
if(interactive()) {

plot(p.oak, main="proportion of oak")
plot(eval.im(p.oak > 0.3), main="More than 30 percent oak")
plot(split(lansing), main="Lansing Woods")
p.lan <- relrisk(lansing, 0.05, se=TRUE)
plot(p.lan$estimate, main="Lansing Woods species probability")
plot(p.lan$SE, main="Lansing Woods standard error")
wh <- im.apply(p.lan$estimate, which.max)
types <- levels(marks(lansing))
wh <- eval.im(types[wh])
plot(wh, main="Most common species")

}

relriskHeat Diffusion Estimate of Conditional Probabilities

Description

Computes the conditional probability estimator of relative risk based on a multitype point pattern
using the diffusion estimate of the type-specific intensities.

410 relriskHeat

Usage

relriskHeat(X, ...)

S3 method for class 'ppp'
relriskHeat(X, ..., sigmaX=NULL, weights=NULL)

Arguments

X A multitype point pattern (object of class "ppp").

... Arguments passed to densityHeat controlling the estimation of each marginal
intensity.

sigmaX Optional. Numeric vector of bandwidths, one associated with each data point in
X.

weights Optional numeric vector of weights associated with each point of X.

Details

The function relriskHeat is generic. This file documents the method relriskHeat.ppp for spatial
point patterns (objects of class "ppp").

This function estimates the spatially-varying conditional probability that a random point (given that
it is present) will belong to a given type.

The algorithm separates X into the sub-patterns consisting of points of each type. It then applies
densityHeat to each sub-pattern, using the same bandwidth and smoothing regimen for each sub-
pattern, as specified by the arguments

If weights is specified, it should be a numeric vector of length equal to the number of points in X,
so that weights[i] is the weight for data point X[i].

Similarly when performing lagged-arrival smoothing, the argument sigmaX must be a numeric vec-
tor of the same length as the number of points in X, and thus contain the point-specific bandwidths
in the order corresponding to each of these points regardless of mark.

Value

A named list (of class solist) containing pixel images, giving the estimated conditional probability
surfaces for each type.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies <Tilman.Davies@otago.ac.nz>.

References

Agarwal, N. and Aluru, N.R. (2010) A data-driven stochastic collocation approach for uncertainty
quantification in MEMS. International Journal for Numerical Methods in Engineering 83, 575–
597.

Baddeley, A., Davies, T., Rakshit, S., Nair, G. and McSwiggan, G. (2022) Diffusion smoothing for
spatial point patterns. Statistical Science 37, 123–142.

rho2hat 411

Barry, R.P. and McIntyre, J. (2011) Estimating animal densities and home range in regions with
irregular boundaries and holes: a lattice-based alternative to the kernel density estimator. Ecological
Modelling 222, 1666–1672.

Botev, Z.I. and Grotowski, J.F. and Kroese, D.P. (2010) Kernel density estimation via diffusion.
Annals of Statistics 38, 2916–2957.

See Also

relrisk.ppp for the traditional convolution-based kernel estimator of conditional probability sur-
faces, and the function risk in the sparr package for the density-ratio-based estimator.

Examples

bovine tuberculosis data
X <- subset(btb, select=spoligotype)
plot(X)
P <- relriskHeat(X,sigma=9)
plot(P)

rho2hat Smoothed Relative Density of Pairs of Covariate Values

Description

Given a point pattern and two spatial covariates Z1 and Z2, construct a smooth estimate of the
relative risk of the pair (Z1, Z2).

Usage

rho2hat(object, cov1, cov2, ..., method=c("ratio", "reweight"))

Arguments

object A point pattern (object of class "ppp"), a quadrature scheme (object of class
"quad") or a fitted point process model (object of class "ppm").

cov1, cov2 The two covariates. Each argument is either a function(x,y) or a pixel image
(object of class "im") providing the values of the covariate at any location, or
one of the strings "x" or "y" signifying the Cartesian coordinates.

... Additional arguments passed to density.ppp to smooth the scatterplots.

method Character string determining the smoothing method. See Details.

412 rho2hat

Details

This is a bivariate version of rhohat.

If object is a point pattern, this command produces a smoothed version of the scatterplot of the
values of the covariates cov1 and cov2 observed at the points of the point pattern.

The covariates cov1,cov2 must have continuous values.

If object is a fitted point process model, suppose X is the original data point pattern to which the
model was fitted. Then this command assumes X is a realisation of a Poisson point process with
intensity function of the form

λ(u) = ρ(Z1(u), Z2(u))κ(u)

where κ(u) is the intensity of the fitted model object, and ρ(z1, z2) is a function to be estimated.
The algorithm computes a smooth estimate of the function ρ.

The method determines how the density estimates will be combined to obtain an estimate of ρ(z1, z2):

• If method="ratio", then ρ(z1, z2) is estimated by the ratio of two density estimates. The
numerator is a (rescaled) density estimate obtained by smoothing the points (Z1(yi), Z2(yi))
obtained by evaluating the two covariate Z1, Z2 at the data points yi. The denominator is a
density estimate of the reference distribution of (Z1, Z2).

• If method="reweight", then ρ(z1, z2) is estimated by applying density estimation to the
points (Z1(yi), Z2(yi)) obtained by evaluating the two covariate Z1, Z2 at the data points
yi, with weights inversely proportional to the reference density of (Z1, Z2).

Value

A pixel image (object of class "im"). Also belongs to the special class "rho2hat" which has a plot
method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2012) Nonparametric estimation of the de-
pendence of a point process on spatial covariates. Statistics and Its Interface 5 (2), 221–236.

See Also

rhohat, methods.rho2hat

Examples

attach(bei.extra)
plot(rho2hat(bei, elev, grad))
if(require("spatstat.model")) {

fit <- ppm(bei ~elev, covariates=bei.extra)

plot(rho2hat(fit, elev, grad))

rhohat 413

plot(rho2hat(fit, elev, grad, method="reweight"))
}

rhohat Nonparametric Estimate of Intensity as Function of a Covariate

Description

Computes a nonparametric estimate of the intensity of a point process, as a function of a (continu-
ous) spatial covariate.

Usage

rhohat(object, covariate, ...)

S3 method for class 'ppp'
rhohat(object, covariate, ...,

baseline=NULL, weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing",
"mountain", "valley", "piecewise"),
subset=NULL,
do.CI=TRUE,
jitter=TRUE, jitterfactor=1, interpolate=TRUE,
dimyx=NULL, eps=NULL,
rule.eps = c("adjust.eps", "grow.frame", "shrink.frame"),
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

S3 method for class 'quad'
rhohat(object, covariate, ...,

baseline=NULL, weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing",

"mountain", "valley", "piecewise"),
subset=NULL,
do.CI=TRUE,
jitter=TRUE, jitterfactor=1, interpolate=TRUE,
dimyx=NULL, eps=NULL,
rule.eps = c("adjust.eps", "grow.frame", "shrink.frame"),
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

414 rhohat

Arguments

object A point pattern (object of class "ppp" or "lpp"), a quadrature scheme (object of
class "quad") or a fitted point process model (object of class "ppm", "slrm" or
"lppm").

covariate Either a function(x,y) or a pixel image (object of class "im") providing the
values of the covariate at any location. Alternatively one of the strings "x" or
"y" signifying the Cartesian coordinates.

weights Optional weights attached to the data points. Either a numeric vector of weights
for each data point, or a pixel image (object of class "im") or a function(x,y)
providing the weights.

baseline Optional baseline for intensity function. A function(x,y) or a pixel image
(object of class "im") providing the values of the baseline at any location.

method Character string determining the estimation method. See Details.

horvitz Logical value indicating whether to use Horvitz-Thompson weights. See De-
tails.

smoother Character string determining the smoothing algorithm and the type of curve that
will be estimated. See Details.

subset Optional. A spatial window (object of class "owin") specifying a subset of the
data, from which the estimate should be calculated.

do.CI Logical value specifying whether to calculate standard errors and confidence
bands.

jitter Logical value. If jitter=TRUE (the default), the values of the covariate at the
data points will be jittered (randomly perturbed by adding a small amount of
noise) using the function jitter. If jitter=FALSE, the covariate values at the
data points will not be altered. See the section on Randomisation and discreti-
sation.

jitterfactor Numeric value controlling the scale of noise added to the covariate values at the
data points when jitter=TRUE. Passed to the function jitter as the argument
factor.

interpolate Logical value specifying whether to use spatial interpolation to obtain the values
of the covariate at the data points, when the covariate is a pixel image (object
of class "im"). If interpolate=FALSE, the covariate value for each data point
is simply the value of the covariate image at the pixel centre that is nearest to
the data point. If interpolate=TRUE, the covariate value for each data point is
obtained by interpolating the nearest pixel values using interp.im.

dimyx, eps, rule.eps
Arguments controlling the pixel resolution at which the covariate will be evalu-
ated. See Details.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

bwref Optional. An alternative value of bw to use when smoothing the reference den-
sity (the density of the covariate values observed at all locations in the window).

rhohat 415

... Additional arguments passed to density.default or locfit.

covname Optional. Character string to use as the name of the covariate.

confidence Confidence level for confidence intervals. A number between 0 and 1.

positiveCI Logical value. If TRUE, confidence limits are always positive numbers; if FALSE,
the lower limit of the confidence interval may sometimes be negative. Default is
FALSE if smoother="kernel" and TRUE if smoother="local". See Details.

breaks Breakpoints for the piecewise-constant function computed when smoother='piecewise'.
Either a vector of numeric values specifying the breakpoints, or a single integer
specifying the number of equally-spaced breakpoints. There is a sensible de-
fault.

Details

This command estimates the relationship between point process intensity and a given spatial co-
variate. Such a relationship is sometimes called a resource selection function (if the points are
organisms and the covariate is a descriptor of habitat) or a prospectivity index (if the points are min-
eral deposits and the covariate is a geological variable). This command uses nonparametric methods
which do not assume a particular form for the relationship.

If object is a point pattern, and baseline is missing or null, this command assumes that object
is a realisation of a point process with intensity function λ(u) of the form

λ(u) = ρ(Z(u))

where Z is the spatial covariate function given by covariate, and ρ(z) is the resource selection
function or prospectivity index. A nonparametric estimator of the function ρ(z) is computed.

If object is a point pattern, and baseline is given, then the intensity function is assumed to be

λ(u) = ρ(Z(u))B(u)

where B(u) is the baseline intensity at location u. A nonparametric estimator of the relative inten-
sity ρ(z) is computed.

If object is a fitted point process model, suppose X is the original data point pattern to which the
model was fitted. Then this command assumes X is a realisation of a Poisson point process with
intensity function of the form

λ(u) = ρ(Z(u))κ(u)

where κ(u) is the intensity of the fitted model object. A nonparametric estimator of the relative
intensity ρ(z) is computed.

The nonparametric estimation procedure is controlled by the arguments smoother, method and
horvitz.

The argument smoother selects the type of estimation technique.

• If smoother="kernel" (the default), the nonparametric estimator is a kernel smoothing es-
timator of ρ(z) (Guan, 2008; Baddeley et al, 2012). The estimated function ρ(z) will be a
smooth function of z which takes nonnegative values. If do.CI=TRUE (the default), confi-
dence bands are also computed, assuming a Poisson point process. See the section on Smooth
estimates.

416 rhohat

• If smoother="local", the nonparametric estimator is a local regression estimator of ρ(z)
(Baddeley et al, 2012) obtained using local likelihood. The estimated function ρ(z) will be
a smooth function of z. If do.CI=TRUE (the default), confidence bands are also computed,
assuming a Poisson point process. See the section on Smooth estimates.

• If smoother="increasing", we assume that ρ(z) is an increasing function of z, and use
the nonparametric maximum likelihood estimator of ρ(z) described by Sager (1982). The
estimated function will be a step function, that is increasing as a function of z. Confidence
bands are not computed. See the section on Monotone estimates.

• If smoother="decreasing", we assume that ρ(z) is a decreasing function of z, and use the
nonparametric maximum likelihood estimator of ρ(z) described by Sager (1982). The esti-
mated function will be a step function, that is decreasing as a function of z. Confidence bands
are not computed. See the section on Monotone estimates.

• If smoother="mountain", we assume that ρ(z) is a function with an inverted U shape, with a
single peak at a value z0, so that ρ(z) is an increasing function of z for z < z0 and a decreasing
function of z for z > z0. We compute the nonparametric maximum likelihood estimator.
The estimated function will be a step function, which is increasing and then decreasing as a
function of z. Confidence bands are not computed. See the section on Unimodal estimates.

• If smoother="valley", we assume that ρ(z) is a function with a U shape, with a single
minimum at a value z0, so that ρ(z) is a decreasing function of z for z < z0 and an increasing
function of z for z > z0. We compute the nonparametric maximum likelihood estimator.
The estimated function will be a step function, which is decreasing and then increasing as a
function of z. Confidence bands are not computed. See the section on Unimodal estimates.

• If smoother="piecewise", the estimate of ρ(z) is piecewise constant. The range of covariate
values is divided into several intervals (ranges or bands). The endpoints of these intervals are
the breakpoints, which may be specified by the argument breaks; there is a sensible default.
The estimate of ρ(z) takes a constant value on each interval. The estimate of ρ(z) in each
interval of covariate values is simply the average intensity (number of points per unit area) in
the relevant sub-region. If do.CI=TRUE (the default), confidence bands are computed assuming
a Poisson process.

See Baddeley (2018) for a comparison of these estimation techniques (except for "mountain" and
"valley").

If the argument weights is present, then the contribution from each data point X[i] to the estimate
of ρ is multiplied by weights[i].

If the argument subset is present, then the calculations are performed using only the data inside
this spatial region.

This technique assumes that covariate has continuous values. It is not applicable to covariates with
categorical (factor) values or discrete values such as small integers. For a categorical covariate, use
intensity.quadratcount applied to the result of quadratcount(X, tess=covariate).

The argument covariate should be a pixel image, or a function, or one of the strings "x" or "y"
signifying the cartesian coordinates. It will be evaluated on a fine grid of locations, with spatial
resolution controlled by the arguments dimyx,eps,rule.eps which are passed to as.mask.

Value

A function value table (object of class "fv") containing the estimated values of ρ (and confidence
limits) for a sequence of values of Z. Also belongs to the class "rhohat" which has special methods

rhohat 417

for print, plot and predict.

Smooth estimates

Smooth estimators of ρ(z) were proposed by Baddeley and Turner (2005) and Baddeley et al (2012).
Similar estimators were proposed by Guan (2008) and in the literature on relative distributions
(Handcock and Morris, 1999).

The estimated function ρ(z) will be a smooth function of z.

The smooth estimation procedure involves computing several density estimates and combining
them. The algorithm used to compute density estimates is determined by smoother:

• If smoother="kernel", the smoothing procedure is based on fixed-bandwidth kernel density
estimation, performed by density.default.

• If smoother="local", the smoothing procedure is based on local likelihood density estima-
tion, performed by locfit.

The argument method determines how the density estimates will be combined to obtain an estimate
of ρ(z):

• If method="ratio", then ρ(z) is estimated by the ratio of two density estimates, The numer-
ator is a (rescaled) density estimate obtained by smoothing the values Z(yi) of the covariate
Z observed at the data points yi. The denominator is a density estimate of the reference dis-
tribution of Z. See Baddeley et al (2012), equation (8). This is similar but not identical to an
estimator proposed by Guan (2008).

• If method="reweight", then ρ(z) is estimated by applying density estimation to the values
Z(yi) of the covariate Z observed at the data points yi, with weights inversely proportional to
the reference density of Z. See Baddeley et al (2012), equation (9).

• If method="transform", the smoothing method is variable-bandwidth kernel smoothing, im-
plemented by applying the Probability Integral Transform to the covariate values, yielding
values in the range 0 to 1, then applying edge-corrected density estimation on the interval
[0, 1], and back-transforming. See Baddeley et al (2012), equation (10).

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Pointwise confidence intervals for the true value of ρ(z) are also calculated for each z, and will
be plotted as grey shading. The confidence intervals are derived using the central limit theorem,
based on variance calculations which assume a Poisson point process. If positiveCI=FALSE, the
lower limit of the confidence interval may sometimes be negative, because the confidence intervals
are based on a normal approximation to the estimate of ρ(z). If positiveCI=TRUE, the confidence
limits are always positive, because the confidence interval is based on a normal approximation to
the estimate of log(ρ(z)). For consistency with earlier versions, the default is positiveCI=FALSE
for smoother="kernel" and positiveCI=TRUE for smoother="local".

Monotone estimates

The nonparametric maximum likelihood estimator of a monotone function ρ(z) was described by
Sager (1982). This method assumes that ρ(z) is either an increasing function of z, or a decreasing

418 rhohat

function of z. The estimated function will be a step function, increasing or decreasing as a function
of z.

This estimator is chosen by specifying smoother="increasing" or smoother="decreasing".
The argument method is ignored this case.

To compute the estimate of ρ(z), the algorithm first computes several primitive step-function esti-
mates, and then takes the maximum of these primitive functions.

If smoother="decreasing", each primitive step function takes the form ρ(z) = λ when z ≤ t, and
ρ(z) = 0 when z > t, where and λ is a primitive estimate of intensity based on the data for Z ≤ t.
The jump location t will be the value of the covariate Z at one of the data points. The primitive
estimate λ is the average intensity (number of points divided by area) for the region of space where
the covariate value is less than or equal to t.

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Confidence intervals are not available for the monotone estimators.

Unimodal estimators

If smoother="valley" then we estimate a U-shaped function. A function ρ(z) is U-shaped if it is
decreasing when z < z0 and increasing when z > z0, where z0 is called the critical value. The
nonparametric maximum likelihood estimate of such a function can be computed by profiling over
z0. The algorithm considers all possible candidate values of the critical value z0, and estimates
the function ρ(z) separately on the left and right of z0 using the monotone estimators described
above. These function estimates are combined into a single function, and the Poisson point process
likelihood is computed. The optimal value of z0 is the one which maximises the Poisson point
process likelihood.

If smoother="mountain" then we estimate a function which has an inverted U shape. A function
ρ(z) is inverted-U-shaped if it is increasing when z < z0 and decreasing when z > z0. The
nonparametric maximum likelihood estimate of such a function can be computed by profiling over
z0 using the same technique mutatis mutandis.

Confidence intervals are not available for the unimodal estimators.

Randomisation

By default, rhohat adds a small amount of random noise to the data. This is designed to suppress
the effects of discretisation in pixel images.

This strategy means that rhohat does not produce exactly the same result when the computation is
repeated. If you need the results to be exactly reproducible, set jitter=FALSE.

By default, the values of the covariate at the data points will be randomly perturbed by adding a
small amount of noise using the function jitter. To reduce this effect, set jitterfactor to a
number smaller than 1. To suppress this effect entirely, set jitter=FALSE.

Author(s)

Smoothing algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ya-Mei Chang,
Yong Song, and Rolf Turner <rolfturner@posteo.net>.

rhohat 419

Nonparametric maximum likelihood algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2012) Nonparametric estimation of the de-
pendence of a point process on spatial covariates. Statistics and Its Interface 5 (2), 221–236.

Baddeley, A. and Turner, R. (2005) Modelling spatial point patterns in R. In: A. Baddeley, P. Gre-
gori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern Modelling,
Lecture Notes in Statistics number 185. Pages 23–74. Springer-Verlag, New York, 2006. ISBN:
0-387-28311-0.

Baddeley, A. (2018) A statistical commentary on mineral prospectivity analysis. Chapter 2, pages
25–65 in Handbook of Mathematical Geosciences: Fifty Years of IAMG, edited by B.S. Daya Sagar,
Q. Cheng and F.P. Agterberg. Springer, Berlin.

Guan, Y. (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point
processes. Journal of the American Statistical Association 103, 1238–1247.

Handcock, M.S. and Morris, M. (1999) Relative Distribution Methods in the Social Sciences.
Springer, New York.

Sager, T.W. (1982) Nonparametric maximum likelihood estimation of spatial patterns. Annals of
Statistics 10, 1125–1136.

See Also

rho2hat, methods.rhohat, parres.

See ppm for a parametric method for the same problem.

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, "x")
rho <- rhohat(X, function(x,y){x})
plot(rho)
curve(exp(3+3*x), lty=3, col=4, lwd=2, add=TRUE)

rhoB <- rhohat(X, "x", method="reweight")
rhoC <- rhohat(X, "x", method="transform")

rhoI <- rhohat(X, "x", smoother="increasing")
rhoM <- rhohat(X, "x", smoother="mountain")

plot(rhoI, add=TRUE, .y ~ .x, col=6)
legend("top", lty=c(3, 1), col=c(4, 6), lwd=c(2, 1),

legend=c("true", "increasing"))

420 roc

roc Receiver Operating Characteristic

Description

Computes the Receiver Operating Characteristic curve for a point pattern or a fitted point process
model.

Usage

roc(X, ...)

S3 method for class 'ppp'
roc(X, covariate, ..., high = TRUE)

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model
(object of class "ppm", "kppm", "slrm" or "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"),
or one of the strings "x" or "y" indicating the Cartesian coordinates.

high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

Details

This command computes Receiver Operating Characteristic curve. The area under the ROC is
computed by auc.

For a point pattern X and a covariate Z, the ROC is a plot showing the ability of the covariate to
separate the spatial domain into areas of high and low density of points. For each possible threshold
z, the algorithm calculates the fraction a(z) of area in the study region where the covariate takes
a value greater than z, and the fraction b(z) of data points for which the covariate value is greater
than z. The ROC is a plot of b(z) against a(z) for all thresholds z.

For a fitted point process model, the ROC shows the ability of the fitted model intensity to separate
the spatial domain into areas of high and low density of points. The ROC is not a diagnostic for the
goodness-of-fit of the model (Lobo et al, 2007).

(For spatial logistic regression models (class "slrm") replace “intensity” by “probability of pres-
ence” in the text above.)

Value

Function value table (object of class "fv") which can be plotted to show the ROC curve.

rose 421

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

See Also

auc

Examples

plot(roc(swedishpines, "x"))

rose Rose Diagram

Description

Plots a rose diagram (rose of directions), the analogue of a histogram or density plot for angular
data.

Usage

rose(x, ...)

Default S3 method:
rose(x, breaks = NULL, ...,

weights=NULL,
nclass = NULL,
unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main)

S3 method for class 'histogram'
rose(x, ...,

unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

S3 method for class 'density'

422 rose

rose(x, ...,
unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

S3 method for class 'fv'
rose(x, ...,

unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

Arguments

x Data to be plotted. A numeric vector containing angles, or a histogram ob-
ject containing a histogram of angular values, or a density object containing a
smooth density estimate for angular data, or an fv object giving a function of an
angular argument.

breaks, nclass Arguments passed to hist to determine the histogram breakpoints.

... Additional arguments passed to polygon controlling the appearance of the plot
(or passed from rose.default to hist to control the calculation of the his-
togram).

unit The unit in which the angles are expressed.

start The starting direction for measurement of angles, that is, the spatial direction
which corresponds to a measured angle of zero. Either a character string giving
a compass direction ("N" for north, "S" for south, "E" for east, or "W" for west)
or a number giving the angle from the the horizontal (East) axis to the starting di-
rection. For example, if unit="degree" and clockwise=FALSE, then start=90
and start="N" are equivalent. The default is to measure angles anti-clockwise
from the horizontal axis (East direction).

clockwise Logical value indicating whether angles increase in the clockwise direction (clockwise=TRUE)
or anti-clockwise, counter-clockwise direction (clockwise=FALSE, the default).

weights Optional vector of numeric weights associated with x.

main Optional main title for the plot.

labels Either a logical value indicating whether to plot labels next to the tick marks, or
a vector of labels for the tick marks.

at Optional vector of angles at which tick marks should be plotted. Set at=numeric(0)
to suppress tick marks.

do.plot Logical value indicating whether to really perform the plot.

Details

A rose diagram or rose of directions is the analogue of a histogram or bar chart for data which
represent angles in two dimensions. The bars of the bar chart are replaced by circular sectors in the
rose diagram.

The function rose is generic, with a default method for numeric data, and methods for histograms
and function tables.

rotmean 423

If x is a numeric vector, it must contain angular values in the range 0 to 360 (if unit="degree") or
in the range 0 to 2 * pi (if unit="radian"). A histogram of the data will first be computed using
hist. Then the rose diagram of this histogram will be plotted by rose.histogram.

If x is an object of class "histogram" produced by the function hist, representing the histogram of
angular data, then the rose diagram of the densities (rather than the counts) in this histogram object
will be plotted.

If x is an object of class "density" produced by circdensity or density.default, representing
a kernel smoothed density estimate of angular data, then the rose diagram of the density estimate
will be plotted.

If x is a function value table (object of class "fv") then the argument of the function will be inter-
preted as an angle, and the value of the function will be interpreted as the radius.

By default, angles are interpreted using the mathematical convention where the zero angle is the
horizontal x axis, and angles increase anti-clockwise. Other conventions can be specified us-
ing the arguments start and clockwise. Standard compass directions are obtained by setting
unit="degree", start="N" and clockwise=TRUE.

Value

A window (class "owin") containing the plotted region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

fv, hist, circdensity, density.default.

Examples

ang <- runif(1000, max=360)
rose(ang, col="grey")
rose(ang, col="grey", start="N", clockwise=TRUE)

rotmean Rotational Average of a Pixel Image

Description

Compute the average pixel value over all rotations of the image about the origin, as a function of
distance from the origin.

Usage

rotmean(X, ..., origin, padzero=TRUE, Xname, result=c("fv", "im"), adjust=1)

424 rotmean

Arguments

X A pixel image.

... Ignored.

origin Optional. Origin about which the rotations should be performed. Either a nu-
meric vector or a character string as described in the help for shift.owin.

padzero Logical. If TRUE (the default), the value of X is assumed to be zero outside
the window of X. If FALSE, the value of X is taken to be undefined outside the
window of X.

Xname Optional name for X to be used in the function labels.

result Character string specifying the kind of result required: either a function object
or a pixel image.

adjust Adjustment factor for bandwidth used in kernel smoothing.

Details

This command computes, for each possible distance r, the average pixel value of the pixels lying at
distance r from the origin. Kernel smoothing is used to obtain a smooth function of r.

If result="fv" (the default) the result is a function object of class "fv" giving the mean pixel value
of X as a function of distance from the origin.

If result="im" the result is a pixel image, with the same dimensions as X, giving the mean value
of X over all pixels lying at the same distance from the origin as the current pixel.

If padzero=TRUE (the default), the value of X is assumed to be zero outside the window of X. The
rotational mean at a given distance r is the average value of the image X over the entire circle of
radius r, including zero values outside the window if the circle lies partly outside the window.

If padzero=FALSE, the value of X is taken to be undefined outside the window of X. The rotational
mean is the average of the X values over the subset of the circle of radius r that lies entirely inside
the window.

Value

An object of class "fv" or "im", with the same coordinate units as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

radcumint

scan.test 425

Examples

online <- interactive()
resolution <- if(online) 128 else 32
Z <- setcov(square(1), dimyx=resolution)
f <- rotmean(Z)
if(online) {

plot(rotmean(Z))
plot(rotmean(Z, result="im"))

}

scan.test Spatial Scan Test

Description

Performs the Spatial Scan Test for clustering in a spatial point pattern, or for clustering of one type
of point in a bivariate spatial point pattern.

Usage

scan.test(X, r, ...,
method = c("poisson", "binomial"),
nsim = 19,
baseline = NULL,
case = 2,
alternative = c("greater", "less", "two.sided"),
verbose = TRUE)

Arguments

X A point pattern (object of class "ppp").

r Radius of circle to use. A single number or a numeric vector.

... Optional. Arguments passed to as.mask to determine the spatial resolution of
the computations.

method Either "poisson" or "binomial" specifying the type of likelihood.

nsim Number of simulations for computing Monte Carlo p-value.

baseline Baseline for the Poisson intensity, if method="poisson". A pixel image or a
function.

case Which type of point should be interpreted as a case, if method="binomial".
Integer or character string.

alternative Alternative hypothesis: "greater" if the alternative postulates that the mean
number of points inside the circle will be greater than expected under the null.

verbose Logical. Whether to print progress reports.

426 scan.test

Details

The spatial scan test (Kulldorf, 1997) is applied to the point pattern X.

In a nutshell,

• If method="poisson" then a significant result would mean that there is a circle of radius r,
located somewhere in the spatial domain of the data, which contains a significantly higher
than expected number of points of X. That is, the pattern X exhibits spatial clustering.

• If method="binomial" then X must be a bivariate (two-type) point pattern. By default, the
first type of point is interpreted as a control (non-event) and the second type of point as a case
(event). A significant result would mean that there is a circle of radius r which contains a
significantly higher than expected number of cases. That is, the cases are clustered together,
conditional on the locations of all points.

Following is a more detailed explanation.

• If method="poisson" then the scan test based on Poisson likelihood is performed (Kulldorf,
1997). The dataset X is treated as an unmarked point pattern. By default (if baseline is not
specified) the null hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson
process). The alternative hypothesis is a Poisson process with one intensity β1 inside some
circle of radius r and another intensity β0 outside the circle. If baseline is given, then it
should be a pixel image or a function(x,y). The null hypothesis is an inhomogeneous
Poisson process with intensity proportional to baseline. The alternative hypothesis is an
inhomogeneous Poisson process with intensity beta1 * baseline inside some circle of radius
r, and beta0 * baseline outside the circle.

• If method="binomial" then the scan test based on binomial likelihood is performed (Kulldorf,
1997). The dataset X must be a bivariate point pattern, i.e. a multitype point pattern with two
types. The null hypothesis is that all permutations of the type labels are equally likely. The
alternative hypothesis is that some circle of radius r has a higher proportion of points of the
second type, than expected under the null hypothesis.

The result of scan.test is a hypothesis test (object of class "htest") which can be plotted to report
the results. The component p.value contains the p-value.

The result of scan.test can also be plotted (using the plot method for the class "scan.test").
The plot is a pixel image of the Likelihood Ratio Test Statistic (2 times the log likelihood ratio) as a
function of the location of the centre of the circle. This pixel image can be extracted from the object
using as.im.scan.test. The Likelihood Ratio Test Statistic is computed by scanLRTS.

Value

An object of class "htest" (hypothesis test) which also belongs to the class "scan.test". Printing
this object gives the result of the test. Plotting this object displays the Likelihood Ratio Test Statistic
as a function of the location of the centre of the circle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

scanLRTS 427

References

Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics — Theory and Methods
26, 1481–1496.

See Also

plot.scan.test, as.im.scan.test, relrisk, scanLRTS

Examples

nsim <- if(interactive()) 19 else 2
rr <- if(interactive()) seq(0.5, 1, by=0.1) else c(0.5, 1)
scan.test(redwood, 0.1 * rr, method="poisson", nsim=nsim)
scan.test(chorley, rr, method="binomial", case="larynx", nsim=nsim)

scanLRTS Likelihood Ratio Test Statistic for Scan Test

Description

Calculate the Likelihood Ratio Test Statistic for the Scan Test, at each spatial location.

Usage

scanLRTS(X, r, ...,
method = c("poisson", "binomial"),
baseline = NULL, case = 2,
alternative = c("greater", "less", "two.sided"),
saveopt = FALSE,
Xmask = NULL)

Arguments

X A point pattern (object of class "ppp").

r Radius of circle to use. A single number or a numeric vector.

... Optional. Arguments passed to as.mask to determine the spatial resolution of
the computations.

method Either "poisson" or "binomial" specifying the type of likelihood.

baseline Baseline for the Poisson intensity, if method="poisson". A pixel image or a
function.

case Which type of point should be interpreted as a case, if method="binomial".
Integer or character string.

alternative Alternative hypothesis: "greater" if the alternative postulates that the mean
number of points inside the circle will be greater than expected under the null.

saveopt Logical value indicating to save the optimal value of r at each location.

Xmask Internal use only.

428 scanLRTS

Details

This command computes, for all spatial locations u, the Likelihood Ratio Test Statistic Λ(u) for a
test of homogeneity at the location u, as described below. The result is a pixel image giving the
values of Λ(u) at each pixel.

The maximum value of Λ(u) over all locations u is the scan statistic, which is the basis of the scan
test performed by scan.test.

• If method="poisson" then the test statistic is based on Poisson likelihood. The dataset X
is treated as an unmarked point pattern. By default (if baseline is not specified) the null
hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson process). At the
spatial location u, the alternative hypothesis is a Poisson process with one intensity β1 inside
the circle of radius r centred at u, and another intensity β0 outside the circle. If baseline
is given, then it should be a pixel image or a function(x,y). The null hypothesis is an
inhomogeneous Poisson process with intensity proportional to baseline. The alternative
hypothesis is an inhomogeneous Poisson process with intensity beta1 * baseline inside the
circle, and beta0 * baseline outside the circle.

• If method="binomial" then the test statistic is based on binomial likelihood. The dataset X
must be a bivariate point pattern, i.e. a multitype point pattern with two types. The null hy-
pothesis is that all permutations of the type labels are equally likely. The alternative hypothesis
is that the circle of radius r centred at u has a higher proportion of points of the second type,
than expected under the null hypothesis.

If r is a vector of more than one value for the radius, then the calculations described above are
performed for every value of r. Then the maximum over r is taken for each spatial location u. The
resulting pixel value of scanLRTS at a location u is the profile maximum of the Likelihood Ratio
Test Statistic, that is, the maximum of the Likelihood Ratio Test Statistic for circles of all radii,
centred at the same location u.

If you have already performed a scan test using scan.test, the Likelihood Ratio Test Statistic can
be extracted from the test result using the function as.im.scan.test.

Value

A pixel image (object of class "im") whose pixel values are the values of the (profile) Likelihood
Ratio Test Statistic at each spatial location.

Warning: window size

Note that the result of scanLRTS is a pixel image on a larger window than the original window of X.
The expanded window contains the centre of any circle of radius r that has nonempty intersection
with the original window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

sdr 429

References

Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics — Theory and Methods
26, 1481–1496.

See Also

scan.test, as.im.scan.test

Examples

plot(scanLRTS(redwood, 0.1, method="poisson"))
sc <- scanLRTS(chorley, 1, method="binomial", case="larynx")
plot(sc)
scanstatchorley <- max(sc)

sdr Sufficient Dimension Reduction

Description

Given a point pattern and a set of predictors, find a minimal set of new predictors, each constructed
as a linear combination of the original predictors.

Usage

sdr(X, covariates, ...)

S3 method for class 'ppp'
sdr(X, covariates,

method = c("DR", "NNIR", "SAVE", "SIR", "TSE"),
Dim1 = 1, Dim2 = 1, predict=FALSE, ...)

Arguments

X A point pattern (object of class "ppp").

covariates A list of pixel images (objects of class "im") to serve as predictor variables.

method Character string indicating which method to use. See Details.

Dim1 Dimension of the first order Central Intensity Subspace (applicable when method
is "DR", "NNIR", "SAVE" or "TSE").

Dim2 Dimension of the second order Central Intensity Subspace (applicable when
method="TSE").

predict Logical value indicating whether to compute the new predictors as well.

... Additional arguments (ignored by sdr.ppp).

430 sdr

Details

Given a point pattern X and predictor variables Z1, . . . , Zp, Sufficient Dimension Reduction meth-
ods (Guan and Wang, 2010) attempt to find a minimal set of new predictor variables, each con-
structed by taking a linear combination of the original predictors, which explain the dependence
of X on Z1, . . . , Zp. The methods do not assume any particular form of dependence of the point
pattern on the predictors. The predictors are assumed to be Gaussian random fields.

Available methods are:

method="DR" directional regression
method="NNIR" nearest neighbour inverse regression
method="SAVE" sliced average variance estimation
method="SIR" sliced inverse regression
method="TSE" two-step estimation

The result includes a matrix B whose columns are estimates of the basis vectors of the space of new
predictors. That is, the jth column of B expresses the jth new predictor as a linear combination of
the original predictors.

If predict=TRUE, the new predictors are also evaluated. They can also be evaluated using sdrPredict.

Value

A list with components B, M or B, M1, M2 where B is a matrix whose columns are estimates of the
basis vectors for the space, and M or M1,M2 are matrices containing estimates of the kernel.

If predict=TRUE, the result also includes a component Y which is a list of pixel images giving the
values of the new predictors.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

See Also

sdrPredict to compute the new predictors from the coefficient matrix.

dimhat to estimate the subspace dimension.

subspaceDistance

sdrPredict 431

Examples

A <- sdr(bei, bei.extra, predict=TRUE)
A
Y1 <- A$Y[[1]]
plot(Y1)
points(bei, pch=".", cex=2)
investigate likely form of dependence
plot(rhohat(bei, Y1))

sdrPredict Compute Predictors from Sufficient Dimension Reduction

Description

Given the result of a Sufficient Dimension Reduction method, compute the new predictors.

Usage

sdrPredict(covariates, B)

Arguments

covariates A list of pixel images (objects of class "im").
B Either a matrix of coefficients for the covariates, or the result of a call to sdr.

Details

This function assumes that sdr has already been used to find a minimal set of predictors based
on the covariates. The argument B should be either the result of sdr or the coefficient matrix
returned as one of the results of sdr. The columns of this matrix define linear combinations of the
covariates. This function evaluates those linear combinations, and returns a list of pixel images
containing the new predictors.

Value

A list of pixel images (objects of class "im") with one entry for each column of B.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

sdr

Examples

A <- sdr(bei, bei.extra)
Y <- sdrPredict(bei.extra, A)
Y

432 segregation.test

segregation.test Test of Spatial Segregation of Types

Description

Performs a Monte Carlo test of spatial segregation of the types in a multitype point pattern.

Usage

segregation.test(X, ...)

S3 method for class 'ppp'
segregation.test(X, ..., nsim = 19,

permute = TRUE, verbose = TRUE, Xname)

Arguments

X Multitype point pattern (object of class "ppp" with factor-valued marks).

... Additional arguments passed to relrisk.ppp to control the smoothing param-
eter or bandwidth selection.

nsim Number of simulations for the Monte Carlo test.

permute Argument passed to rlabel. If TRUE (the default), randomisation is performed
by randomly permuting the labels of X. If FALSE, randomisation is performing
by resampling the labels with replacement.

verbose Logical value indicating whether to print progress reports.

Xname Optional character string giving the name of the dataset X.

Details

The Monte Carlo test of spatial segregation of types, proposed by Kelsall and Diggle (1995) and
Diggle et al (2005), is applied to the point pattern X. The test statistic is

T =
∑
i

∑
m

(p̂(m | xi)− pm)
2

where p̂(m | xi) is the leave-one-out kernel smoothing estimate of the probability that the i-th data
point has type m, and pm is the average fraction of data points which are of type m. The statistic T
is evaluated for the data and for nsim randomised versions of X, generated by randomly permuting
or resampling the marks.

Note that, by default, automatic bandwidth selection will be performed separately for each ran-
domised pattern. This computation can be very time-consuming but is necessary for the test to be
valid in most conditions. A short-cut is to specify the value of the smoothing bandwidth sigma as
shown in the examples.

Value

An object of class "htest" representing the result of the test.

sharpen 433

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Bithell, J.F. (1991) Estimation of relative risk functions. Statistics in Medicine 10, 1745–1751.

Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3–16.

Diggle, P.J., Zheng, P. and Durr, P. (2005) Non-parametric estimation of spatial segregation in a
multivariate point process: bovine tuberculosis in Cornwall, UK. Applied Statistics 54, 645–658.

See Also

relrisk

Examples

segregation.test(hyytiala, 5)

if(interactive()) segregation.test(hyytiala, hmin=0.05)

sharpen Data Sharpening of Point Pattern

Description

Performs Choi-Hall data sharpening of a spatial point pattern.

Usage

sharpen(X, ...)
S3 method for class 'ppp'
sharpen(X, sigma=NULL, ...,

varcov=NULL, edgecorrect=FALSE)

Arguments

X A marked point pattern (object of class "ppp").

sigma Standard deviation of isotropic Gaussian smoothing kernel.

varcov Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with
sigma.

edgecorrect Logical value indicating whether to apply edge effect bias correction.

... Arguments passed to density.ppp to control the pixel resolution of the result.

434 sharpen

Details

Choi and Hall (2001) proposed a procedure for data sharpening of spatial point patterns. This pro-
cedure is appropriate for earthquake epicentres and other point patterns which are believed to exhibit
strong concentrations of points along a curve. Data sharpening causes such points to concentrate
more tightly along the curve.

If the original data points are X1, . . . , Xn then the sharpened points are

X̂i =

∑
j Xjk(Xj −Xi)∑
j k(Xj −Xi)

where k is a smoothing kernel in two dimensions. Thus, the new point X̂i is a vector average of the
nearby points X[j].

The function sharpen is generic. It currently has only one method, for two-dimensional point
patterns (objects of class "ppp").

If sigma is given, the smoothing kernel is the isotropic two-dimensional Gaussian density with
standard deviation sigma in each axis. If varcov is given, the smoothing kernel is the Gaussian
density with variance-covariance matrix varcov.

The data sharpening procedure tends to cause the point pattern to contract away from the boundary
of the window. That is, points Xi that lie ‘quite close to the edge of the window of the point pattern
tend to be displaced inward. If edgecorrect=TRUE then the algorithm is modified to correct this
vector bias.

Value

A point pattern (object of class "ppp") in the same window as the original pattern X, and with the
same marks as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Choi, E. and Hall, P. (2001) Nonparametric analysis of earthquake point-process data. In M. de
Gunst, C. Klaassen and A. van der Vaart (eds.) State of the art in probability and statistics:
Festschrift for Willem R. van Zwet, Institute of Mathematical Statistics, Beachwood, Ohio. Pages
324–344.

See Also

density.ppp, Smooth.ppp.

Examples

X <- unmark(shapley)

Y <- sharpen(X, sigma=0.5)

Smooth 435

Z <- sharpen(X, sigma=0.5, edgecorrect=TRUE)
opa <- par(mar=rep(0.2, 4))
plot(solist(X, Y, Z), main= " ",

main.panel=c("data", "sharpen", "sharpen, correct"),
pch=".", equal.scales=TRUE, mar.panel=0.2)

par(opa)

Smooth Spatial smoothing of data

Description

Generic function to perform spatial smoothing of spatial data.

Usage

Smooth(X, ...)

Arguments

X Some kind of spatial data

... Arguments passed to methods.

Details

This generic function calls an appropriate method to perform spatial smoothing on the spatial dataset
X.

Methods for this function include

• Smooth.ppp for point patterns

• Smooth.msr for measures

• Smooth.fv for function value tables

Value

An object containing smoothed values of the input data, in an appropriate format. See the docu-
mentation for the methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Smooth.ppp, Smooth.im, Smooth.msr, Smooth.fv.

436 Smooth.fv

Smooth.fv Apply Smoothing to Function Values

Description

Applies smoothing to the values in selected columns of a function value table.

Usage

S3 method for class 'fv'
Smooth(X, which = "*", ...,

method=c("smooth.spline", "loess"),
xinterval=NULL)

Arguments

X Values to be smoothed. A function value table (object of class "fv", see fv.object).

which Character vector identifying which columns of the table should be smoothed.
Either a vector containing names of columns, or one of the wildcard strings "*"
or "." explained below.

... Extra arguments passed to smooth.spline or loess to control the smoothing.

method Smoothing algorithm. A character string, partially matched to either "smooth.spline"
or "loess".

xinterval Optional. Numeric vector of length 2 specifying a range of x values. Smoothing
will be performed only on the part of the function corresponding to this range.

Details

The command Smooth.fv applies smoothing to the function values in a function value table (object
of class "fv").

Smooth.fv is a method for the generic function Smooth.

The smoothing is performed either by smooth.spline or by loess.

Smoothing is applied to every column (or to each of the selected columns) of function values in
turn, using the function argument as the x coordinate and the selected column as the y coordinate.
The original function values are then replaced by the corresponding smooth interpolated function
values.

The optional argument which specifies which of the columns of function values in x will be smoothed.
The default (indicated by the wildcard which="*") is to smooth all function values, i.e.\ all columns
except the function argument. Alternatively which="." designates the subset of function values that
are displayed in the default plot. Alternatively which can be a character vector containing the names
of columns of x.

If the argument xinterval is given, then smoothing will be performed only in the specified range
of x values.

Smooth.ppp 437

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

Smooth, with.fv, fv.object, smooth.spline, smooth.spline

Examples

G <- Gest(cells)
plot(G)
plot(Smooth(G, df=9), add=TRUE)

Smooth.ppp Spatial smoothing of observations at irregular points

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations. Uses kernel
smoothing and least-squares cross-validated bandwidth selection.

Usage

S3 method for class 'ppp'
Smooth(X, sigma=NULL,

...,
weights = rep(1, npoints(X)),
at = "pixels", leaveoneout=TRUE,
adjust = 1, varcov = NULL,
edge = TRUE, diggle = FALSE,
kernel = "gaussian",
scalekernel = is.character(kernel),
se = FALSE,
loctype = c("random", "fixed"),
wtype = c("multiplicity", "importance"),
geometric = FALSE)

markmean(X, ...)

markvar(X, sigma=NULL, ..., weights=NULL, varcov=NULL)

438 Smooth.ppp

Arguments

X A marked point pattern (object of class "ppp").

sigma Smoothing bandwidth. A single positive number, a numeric vector of length 2,
or a function that selects the bandwidth automatically. See density.ppp.

... Further arguments passed to bw.smoothppp and density.ppp to control the
kernel smoothing and the pixel resolution of the result.

weights Optional weights attached to the observations. A numeric vector, a function(x,y),
a pixel image, or an expression. See density.ppp.

at String specifying whether to compute the smoothed values at a grid of pixel
locations (at="pixels") or only at the points of X (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

edge, diggle Arguments passed to density.ppp to determine the edge correction.

adjust Optional. Adjustment factor for the bandwidth sigma.

varcov Variance-covariance matrix. An alternative to sigma. See density.ppp.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc"), or a
pixel image (object of class "im") containing values of the kernel, or a function(x,y)
which yields values of the kernel.

scalekernel Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the
bandwidth determined by sigma and varcov: this is the default behaviour when
kernel is a character string. If scalekernel=FALSE, then sigma and varcov
will be ignored: this is the default behaviour when kernel is a function or a
pixel image.

se Logical value specifying whether to calculate standard errors. This calculation
is experimental.

loctype Character string (partially matched) specifying whether the point locations are
assumed to be fixed or random, in the calculation of standard error. Experimen-
tal.

wtype Character string (partially matched) specifying whether the weights should be
interpreted as multiplicities or as importance weights, in the calculation of stan-
dard error. Experimental.

geometric Logical value indicating whether to perform geometric mean smoothing instead
of arithmetic mean smoothing. See Details.

Details

The function Smooth.ppp performs spatial smoothing of numeric values observed at a set of irreg-
ular locations. The functions markmean and markvar are wrappers for Smooth.ppp which compute
the spatially-varying mean and variance of the marks of a point pattern.

Smooth.ppp is a method for the generic function Smooth for the class "ppp" of point patterns. Thus
you can type simply Smooth(X).

Smooth.ppp 439

Smoothing is performed by kernel weighting, using the Gaussian kernel by default. If the observed
values are v1, . . . , vn at locations x1, . . . , xn respectively, then the smoothed value at a location u
is (ignoring edge corrections)

g(u) =

∑
i k(u− xi)vi∑
i k(u− xi)

where k is the kernel (a Gaussian kernel by default). This is known as the Nadaraya-Watson
smoother (Nadaraya, 1964, 1989; Watson, 1964). By default, the smoothing kernel bandwidth
is chosen by least squares cross-validation (see below).

The argument X must be a marked point pattern (object of class "ppp", see ppp.object). The points
of the pattern are taken to be the observation locations xi, and the marks of the pattern are taken to
be the numeric values vi observed at these locations.

The marks are allowed to be a data frame (in Smooth.ppp and markmean). Then the smoothing
procedure is applied to each column of marks.

The numerator and denominator are computed by density.ppp. The arguments ... control the
smoothing kernel parameters and determine whether edge correction is applied. The smoothing
kernel bandwidth can be specified by either of the arguments sigma or varcov which are passed to
density.ppp. If neither of these arguments is present, then by default the bandwidth is selected by
least squares cross-validation, using bw.smoothppp.

The optional argument weights allows numerical weights to be applied to the data. If a weight wi

is associated with location xi, then the smoothed function is (ignoring edge corrections)

g(u) =

∑
i k(u− xi)viwi∑
i k(u− xi)wi

If geometric=TRUE then geometric mean smoothing is performed instead of arithmetic mean smooth-
ing. The mark values must be non-negative numbers. The logarithm of the mark values is computed;
these logarithmic values are kernel-smoothed as described above; then the exponential function is
applied to the smoothed values.

An alternative to kernel smoothing is inverse-distance weighting, which is performed by idw.

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values
are values of the interpolated function.

• If at="points", the result is a numeric vector of length equal to the number of points in X.
Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

The return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that
was used.

440 Smooth.ssf

Very small bandwidth

If the chosen bandwidth sigma is very small, kernel smoothing is mathematically equivalent to
nearest-neighbour interpolation; the result will be computed by nnmark. This is unless at="points"
and leaveoneout=FALSE, when the original mark values are returned.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Nadaraya, E.A. (1964) On estimating regression. Theory of Probability and its Applications 9,
141–142.

Nadaraya, E.A. (1989) Nonparametric estimation of probability densities and regression curves.
Kluwer, Dordrecht.

Watson, G.S. (1964) Smooth regression analysis. Sankhya A 26, 359–372.

See Also

Smooth,

density.ppp, bw.smoothppp, nnmark, ppp.object, im.object.

See idw for inverse-distance weighted smoothing.

To perform interpolation, see also the akima package.

Examples

Longleaf data - tree locations, marked by tree diameter
Local smoothing of tree diameter (automatic bandwidth selection)
Z <- Smooth(longleaf)
Kernel bandwidth sigma=5
plot(Smooth(longleaf, 5))
mark variance
plot(markvar(longleaf, sigma=5))
data frame of marks: trees marked by diameter and height
plot(Smooth(finpines, sigma=2))
head(Smooth(finpines, sigma=2, at="points"))

Smooth.ssf Smooth a Spatially Sampled Function

Description

Applies kernel smoothing to a spatially sampled function.

Smoothfun.ppp 441

Usage

S3 method for class 'ssf'
Smooth(X, ...)

Arguments

X Object of class "ssf".

... Arguments passed to Smooth.ppp to control the smoothing.

Details

An object of class "ssf" represents a real-valued or vector-valued function that has been evaluated
or sampled at an irregular set of points.

The function values will be smoothed using a Gaussian kernel.

Value

A pixel image or a list of pixel images.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf, Smooth.ppp

Examples

f <- ssf(redwood, nndist(redwood))
Smooth(f, sigma=0.1)

Smoothfun.ppp Smooth Interpolation of Marks as a Spatial Function

Description

Perform spatial smoothing of numeric values observed at a set of irregular locations, and return the
result as a function of spatial location.

Usage

Smoothfun(X, ...)

S3 method for class 'ppp'
Smoothfun(X, sigma = NULL, ...,

weights = NULL, edge = TRUE, diggle = FALSE)

442 SmoothHeat

Arguments

X Marked point pattern (object of class "ppp").

sigma Smoothing bandwidth, or bandwidth selection function, passed to Smooth.ppp.

... Additional arguments passed to Smooth.ppp.

weights Optional vector of weights associated with the points of X.

edge, diggle Logical arguments controlling the edge correction. Arguments passed to Smooth.ppp.

Details

The commands Smoothfun and Smooth both perform kernel-smoothed spatial interpolation of nu-
meric values observed at irregular spatial locations. The difference is that Smooth returns a pixel im-
age, containing the interpolated values at a grid of locations, while Smoothfun returns a function(x,y)
which can be used to compute the interpolated value at any spatial location. For purposes such as
model-fitting it is more accurate to use Smoothfun to interpolate data.

Value

A function with arguments x,y. The function also belongs to the class "Smoothfun" which has
methods for print and as.im. It also belongs to the class "funxy" which has methods for plot,
contour and persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Smooth

Examples

f <- Smoothfun(longleaf)
f
f(120, 80)
plot(f)

SmoothHeat Spatial Smoothing of Data by Diffusion

Description

Generic function to perform spatial smoothing of spatial data by diffusion.

Usage

SmoothHeat(X, ...)

SmoothHeat.ppp 443

Arguments

X Some kind of spatial data
... Arguments passed to methods.

Details

This generic function calls an appropriate method to perform spatial smoothing on the spatial dataset
X using diffusion.

Methods for this function include

• SmoothHeat.ppp for point patterns
• SmoothHeat.im for pixel images.

Value

An object containing smoothed values of the input data, in an appropriate format. See the docu-
mentation for the methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

SmoothHeat.ppp, SmoothHeat.im.

SmoothHeat.ppp Spatial Smoothing of Observations using Diffusion Estimate of Den-
sity

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations, using the
diffusion estimate of the density.

Usage

S3 method for class 'ppp'
SmoothHeat(X, sigma, ..., weights=NULL)

Arguments

X Point pattern (object of class "ppp") with numeric marks.
sigma Smoothing bandwidth. A single number giving the equivalent standard deviation

of the smoother.
... Arguments passed to densityHeat controlling the estimation of each marginal

intensity, or passed to pixellate.ppp controlling the pixel resolution.
weights Optional numeric vector of weights associated with each data point.

444 spatcov

Details

This is the analogue of the Nadaraya-Watson smoother, using the diffusion smoothing estima-
tion procedure (Baddeley et al, 2022). The numerator and denominator of the Nadaraya-Watson
smoother are calculated using densityHeat.ppp.

Value

Pixel image (object of class "im") giving the smoothed mark value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Tilman Davies <Tilman.Davies@otago.ac.nz>
and Suman Rakshit.

References

Baddeley, A., Davies, T., Rakshit, S., Nair, G. and McSwiggan, G. (2022) Diffusion smoothing for
spatial point patterns. Statistical Science 37, 123–142.

See Also

Smooth.ppp for the usual kernel-based smoother (the Nadaraya-Watson smoother) and densityHeat
for the diffusion estimate of density.

Examples

plot(SmoothHeat(longleaf, 10))

spatcov Estimate the Spatial Covariance Function of a Random Field

Description

Given a pixel image, calculate an estimate of the spatial covariance function. Given two pixel
images, calculate an estimate of their spatial cross-covariance function.

Usage

spatcov(X, Y=X, ..., correlation=FALSE, isotropic = TRUE,
clip = TRUE, pooling=TRUE)

spatcov 445

Arguments

X A pixel image (object of class "im").

Y Optional. Another pixel image.

correlation Logical value specifying whether to standardise so that the spatial correlation
function is returned.

isotropic Logical value specifying whether to assume the covariance is isotropic, so that
the result is a function of the lag distance.

clip Logical value specifying whether to restrict the results to the range of spatial
lags where the estimate is reliable.

pooling Logical value specifying the estimation method when isotropic=TRUE.

... Ignored.

Details

In normal usage, only the first argument X is given. Then the pixel image X is treated as a realisation
of a stationary random field, and its spatial covariance function is estimated.

Alternatively if Y is given, then X and Y are assumed to be jointly stationary random fields, and their
spatial cross-covariance function is estimated.

For any random field X, the spatial covariance is defined for any two spatial locations u and v by

C(u, v) = cov(X(u), X(v))

where X(u) and X(v) are the values of the random field at those locations. Herecov denotes
the statistical covariance, defined for any random variables A and B by cov(A,B) = E(AB) −
E(A)E(B) where E(A) denotes the expected value of A.

If the random field is assumed to be stationary (at least second-order stationary) then the spatial
covariance C(u, v) depends only on the lag vector v − u:

C(u, v) = C2(v − u)

C(u, v) = C2(v − u)

where C2 is a function of a single vector argument.

If the random field is stationary and isotropic, then the spatial covariance depends only on the lag
distance ∥v − u∥:

C2(v − u) = C1(∥v − u∥)

where C1 is a function of distance.

The function spatcov computes estimates of the covariance function C1 or C2 as follows:

• If isotropic=FALSE, an estimate of the covariance function C2 is computed, assuming the
random field is stationary, using the naive moment estimator, C2 = imcov(X-mean(X))/setcov(Window(X)).
The result is a pixel image.

• If isotropic=TRUE (the default) an estimate of the covariance function C1 is computed, as-
suming the random field is stationary and isotropic.

– When pooling=FALSE, the estimate of C1 is the rotational average of the naive estimate
of C2.

446 spatialcdf

– When pooling=TRUE (the default), the estimate of C1 is the ratio of the rotational aver-
ages of the numerator and denominator which form the naive estimate of C2.

The result is a function object (class "fv").

If the argument Y is given, it should be a pixel image compatible with X. An estimate of the spatial
cross-covariance function between X and Y will be computed.

Value

If isotropic=TRUE (the default), the result is a function value table (object of class "fv") giving the
estimated values of the covariance function or spatial correlation function for a sequence of values
of the spatial lag distance r.

If isotropic=FALSE, the result is a pixel image (object of class "im") giving the estimated values
of the spatial covariance function or spatial correlation function for a grid of values of the spatial
lag vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

imcov, setcov

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32)

D <- density(cells)
plot(spatcov(D))

if(offline) spatstat.options(op)

spatialcdf Spatial Cumulative Distribution Function

Description

Compute the spatial cumulative distribution function of a spatial covariate, optionally using spatially-
varying weights.

Usage

spatialcdf(Z, weights = NULL, normalise = FALSE, ..., W = NULL, Zname = NULL)

spatialcdf 447

Arguments

Z Spatial covariate. A pixel image or a function(x,y,...)

weights Spatial weighting for different locations. A pixel image, a function(x,y,...),
a window, a constant value, or a fitted point process model (object of class "ppm"
or "kppm").

normalise Logical. Whether the weights should be normalised so that they sum to 1.

... Arguments passed to as.mask to determine the pixel resolution, or extra argu-
ments passed to Z if it is a function.

W Optional window (object of class "owin") defining the spatial domain.

Zname Optional character string for the name of the covariate Z used in plots.

Details

If weights is missing or NULL, it defaults to 1. The values of the covariate Z are computed on a
grid of pixels. The weighted cumulative distribution function of Z values is computed, taking each
value with weight equal to the pixel area. The resulting function F is such that F (t) is the area of
the region of space where Z ≤ t.

If weights is a pixel image or a function, then the values of weights and of the covariate Z are
computed on a grid of pixels. The weights are multiplied by the pixel area. Then the weighted
empirical cumulative distribution function of Z values is computed using ewcdf. The resulting
function F is such that F (t) is the total weight (or weighted area) of the region of space where
Z ≤ t.

If weights is a fitted point process model, then it should be a Poisson process. The fitted intensity
of the model, and the value of the covariate Z, are evaluated at the quadrature points used to fit the
model. The weights are multiplied by the weights of the quadrature points. Then the weighted
empirical cumulative distribution of Z values is computed using ewcdf. The resulting function F is
such that F (t) is the expected number of points in the point process that will fall in the region of
space where Z ≤ t.

If normalise=TRUE, the function is normalised so that its maximum value equals 1, so that it gives
the cumulative fraction of weight or cumulative fraction of points.

The result can be printed, plotted, and used as a function.

Value

A cumulative distribution function object belonging to the classes "spatialcdf", "ewcdf", "ecdf"
(only if normalise=TRUE) and "stepfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ewcdf, cdf.test

448 SpatialMedian.ppp

Examples

with(bei.extra, {
plot(spatialcdf(grad))
if(require("spatstat.model")) {

fit <- ppm(bei ~ elev)
plot(spatialcdf(grad, predict(fit)))
A <- spatialcdf(grad, fit)
A(0.1)

}
})
plot(spatialcdf("x", W=letterR))

SpatialMedian.ppp Spatially Weighted Median of Values at Points

Description

Given a spatial point pattern with numeric marks, compute a weighted median of the mark values,
with spatially-varying weights that depend on distance to the data points.

Usage

S3 method for class 'ppp'
SpatialMedian(X, sigma = NULL, ...,

type = 4, at = c("pixels", "points"), leaveoneout = TRUE,
weights = NULL, edge = TRUE, diggle = FALSE, verbose = FALSE)

Arguments

X A spatial point pattern (object of class "ppp") with numeric marks.

sigma Smoothing bandwidth, passed to density.ppp.

... Further arguments passed to density.ppp controlling the spatial smoothing.

type Integer specifying the type of median (using the convention of quantile.default;
see Details). Only types 1 and 4 are currently implemented.

at Character string indicating whether to compute the median at every pixel of a
pixel image (at="pixels", the default) or at every data point of X (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

weights Optional vector of numeric weights attached to the points of X.

edge, diggle Arguments passed to density.ppp to determine the edge correction.

verbose Logical value specifying whether to print progress reports during the calculation.

SpatialMedian.ppp 449

Details

The argument X should be a spatial point pattern (object of class "ppp") with numeric marks.

The algorithm computes the weighted median of the mark values at each desired spatial location,
using spatially-varying weights which depend on distance to the data points.

Suppose the data points are at spatial locations x1, . . . , xn and have mark values y1, . . . , yn. For
a query location u, the smoothed median is defined as the weighted median of the mark values
y1, . . . , yn with weights w1, . . . , wn, where

wi =
k(u, xi)∑n
j=1 k(u, xj)

where k(u, v) is the smoothing kernel with bandwidth sigma

If at="points" and leaveoneout=TRUE, then a leave-one-out calculation is performed, which
means that when the query location is a data point xi, the value at the data point is ignored, and the
weighted median is computed from the values yj for all j not equal to i.

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im").

• If at="points", the result is a numeric vector of length equal to the number of points in X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

The return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that
was used.

The calculation of the median value depends on the argument type which is interpreted in the same
way as for quantile.default. Currently, only types 1 and 4 are implemented. If type=1, the
median is always one of the mark values (one of the values in marks(x)). If type=4 (the default),
the median value is obtained by linearly interpolating between mark values. Note that the default
values of type in SpatialMedian.ppp and SpatialQuantile.ppp are different.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Generic function SpatialMedian.

SpatialQuantile and SpatialQuantile.ppp for other quantiles.

Smooth.ppp for the spatially weighted average.

450 SpatialQuantile

Examples

X <- longleaf
if(!interactive()) {
mark values rounded to nearest multiple of 10 to reduce check time
marks(X) <- round(marks(X), -1)
}
Z <- SpatialMedian(X, sigma=30)
ZX <- SpatialMedian(X, sigma=30, at="points")

SpatialQuantile Spatially Weighted Median or Quantile

Description

Compute a weighted median or weighted quantile of spatial data.

Usage

SpatialMedian(X, ...)

SpatialQuantile(X, prob = 0.5, ...)

Arguments

X A spatial data object.

prob Probability for which the quantile is required. A single numeric value between
0 and 1. Default is to calculate the median.

... Further arguments passed to methods.

Details

The functions SpatialMedian and SpatialQuantile are generic. They calculate spatially weighted
medians and quantiles of spatial data. The details depend on the class of X.

There are methods for spatial point patterns (class "ppp") and possibly for other objects.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Methods SpatialMedian.ppp, SpatialQuantile.ppp.

Smooth for the spatially weighted average.

SpatialQuantile.ppp 451

SpatialQuantile.ppp Spatially Weighted Quantile of Values at Points

Description

Given a spatial point pattern with numeric marks, compute a weighted quantile of the mark values,
with spatially-varying weights that depend on distance to the data points.

Usage

S3 method for class 'ppp'
SpatialQuantile(X, prob = 0.5, sigma = NULL, ...,

type = 1, at = c("pixels", "points"), leaveoneout = TRUE,
weights = NULL, edge = TRUE, diggle = FALSE, verbose = FALSE)

Arguments

X A spatial point pattern (object of class "ppp") with numeric marks.

prob Probability for which the quantile is required. A single numeric value between
0 and 1.

sigma Smoothing bandwidth, passed to density.ppp.

... Further arguments passed to density.ppp controlling the spatial smoothing.

type Integer specifying the type of median (using the convention of quantile.default;
see Details). Only types 1 and 4 are currently implemented.

at Character string indicating whether to compute the quantile at every pixel of a
pixel image (at="pixels", the default) or at every data point of X (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

weights Optional vector of numeric weights attached to the points of X.

edge, diggle Arguments passed to density.ppp to determine the edge correction.

verbose Logical value specifying whether to print progress reports during the calculation.

Details

The argument X should be a spatial point pattern (object of class "ppp") with numeric marks.

The algorithm computes the weighted quantile of the mark values at each desired spatial location,
using spatially-varying weights which depend on distance to the data points.

Suppose the data points are at spatial locations x1, . . . , xn and have mark values y1, . . . , yn. For
a query location u, the smoothed quantile is defined as the weighted quantile of the mark values
y1, . . . , yn with weights w1(u), . . . , wn(u), where

wi(u) =
k(u, xi)∑n
j=1 k(u, xj)

452 SpatialQuantile.ppp

where k(u, v) is the smoothing kernel with bandwidth sigma.

If at="points" and leaveoneout=TRUE, then a leave-one-out calculation is performed, which
means that when the query location is a data point xi, the value at the data point is ignored, and the
weighted quantile is computed from the values yj for all j not equal to i.

The calculation of the quantile value depends on the argument type which is interpreted in the
same way as for quantile.default. Currently, only types 1 and 4 are implemented. If type=1
(the default), the quantile value is one of the mark values (one of the values in marks(x)). If
type=4, the quantile value is obtained by linearly interpolating between mark values. Note that the
default values of type in SpatialQuantile.ppp and SpatialMedian.ppp are different.

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im").

• If at="points", the result is a numeric vector of length equal to the number of points in X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

The return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that
was used.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

SpatialMedian.ppp, SpatialMedian.

Examples

X <- longleaf
if(!interactive()) {
mark values rounded to nearest multiple of 10 to reduce check time
marks(X) <- round(marks(X), -1)
}
Z <- SpatialQuantile(X, prob=0.25, sigma=30)
ZX <- SpatialQuantile(X, prob=0.25, sigma=30, at="points")

ssf 453

ssf Spatially Sampled Function

Description

Create an object that represents a spatial function which has been evaluated or sampled at an irreg-
ular set of points.

Usage

ssf(loc, val)

Arguments

loc The spatial locations at which the function has been evaluated. A point pattern
(object of class "ppp").

val The function values at these locations. A numeric vector with one entry for each
point of loc, or a data frame with one row for each point of loc.

Details

An object of class "ssf" represents a real-valued or vector-valued function that has been evaluated
or sampled at an irregular set of points. An example would be a spatial covariate that has only been
measured at certain locations.

An object of this class also inherits the class "ppp", and is essentially the same as a marked point
pattern, except for the class membership which enables it to be handled in a different way.

There are methods for plot, print etc; see plot.ssf and methods.ssf.

Use unmark to extract only the point locations, and marks.ssf to extract only the function values.

Value

Object of class "ssf".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

plot.ssf, methods.ssf, Smooth.ssf, with.ssf, [.ssf.

Examples

ssf(cells, nndist(cells, k=1:3))

454 stienen

stienen Stienen Diagram

Description

Draw the Stienen diagram of a point pattern, or compute the region covered by the Stienen diagram.

Usage

stienen(X, ..., bg = "grey", border = list(bg = NULL))
stienenSet(X, edge=TRUE)

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to plot.ppp to control the plot.

bg Fill colour for circles.

border Either a list of arguments passed to plot.ppp to control the display of circles at
the border of the diagram, or the value FALSE indicating that the border circles
should not be plotted.

edge Logical value indicating whether to include the circles at the border of the dia-
gram.

Details

The Stienen diagram of a point pattern (Stienen, 1982) is formed by drawing a circle around each
point of the pattern, with diameter equal to the nearest-neighbour distance for that point. These
circles do not overlap. If two points are nearest neighbours of each other, then the corresponding
circles touch.

stienenSet(X) computes the union of these circles and returns it as a window (object of class
"owin").

stienen(X) generates a plot of the Stienen diagram of the point pattern X. By default, circles are
shaded in grey if they lie inside the window of X, and are not shaded otherwise.

Value

The plotting function stienen returns NULL.

The return value of stienenSet is a window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

studpermu.test 455

References

Stienen, H. (1982) Die Vergroeberung von Karbiden in reinen Eisen-Kohlenstoff Staehlen. Disser-
tation, RWTH Aachen.

See Also

nndist, plot.ppp

Examples

Y <- stienenSet(cells)
stienen(redwood)
stienen(redwood, border=list(bg=NULL, lwd=2, cols="red"))

studpermu.test Studentised Permutation Test

Description

Perform a studentised permutation test for a difference between groups of point patterns.

Usage

studpermu.test(X, formula, summaryfunction = Kest,
..., rinterval = NULL, nperm = 999,
use.Tbar = FALSE, minpoints = 20, rsteps = 128,
r = NULL, arguments.in.data = FALSE)

Arguments

X Data. Either a hyperframe or a list of lists of point patterns.

formula Formula describing the grouping, when X is a hyperframe. The left side of the
formula identifies which column of X contains the point patterns. The right side
identifies the grouping factor. If the formula is missing, the grouping variable is
taken to be the first column of X that contains a factor, and the point patterns are
taken from the first column that contains point patterns.

summaryfunction

Summary function applicable to point patterns.

... Additional arguments passed to summaryfunction.

rinterval Interval of distance values r over which the summary function should be eval-
uated and over which the test statistic will be integrated. If NULL, the default
range of the summary statistic is used (taking the intersection of these ranges
over all patterns).

nperm Number of random permutations for the test.

456 studpermu.test

use.Tbar Logical value indicating choice of test statistic. If TRUE, use the alternative test
statistic, which is appropriate for summary functions with roughly constant vari-
ance, such as K(r)/r or L(r).

minpoints Minimum permissible number of points in a point pattern for inclusion in the
test calculation.

rsteps Number of discretisation steps in the rinterval.
r Optional vector of distance values as the argument for summaryfunction. Should

not usually be given. There is a sensible default.
arguments.in.data

Logical. If TRUE, individual extra arguments to summaryfunction will be taken
from X (which must be a hyperframe). This assumes that the first argument of
summaryfunction is the point pattern dataset.

Details

This function performs the studentized permutation test of Hahn (2012) for a difference between
groups of point patterns.

The first argument X should be either

a list of lists of point patterns. Each element of X will be interpreted as a group of point patterns,
assumed to be replicates of the same point process.

a hyperframe: One column of the hyperframe should contain point patterns, and another column
should contain a factor indicating the grouping. The argument formula should be a formula
in the R language specifying the grouping: it should be of the form P ~ G where P is the name
of the column of point patterns, and G is the name of the factor.

A group needs to contain at least two point patterns with at least minpoints points in each pattern.

The function returns an object of class "htest" and "studpermutest" that can be printed and
plotted. The printout shows the test result and p-value. The plot shows the summary functions for
the groups (and the group means if requested).

Value

Object of class "studpermutest".

Author(s)

Ute Hahn.

Modified for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner
<rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

References

Hahn, U. (2012) A studentized permutation test for the comparison of spatial point patterns. Journal
of the American Statistical Association 107 (498), 754–764.

See Also

plot.studpermutest

subspaceDistance 457

Examples

np <- if(interactive()) 99 else 19
testpyramidal <- studpermu.test(pyramidal, Neurons ~ group, nperm=np)
testpyramidal

subspaceDistance Distance Between Linear Spaces

Description

Evaluate the distance between two linear subspaces using the measure proposed by Li, Zha and
Chiaromonte (2005).

Usage

subspaceDistance(B0, B1)

Arguments

B0 Matrix whose columns are a basis for the first subspace.

B1 Matrix whose columns are a basis for the second subspace.

Details

This algorithm calculates the maximum absolute value of the eigenvalues of P1−P0 where P0, P1
are the projection matrices onto the subspaces generated by B0,B1. This measure of distance was
proposed by Li, Zha and Chiaromonte (2005). See also Xia (2007).

Value

A single numeric value.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

Li, B., Zha, H. and Chiaromonte, F. (2005) Contour regression: a general approach to dimension
reduction. Annals of Statistics 33, 1580–1616.

Xia, Y. (2007) A constructive approach to the estimation of dimension reduction directions. Annals
of Statistics 35, 2654–2690.

458 thresholdCI

thresholdCI Confidence Interval for Threshold of Numerical Predictor

Description

Given a point pattern and a spatial covariate that has some predictive value for the point pattern,
compute a confidence interval for the optimal value of the threshold that should be used to convert
the covariate to a binary predictor.

Usage

thresholdCI(X, Z, confidence = 0.95, nsim = 1000, parametric = FALSE)

Arguments

X Point pattern (object of class "ppp").

Z Spatial covariate with numerical values. Either a pixel image (object of class
"im"), a distance function (object of class "distfun") or a function(x,y) in
the R language.

confidence Confidence level. A number between 0 and 1.

nsim Number of bootstrap simulations to perform.

parametric Logical value specifying whether to use the parametric bootstrap.

Details

The spatial covariate Z is assumed to have some utility as a predictor of the point pattern X.

This code computes a bootstrap confidence interval for the best threshold value z for converting the
numerical predictor to a binary predictor, for use in techniques such as Weights of Evidence.

Value

A matrix containing upper and lower limits for the threshold z and the corresponding upper and
lower limits for the fraction of area of the study region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Brown, W., Milne, R.K., Nair, G., Rakshit, S., Lawrence, T., Phatak, A. and Fu, S.C.
(2021) Optimal thresholding of predictors in mineral prospectivity analysis. Natural Resources
Research 30 923–969.

See Also

thresholdSelect

thresholdSelect 459

Examples

gold <- rescale(murchison$gold, 1000, "km")
faults <- rescale(murchison$faults, 1000, "km")
distfault <- distfun(faults)
Nsim <- if(interactive()) 250 else 25
thresholdCI(gold, distfault, nsim=Nsim)

thresholdSelect Select Threshold to Convert Numerical Predictor to Binary Predictor

Description

Given a point pattern and a spatial covariate that has some predictive value for the point pattern,
determine the optimal value of the threshold for converting the covariate to a binary predictor.

Usage

thresholdSelect(X, Z, method = c("Y", "LL", "AR", "t", "C"), Zname)

Arguments

X Point pattern (object of class "ppp").

Z Spatial covariate with numerical values. Either a pixel image (object of class
"im"), a distance function (object of class "distfun") or a function(x,y) in
the R language.

method Character string (partially matched) specifying the method to be used to select
the optimal threshold value. See Details.

Zname Optional character string giving a short name for the covariate.

Details

The spatial covariate Z is assumed to have some utility as a predictor of the point pattern X.

This code chooses the best threshold value v for converting the numerical predictor Z to a binary
predictor, for use in techniques such as Weights of Evidence.

The best threshold is selected by maximising the criterion specified by the argument method. Op-
tions are:

• method="Y" (the default): the Youden criterion

• method="LL": log-likelihood

• method="AR": the Akman-Raftery criterion

• method="t": the Studentised Weights-of-Evidence contrast

• method="C": the Weights-of-Evidence contrast

These criteria are explained in Baddeley et al (2021).

460 transect.im

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the criterion used to select the
threshold.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Brown, W., Milne, R.K., Nair, G., Rakshit, S., Lawrence, T., Phatak, A. and Fu, S.C.
(2021) Optimal thresholding of predictors in mineral prospectivity analysis. Natural Resources
Research 30 923–969.

See Also

thresholdCI

Examples

gold <- rescale(murchison$gold, 1000, "km")
faults <- rescale(murchison$faults, 1000, "km")
distfault <- distfun(faults)
z <- thresholdSelect(gold, distfault)
z
plot(z, xlim=c(0, 20))

transect.im Pixel Values Along a Transect

Description

Extract the pixel values of a pixel image at each point along a linear transect.

Usage

transect.im(X, ..., from="bottomleft", to="topright",
nsample=512, click=FALSE, add=FALSE, curve=NULL)

Arguments

X A pixel image (object of class "im").

... Ignored.

from, to Optional. Start point and end point of the transect. Pairs of (x, y) coordinates
in a format acceptable to xy.coords, or keywords "bottom", "left", "top",
"right", "bottomleft" etc.

transect.im 461

nsample Integer. Number of sample locations along the transect.

click Optional. Logical value. If TRUE, the linear transect is determined interactively
by the user, who clicks two points on the current plot.

add Logical. If click=TRUE, this argument determines whether to perform interac-
tive tasks on the current plot (add=TRUE) or to start by plotting X (add=FALSE).

curve Optional. A specification of a curved transect. See the section on Curved Tran-
sect.

Details

The pixel values of the image X along a line segment will be extracted. The result is a function table
("fv" object) which can be plotted directly.

If click=TRUE, then the user is prompted to click two points on the plot of X. These endpoints define
the transect.

Otherwise, the transect is defined by the endpoints from and to. The default is a diagonal transect
from bottom left to top right of the frame.

Value

An object of class "fv" which can be plotted.

Curved Transect

If curve is given, then the transect will be a curve. The argument curve should be a list with the
following arguments:

f A function in the R language with one argument t.

tlim A numeric vector of length 2 giving the range of values of the argument t.

tname (Optional) a character string giving the symbolic name of the function argument t; defaults
to "t".

tdescrip (Optional) a character string giving a short description of the function argument t; defaults
to "curve parameter".

The function f must return a 2-column matrix or data frame specifying the spatial coordinates (x,y)
of locations along the curve, determined by the values of the input argument t.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

im

Examples

Z <- bei.extra$elev
plot(transect.im(Z))

462 Tstat

Tstat Third order summary statistic

Description

Computes the third order summary statistic T (r) of a spatial point pattern.

Usage

Tstat(X, ..., r = NULL, rmax = NULL,
correction = c("border", "translate"), ratio = FALSE, verbose=TRUE)

Arguments

X The observed point pattern, from which an estimate of T (r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

r Optional. Vector of values for the argument r at which T (r) should be evaluated.
Users are advised not to specify this argument; there is a sensible default.

rmax Optional. Numeric. The maximum value of r for which T (r) should be esti-
mated.

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "translate", "translation", or "best". It spec-
ifies the edge correction(s) to be applied. Alternatively correction="all" se-
lects all options.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

verbose Logical. If TRUE, an estimate of the computation time is printed.

Details

This command calculates the third-order summary statistic T (r) for a spatial point patterns, defined
by Schladitz and Baddeley (2000).

The definition of T (r) is similar to the definition of Ripley’s K function K(r), except that K(r)
counts pairs of points while T (r) counts triples of points. Essentially T (r) is a rescaled cumulative
distribution function of the diameters of triangles in the point pattern. The diameter of a triangle is
the length of its longest side.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

varblock 463

Computation time

If the number of points is large, the algorithm can take a very long time to inspect all possible
triangles. A rough estimate of the total computation time will be printed at the beginning of the
calculation. If this estimate seems very large, stop the calculation using the user interrupt signal,
and call Tstat again, using rmax to restrict the range of r values, thus reducing the number of
triangles to be inspected.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Schladitz, K. and Baddeley, A. (2000) A third order point process characteristic. Scandinavian
Journal of Statistics 27 (2000) 657–671.

See Also

Kest

Examples

plot(Tstat(redwood))

varblock Estimate Variance of Summary Statistic by Subdivision

Description

This command estimates the variance of any summary statistic (such as the K-function) by spatial
subdivision of a single point pattern dataset.

Usage

varblock(X, fun = Kest,
blocks = quadrats(X, nx = nx, ny = ny),
...,
nx = 3, ny = nx,
confidence=0.95)

Arguments

X Point pattern dataset (object of class "ppp").

fun Function that computes the summary statistic.

blocks Optional. A tessellation that specifies the division of the space into blocks.

... Arguments passed to fun.

464 varblock

nx, ny Optional. Number of rectangular blocks in the x and y directions. Incompatible
with blocks.

confidence Confidence level, as a fraction between 0 and 1.

Details

This command computes an estimate of the variance of the summary statistic fun(X) from a single
point pattern dataset X using a subdivision method. It can be used to plot confidence intervals for
the true value of a summary function such as the K-function.

The window containing X is divided into pieces by an nx * ny array of rectangles (or is divided into
pieces of more general shape, according to the argument blocks if it is present). The summary
statistic fun is applied to each of the corresponding sub-patterns of X as described below. Then the
pointwise sample mean, sample variance and sample standard deviation of these summary statis-
tics are computed. Then pointwise confidence intervals are computed, for the specified level of
confidence, defaulting to 95 percent.

The variance is estimated by equation (4.21) of Diggle (2003, page 52). This assumes that the point
pattern X is stationary. For further details see Diggle (2003, pp 52–53).

The estimate of the summary statistic from each block is computed as follows. For most functions
fun, the estimate from block B is computed by finding the subset of X consisting of points that fall
inside B, and applying fun to these points, by calling fun(X[B]).

However if fun is the K-function Kest, or any function which has an argument called domain, the
estimate for each block B is computed by calling fun(X, domain=B). In the case of the K-function
this means that the estimate from block B is computed by counting pairs of points in which the first
point lies in B, while the second point may lie anywhere.

Value

A function value table (object of class "fv") that contains the result of fun(X) as well as the sample
mean, sample variance and sample standard deviation of the block estimates, together with the upper
and lower two-standard-deviation confidence limits.

Errors

If the blocks are too small, there may be insufficient data in some blocks, and the function fun may
report an error. If this happens, you need to take larger blocks.

An error message about incompatibility may occur. The different function estimates may be incom-
patible in some cases, for example, because they use different default edge corrections (typically
because the tiles of the tessellation are not the same kind of geometric object as the window of X, or
because the default edge correction depends on the number of points). To prevent this, specify the
choice of edge correction, in the correction argument to fun, if it has one.

An alternative to varblock is Loh’s mark bootstrap lohboot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

Window.quadrattest 465

References

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

See Also

tess, quadrats for basic manipulation.

lohboot for an alternative bootstrap technique.

Examples

v <- varblock(amacrine, Kest, nx=4, ny=2)
v <- varblock(amacrine, Kcross, nx=4, ny=2)
if(interactive()) plot(v, iso ~ r, shade=c("hiiso", "loiso"))

Window.quadrattest Extract Window of Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract the window in which the object is defined.

Usage

S3 method for class 'quadrattest'
Window(X, ...)

Arguments

X A spatial object.

... Ignored.

Details

These are methods for the generic function Window which extract the spatial window in which the
object X is defined.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

466 with.fv

See Also

Window, Window.ppp, Window.psp.

owin.object

Examples

A <- quadrat.test(cells, 4)
Window(A)

with.fv Evaluate an Expression in a Function Table

Description

Evaluate an R expression in a function value table (object of class "fv").

Usage

S3 method for class 'fv'
with(data, expr, ..., fun = NULL, enclos=NULL)

Arguments

data A function value table (object of class "fv") in which the expression will be
evaluated.

expr The expression to be evaluated. An R language expression, which may involve
the names of columns in data, the special abbreviations ., .x and .y, and global
constants or functions.

... Ignored.

fun Logical value, specifying whether the result should be interpreted as another
function (fun=TRUE) or simply returned as a numeric vector or array (fun=FALSE).
See Details.

enclos An environment in which to search for variables that are not found in data.
Defaults to parent.frame().

Details

This is a method for the generic command with for an object of class "fv" (function value table).

An object of class "fv" is a convenient way of storing and plotting several different estimates of
the same function. It is effectively a data frame with extra attributes. See fv.object for further
explanation.

This command makes it possible to perform computations that involve different estimates of the
same function. For example we use it to compute the arithmetic difference between two different
edge-corrected estimates of the K function of a point pattern.

The argument expr should be an R language expression. The expression may involve

with.fv 467

• the name of any column in data, referring to one of the estimates of the function;

• the symbol . which stands for all the available estimates of the function;

• the symbol .y which stands for the recommended estimate of the function (in an "fv" object,
one of the estimates is always identified as the recommended estimate);

• the symbol .x which stands for the argument of the function;

• global constants or functions.

See the Examples. The expression should be capable of handling vectors and matrices.

The interpretation of the argument fun is as follows:

• If fun=FALSE, the result of evaluating the expression expr will be returned as a numeric vector,
matrix or data frame.

• If fun=TRUE, then the result of evaluating expr will be interpreted as containing the values of
a new function. The return value will be an object of class "fv". (This can only happen if the
result has the right dimensions.)

• The default is fun=TRUE if the result of evaluating expr has more than one column, and
fun=FALSE otherwise.

To perform calculations involving several objects of class "fv", use eval.fv.

Value

A function value table (object of class "fv") or a numeric vector or data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

with, fv.object, eval.fv, Kest

Examples

compute 4 estimates of the K function
X <- runifrect(42)
K <- Kest(X)
plot(K)

derive 4 estimates of the L function L(r) = sqrt(K(r)/pi)
L <- with(K, sqrt(./pi))
plot(L)

compute 4 estimates of V(r) = L(r)/r
V <- with(L, ./.x)
plot(V)

compute the maximum absolute difference between

468 with.ssf

the isotropic and translation correction estimates of K(r)
D <- with(K, max(abs(iso - trans)))

with.ssf Evaluate Expression in a Spatially Sampled Function

Description

Given a spatially sampled function, evaluate an expression involving the function values.

Usage

apply.ssf(X, ...)

S3 method for class 'ssf'
with(data, ...)

Arguments

X, data A spatially sampled function (object of class "ssf").
... Arguments passed to with.default or apply specifying what to compute.

Details

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points. It contains a data frame which provides the function values at the sample points.

In with.ssf, the expression specified by ... will be evaluated in this dataframe. In apply.ssf,
the dataframe will be subjected to the apply operator using the additional arguments

If the result of evaluation is a data frame with one row for each data point, or a numeric vector
with one entry for each data point, then the result will be an object of class "ssf" containing this
information. Otherwise, the result will be a numeric vector.

Value

An object of class "ssf" or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf

Examples

a <- ssf(cells, data.frame(d=nndist(cells), i=1:npoints(cells)))
with(a, i/d)

[.ssf 469

[.ssf Subset of spatially sampled function

Description

Extract a subset of the data for a spatially sampled function.

Usage

S3 method for class 'ssf'
x[i, j, ..., drop]

Arguments

x Object of class "ssf".

i Subset index applying to the locations where the function is sampled.

j Subset index applying to the columns (variables) measured at each location.

..., drop Ignored.

Details

This is the subset operator for the class "ssf".

Value

Another object of class "ssf".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf, with.ssf

Examples

f <- ssf(cells, data.frame(d=nndist(cells), i=1:42))
f
f[1:10,]
f[,1]

Index

∗ Adaptive smoothing
adaptive.density, 15
bw.abram.ppp, 45
bw.CvL.adaptive, 50
densityAdaptiveKernel.ppp, 106
densityAdaptiveKernel.splitppp,

108
densityVoronoi, 115

∗ Bandwidth selection
bw.abram.ppp, 45
bw.CvL, 48
bw.CvL.adaptive, 50
bw.CvLHeat, 52
bw.diggle, 53
bw.frac, 55
bw.optim.object, 56
bw.pcf, 57
bw.ppl, 59
bw.pplHeat, 61
bw.relrisk, 62
bw.scott, 65
bw.smoothppp, 67
bw.stoyan, 69

∗ Envelope of simulations
as.data.frame.envelope, 21
bits.envelope, 35
dg.envelope, 119
envelope, 138
envelope.envelope, 147
envelope.pp3, 149
envelopeArray, 152
plot.envelope, 371
pool.envelope, 387

∗ Goodness-of-fit
berman.test, 31
bits.envelope, 35
bits.test, 37
cdf.test, 70
dclf.test, 93

dg.envelope, 119
dg.test, 126
envelope, 138
envelope.envelope, 147
envelope.pp3, 149
envelopeArray, 152
plot.bermantest, 368
plot.cdftest, 369
plot.envelope, 371
plot.quadrattest, 379
plot.studpermutest, 383
pool.envelope, 387
studpermu.test, 455

∗ Prospectivity
rhohat, 413

∗ Resource Selection Function
rhohat, 413

∗ Tessellation
as.tess, 29

∗ Test of clustering
quadrat.test, 394
quadrat.test.splitppp, 398
scan.test, 425

∗ Test of randomness
bits.envelope, 35
clarkevans.test, 76
dg.envelope, 119
envelope, 138
envelope.envelope, 147
envelope.pp3, 149
envelopeArray, 152
plot.envelope, 371
pool.envelope, 387
quadrat.test, 394
quadrat.test.splitppp, 398
scan.test, 425

∗ Three-dimensional
envelope.pp3, 149
F3est, 160

470

INDEX 471

G3est, 180
K3est, 237
pcf3est, 352

∗ algebra
dimhat, 128
subspaceDistance, 457

∗ array
dimhat, 128

∗ attribute
bind.fv, 33
bw.optim.object, 56
fasp.object, 162
fv.object, 178

∗ classes
fv, 175

∗ classif
clusterset, 78
nnclean, 329

∗ datagen
ssf, 453

∗ hplot
bits.envelope, 35
dg.envelope, 119
envelope, 138
envelope.envelope, 147
envelope.pp3, 149
markmarkscatter, 315
pairs.im, 340
panel.contour, 341
plot.bermantest, 368
plot.cdftest, 369
plot.envelope, 371
plot.fasp, 372
plot.fv, 374
plot.laslett, 378
plot.quadrattest, 379
plot.ssf, 382
plot.studpermutest, 383
pool.envelope, 387
pool.fasp, 388
pool.fv, 389
rose, 421

∗ htest
berman.test, 31
bits.envelope, 35
bits.test, 37
cdf.test, 70
clarkevans.test, 76

dclf.progress, 88
dclf.sigtrace, 90
dclf.test, 93
dg.envelope, 119
dg.progress, 121
dg.sigtrace, 123
dg.test, 126
envelope, 138
envelope.envelope, 147
envelope.pp3, 149
hopskel, 209
plot.quadrattest, 379
plot.scan.test, 380
plot.studpermutest, 383
pool.envelope, 387
pool.fasp, 388
pool.fv, 389
pool.quadrattest, 390
quadrat.test, 394
quadrat.test.splitppp, 398
scan.test, 425
scanLRTS, 427
segregation.test, 432
studpermu.test, 455

∗ iplot
transect.im, 460

∗ iteration
bits.envelope, 35
dg.envelope, 119
envelope, 138
envelope.envelope, 147
envelope.pp3, 149
envelopeArray, 152
pool.envelope, 387
pool.fasp, 388
pool.fv, 389

∗ manip
[.ssf, 469
as.data.frame.envelope, 21
as.fv, 25
as.owin.quadrattest, 26
as.tess, 29
blur, 40
collapse.fv, 80
compatible.fasp, 82
compatible.fv, 83
domain.quadrattest, 130
eval.fasp, 154

472 INDEX

eval.fv, 155
Extract.fasp, 157
Extract.fv, 158
fvnames, 179
harmonise.fv, 205
laslett, 279
PPversion, 393
rat, 401
stienen, 454
transect.im, 460
Window.quadrattest, 465
with.fv, 466
with.ssf, 468

∗ math
blurHeat, 41
deriv.fv, 117
distcdf, 129
hotbox, 210
increment.fv, 216
integral.fv, 217
pairMean, 337
radcumint, 399
rotmean, 423
stienen, 454

∗ methods
adaptive.density, 15
as.function.fv, 22
as.function.rhohat, 23
bw.CvL, 48
bw.CvL.adaptive, 50
bw.diggle, 53
bw.frac, 55
bw.pcf, 57
bw.ppl, 59
bw.relrisk, 62
bw.scott, 65
bw.smoothppp, 67
bw.stoyan, 69
density.ppp, 96
density.psp, 103
density.splitppp, 104
densityAdaptiveKernel.ppp, 106
densityAdaptiveKernel.splitppp,

108
densityfun.ppp, 109
densityVoronoi, 115
formula.fv, 172
idw, 212

integral.fv, 217
Math.fasp, 319
Math.fv, 321
methods.rho2hat, 322
methods.rhohat, 324
methods.ssf, 325
nndensity.ppp, 334
relrisk.ppp, 405
Smooth, 435
Smooth.ppp, 437
Smooth.ssf, 440
Smoothfun.ppp, 441
SmoothHeat, 442
SpatialMedian.ppp, 448
SpatialQuantile.ppp, 451

∗ models
rho2hat, 411
rhohat, 413
thresholdCI, 458
thresholdSelect, 459

∗ multivariate
dimhat, 128
sdr, 429
subspaceDistance, 457

∗ nonparametric
allstats, 16
alltypes, 18
blur, 40
boyce, 43
bw.abram.ppp, 45
bw.relriskHeatppp, 64
circdensity, 73
clarkevans, 74
clarkevans.test, 76
compileCDF, 84
compileK, 85
cov.im, 87
deriv.fv, 117
edge.Ripley, 132
edge.Trans, 133
Emark, 135
envelopeArray, 152
F3est, 160
Fest, 164
Finhom, 168
FmultiInhom, 170
fryplot, 173
G3est, 180

INDEX 473

Gcross, 182
Gcross.inhom, 185
Gdot, 188
Gdot.inhom, 191
Gest, 193
Gfox, 196
Ginhom, 198
Gmulti, 200
GmultiInhom, 203
Hest, 206
hopskel, 209
Iest, 214
increment.fv, 216
integral.fv, 217
Jcross, 218
Jdot, 223
Jest, 227
Jinhom, 230
Jmulti, 233
Jmulti.inhom, 235
K3est, 237
Kcross, 239
Kcross.inhom, 242
Kdot, 246
Kdot.inhom, 249
Kest, 252
Kest.fft, 257
Kinhom, 258
Kmark, 263
Kmeasure, 266
Kmulti, 268
Kmulti.inhom, 271
Kscaled, 274
Ksector, 278
Lcross, 281
Lcross.inhom, 283
Ldot, 285
Ldot.inhom, 286
Lest, 288
Linhom, 289
localK, 291
localKcross, 293
localKcross.inhom, 295
localKdot, 297
localKinhom, 299
localpcf, 301
lohboot, 304
markconnect, 307

markcorr, 309
markcrosscorr, 313
markvario, 317
miplot, 328
nncorr, 331
nnorient, 335
pairorient, 338
pcf, 343
pcf.fasp, 344
pcf.fv, 346
pcf.ppp, 348
pcf3est, 352
pcfcross, 354
pcfcross.inhom, 356
pcfdot, 358
pcfdot.inhom, 361
pcfinhom, 363
pcfmulti, 366
pool.anylist, 386
pool.rat, 391
PPversion, 393
rectcontact, 402
rhohat, 413
sdrPredict, 431
sharpen, 433
Smooth.fv, 436
spatcov, 444
spatialcdf, 446
thresholdCI, 458
thresholdSelect, 459
Tstat, 462
varblock, 463

∗ package
spatstat.explore-package, 7

∗ programming
eval.fasp, 154
eval.fv, 155
marktable, 316
with.fv, 466
with.ssf, 468

∗ smooth
adaptive.density, 15
bw.CvL, 48
bw.CvL.adaptive, 50
bw.CvLHeat, 52
bw.diggle, 53
bw.frac, 55
bw.pcf, 57

474 INDEX

bw.ppl, 59
bw.pplHeat, 61
bw.relrisk, 62
bw.scott, 65
bw.smoothppp, 67
bw.stoyan, 69
circdensity, 73
density.ppp, 96
density.psp, 103
density.splitppp, 104
densityAdaptiveKernel.ppp, 106
densityAdaptiveKernel.splitppp,

108
densityfun.ppp, 109
densityHeat, 111
densityHeat.ppp, 112
densityVoronoi, 115
idw, 212
nndensity.ppp, 334
relrisk.ppp, 405
relriskHeat, 409
Smooth, 435
Smooth.ppp, 437
Smooth.ssf, 440
Smoothfun.ppp, 441
SmoothHeat, 442
SmoothHeat.ppp, 443
SpatialMedian.ppp, 448
SpatialQuantile, 450
SpatialQuantile.ppp, 451

∗ spatial
[.ssf, 469
adaptive.density, 15
allstats, 16
alltypes, 18
as.data.frame.envelope, 21
as.function.fv, 22
as.function.rhohat, 23
as.fv, 25
as.owin.quadrattest, 26
as.tess, 29
auc, 30
berman.test, 31
bind.fv, 33
bits.envelope, 35
bits.test, 37
blur, 40
blurHeat, 41

boyce, 43
bw.abram.ppp, 45
bw.CvL, 48
bw.CvL.adaptive, 50
bw.CvLHeat, 52
bw.diggle, 53
bw.frac, 55
bw.optim.object, 56
bw.pcf, 57
bw.ppl, 59
bw.pplHeat, 61
bw.relrisk, 62
bw.relriskHeatppp, 64
bw.scott, 65
bw.smoothppp, 67
bw.stoyan, 69
cdf.test, 70
clarkevans, 74
clarkevans.test, 76
clusterset, 78
collapse.fv, 80
compatible.fasp, 82
compatible.fv, 83
compileCDF, 84
compileK, 85
cov.im, 87
dclf.progress, 88
dclf.sigtrace, 90
dclf.test, 93
density.ppp, 96
density.psp, 103
density.splitppp, 104
densityAdaptiveKernel.ppp, 106
densityAdaptiveKernel.splitppp,

108
densityfun.ppp, 109
densityHeat, 111
densityHeat.ppp, 112
densityVoronoi, 115
deriv.fv, 117
dg.envelope, 119
dg.progress, 121
dg.sigtrace, 123
dg.test, 126
distcdf, 129
domain.quadrattest, 130
edge.Ripley, 132
edge.Trans, 133

INDEX 475

Emark, 135
envelope, 138
envelope.envelope, 147
envelope.pp3, 149
envelopeArray, 152
eval.fasp, 154
eval.fv, 155
Extract.fasp, 157
Extract.fv, 158
F3est, 160
fasp.object, 162
Fest, 164
Finhom, 168
FmultiInhom, 170
formula.fv, 172
fryplot, 173
fv, 175
fv.object, 178
fvnames, 179
G3est, 180
Gcross, 182
Gcross.inhom, 185
Gdot, 188
Gdot.inhom, 191
Gest, 193
Gfox, 196
Ginhom, 198
Gmulti, 200
GmultiInhom, 203
harmonise.fv, 205
Hest, 206
hopskel, 209
idw, 212
Iest, 214
increment.fv, 216
Jcross, 218
Jdot, 223
Jest, 227
Jinhom, 230
Jmulti, 233
Jmulti.inhom, 235
K3est, 237
Kcross, 239
Kcross.inhom, 242
Kdot, 246
Kdot.inhom, 249
Kest, 252
Kest.fft, 257

Kinhom, 258
Kmark, 263
Kmeasure, 266
Kmulti, 268
Kmulti.inhom, 271
Kscaled, 274
Ksector, 278
laslett, 279
Lcross, 281
Lcross.inhom, 283
Ldot, 285
Ldot.inhom, 286
Lest, 288
Linhom, 289
localK, 291
localKcross, 293
localKcross.inhom, 295
localKdot, 297
localKinhom, 299
localpcf, 301
lohboot, 304
markconnect, 307
markcorr, 309
markcrosscorr, 313
markmarkscatter, 315
marktable, 316
markvario, 317
Math.fasp, 319
Math.fv, 321
methods.rho2hat, 322
methods.rhohat, 324
methods.ssf, 325
miplot, 328
nnclean, 329
nncorr, 331
nndensity.ppp, 334
nnorient, 335
pairMean, 337
pairorient, 338
pairs.im, 340
panel.contour, 341
pcf, 343
pcf.fasp, 344
pcf.fv, 346
pcf.ppp, 348
pcf3est, 352
pcfcross, 354
pcfcross.inhom, 356

476 INDEX

pcfdot, 358
pcfdot.inhom, 361
pcfinhom, 363
pcfmulti, 366
plot.bermantest, 368
plot.cdftest, 369
plot.envelope, 371
plot.fasp, 372
plot.fv, 374
plot.laslett, 378
plot.quadrattest, 379
plot.scan.test, 380
plot.ssf, 382
pool, 385
pool.anylist, 386
pool.envelope, 387
pool.fasp, 388
pool.fv, 389
pool.quadrattest, 390
pool.rat, 391
PPversion, 393
quadrat.test, 394
quadrat.test.splitppp, 398
radcumint, 399
rat, 401
rectcontact, 402
relrisk, 404
relrisk.ppp, 405
relriskHeat, 409
rho2hat, 411
rhohat, 413
roc, 420
rose, 421
rotmean, 423
scan.test, 425
scanLRTS, 427
sdr, 429
sdrPredict, 431
segregation.test, 432
sharpen, 433
Smooth, 435
Smooth.fv, 436
Smooth.ppp, 437
Smooth.ssf, 440
Smoothfun.ppp, 441
SmoothHeat, 442
SmoothHeat.ppp, 443
spatcov, 444

spatialcdf, 446
SpatialMedian.ppp, 448
SpatialQuantile, 450
SpatialQuantile.ppp, 451
spatstat.explore-package, 7
ssf, 453
stienen, 454
studpermu.test, 455
thresholdCI, 458
thresholdSelect, 459
transect.im, 460
Tstat, 462
varblock, 463
Window.quadrattest, 465
with.fv, 466
with.ssf, 468

∗ univar
cov.im, 87
integral.fv, 217

∗ utilities
reload.or.compute, 403

[, 159
[.fasp, 163
[.fasp (Extract.fasp), 157
[.fv (Extract.fv), 158
[.ppp, 171, 203
[.ssf, 453, 469
[<-.fv (Extract.fv), 158
$<-.fv (Extract.fv), 158

ad.test, 70, 72, 73
adaptive.density, 15, 51, 102, 108, 112,

114, 117
allstats, 11, 16
alltypes, 12, 18, 82, 153, 154, 162, 163, 309,

343–346, 348, 373, 374, 388, 389
anova.ppm, 14, 397, 399
anylist, 386
apply, 468
apply.ssf (with.ssf), 468
applynbd, 317
approxfun, 205
as.data.frame, 21, 56
as.data.frame.envelope, 21
as.function, 23, 24, 327
as.function.fv, 22, 24, 177, 178
as.function.rhohat, 23, 23
as.function.ssf (methods.ssf), 325
as.fv, 25, 56

INDEX 477

as.im, 46, 110, 115, 129, 327, 442
as.im.scan.test, 426–429
as.im.scan.test (plot.scan.test), 380
as.im.ssf (methods.ssf), 325
as.mask, 30, 31, 70, 79, 97, 100, 103, 106,

108, 129, 130, 168, 171, 186, 197,
198, 206, 207, 211–213, 222, 226,
231, 236, 257, 266, 279, 334, 335,
416, 420, 425, 427, 447

as.owin, 27, 28, 55, 166, 194, 255, 350
as.owin.lpp, 28
as.owin.quadrattest, 26
as.owin.rmhmodel, 28
as.ppp, 110, 136, 164, 165, 168, 173, 183,

188, 193, 194, 198, 201, 214, 215,
219, 223, 227, 228, 231, 234, 240,
243, 247, 250, 253, 254, 257, 259,
263, 266, 269, 272, 275, 278, 288,
289, 307, 309, 311, 314, 318, 327,
328, 462

as.ppp.ssf (methods.ssf), 325
as.tess, 29, 396
auc, 30, 420, 421

berman.test, 14, 31, 73, 368, 369
bind.fv, 33, 84–87, 177, 178
bits.envelope, 13, 35, 37, 39, 120
bits.test, 14, 37, 37, 127, 128
blur, 9, 40, 42, 169, 199, 232, 260, 276
blurHeat, 41
boyce, 43
bw.abram, 46, 47
bw.abram.ppp, 10, 45, 51, 106–109
bw.CvL, 10, 48, 51, 54, 56, 57, 60, 67, 98, 102
bw.CvL.adaptive, 49, 50, 57
bw.CvLHeat, 52, 62
bw.diggle, 10, 26, 49, 53, 56, 57, 60, 66, 67,

98, 102, 407
bw.frac, 10, 49, 54, 55, 60, 67
bw.lppl, 57
bw.optim.object, 49, 51, 54, 56, 58, 59, 63,

68, 460
bw.pcf, 57, 57, 351, 365
bw.ppl, 10, 46, 49, 54, 56, 57, 59, 67, 98, 102
bw.pplHeat, 53, 61
bw.relrisk, 10, 56, 57, 62, 70, 406, 407, 409
bw.relrisk.lpp, 57
bw.relriskHeatppp, 64
bw.scott, 10, 49, 54, 56, 60, 65, 98, 102

bw.smoothppp, 10, 56, 57, 67, 438–440
bw.stoyan, 10, 56, 63, 69, 351, 363, 365
bw.voronoi, 57

cbind, 34
cbind.fv, 81, 177, 178, 205, 206
cbind.fv (bind.fv), 33
cdf.test, 13, 33, 70, 369, 370, 397, 399, 447
chisq.test, 397, 399
circdensity, 73, 336, 338, 339, 423
clarkevans, 10, 74, 77, 78, 210
clarkevans.test, 13, 75, 76, 76, 210
closepairs, 351, 365
clusterset, 10, 78
collapse, 81
collapse.anylist (collapse.fv), 80
collapse.fv, 35, 80, 206
colourmap, 315
compatible, 82, 83, 401
compatible.fasp, 82
compatible.fv, 82, 83, 206
compileCDF, 84, 87
compileK, 84, 85, 85
compilepcf, 84
compilepcf (compileK), 85
Complex.fasp (Math.fasp), 319
Complex.fv (Math.fv), 321
contour, 382
contour.default, 382
contour.im, 342
contour.ssf (plot.ssf), 382
coplot, 341, 342
cor, 87, 88, 331, 333
cor.im (cov.im), 87
cov, 87, 88
cov.im, 87, 341
cut.ppp, 12, 330
cvm.test, 70, 72, 73

dclf.progress, 14, 88, 92, 96, 123
dclf.sigtrace, 90, 125
dclf.test, 14, 38, 39, 89–92, 93, 126, 128,

145
default.expand, 145
density, 103, 104, 110, 111, 136, 137,

307–309, 311, 314, 318, 355, 360,
367

density.default, 58, 73, 74, 86, 349–351,
354, 355, 357, 359–361, 363, 366,

478 INDEX

367, 414, 415, 417, 423
density.lpp, 16
density.ppp, 9–11, 16, 41, 46–51, 54–56, 59,

60, 62, 66, 67, 96, 105, 108–110,
112, 114, 116, 117, 168, 169, 198,
199, 214, 231, 232, 243, 244, 250,
251, 259, 260, 272, 273, 275, 276,
295, 296, 299, 302, 335, 342, 357,
358, 361, 362, 364, 406, 409, 411,
433, 434, 438–440, 448, 451

density.ppplist (density.splitppp), 104
density.psp, 9, 103
density.splitppp, 104
densityAdaptiveKernel, 106
densityAdaptiveKernel.ppp, 16, 50, 51,

106, 108, 109
densityAdaptiveKernel.ppplist

(densityAdaptiveKernel.splitppp),
108

densityAdaptiveKernel.splitppp, 108
densityfun (densityfun.ppp), 109
densityfun.ppp, 109
densityHeat, 42, 111, 113, 410, 443, 444
densityHeat.ppp, 9, 11, 52, 53, 61, 62, 112,

112, 211, 444
densityVoronoi, 16, 108, 115
deriv, 118
deriv.fv, 11, 117, 217, 336, 339
dg.envelope, 37, 119
dg.progress, 121
dg.sigtrace, 92, 123
dg.test, 14, 39, 120, 122–125, 126
dimhat, 128, 430
dirichlet, 116, 117
distcdf, 55, 129, 337, 338
distmap, 207
domain, 131
domain.lpp, 131
domain.ppm, 131
domain.quadratcount, 131
domain.quadrattest, 130
domain.rmhmodel, 131
dppm, 25

edge.Ripley, 132, 135
edge.Trans, 133, 133
Emark, 12, 135
envelope, 11, 13, 14, 18–21, 36–39, 89, 91,

93–96, 119–121, 124, 126, 127, 138,

148, 149, 151–153, 176, 201, 234,
255, 269, 273, 367, 371, 372, 387,
388

envelope.envelope, 140, 143, 145, 147, 387,
388

envelope.pp3, 9, 13, 140, 149
envelopeArray, 152
eval.fasp, 11, 82, 154, 163, 320
eval.fv, 11, 83, 154, 155, 177, 205, 206, 321,

322, 467
eval.im, 409
ewcdf, 71, 447
Extract.fasp, 157
Extract.fv, 158

F3est, 12, 152, 160, 181, 238, 353
fasp, 389
fasp.object, 16, 19, 20, 155, 158, 162, 344,

345, 373, 374
Fest, 10, 17, 19, 20, 84, 145, 156, 162, 164,

169, 170, 178, 196, 197, 207, 208,
219, 220, 224, 227–230, 234, 256,
377, 394

fft, 267
Fhazard (Fest), 164
Finhom, 11, 168, 171, 200, 232
fitted.ppm, 243, 250, 259, 272, 296, 299,

302, 364
Fmulti.inhom (FmultiInhom), 170
FmultiInhom, 170, 236
formula, 172, 173
formula.fv, 172
formula<- (formula.fv), 172
Frame, 131
fryplot, 10, 173, 266, 268
frypoints (fryplot), 173
fv, 23, 34, 35, 173, 175, 423
fv.object, 17, 23, 25, 26, 81, 118, 119, 130,

137, 143, 145, 157, 159, 160, 166,
169, 172, 176, 177, 178, 179, 180,
183, 187, 189, 192, 195, 199, 202,
206, 207, 215, 217–219, 224, 229,
232, 234, 240, 244, 247, 251, 255,
257, 261, 264, 269, 274, 277, 282,
283, 285, 287, 288, 290, 292, 294,
296, 298, 300, 303, 308, 312, 318,
344, 347, 356, 360, 376, 377, 436,
437, 462, 466, 467

fvnames, 22–24, 35, 81, 179, 376, 393

INDEX 479

fvnames<- (fvnames), 179

G3est, 13, 152, 162, 180, 238, 353
Gcross, 11, 19, 20, 182, 186–188, 190, 201,

203, 220
Gcross.inhom, 185, 187, 192
Gdot, 11, 19, 20, 182, 184, 188, 192, 201, 203,

220, 224, 234
Gdot.inhom, 191
Gest, 10, 17, 20, 75, 76, 84, 144, 145, 167,

178, 181–184, 188–190, 193, 197,
199–201, 203, 227–230, 256, 377,
394

Gfox, 13, 196
Ginhom, 11, 170, 186, 187, 192, 198, 204, 232
Gmulti, 11, 12, 182, 184, 188, 190, 200, 204,

219, 224
Gmulti.inhom, 187, 192
Gmulti.inhom (GmultiInhom), 203
GmultiInhom, 203, 236

harmonise, 205
harmonise.fv, 11, 81, 156, 205, 320, 321
harmonize.fv (harmonise.fv), 205
Hest, 13, 197, 206, 402
hist, 165, 183, 189, 194, 201, 234, 269, 273,

422, 423
hist.default, 329, 330
hopskel, 76, 209
hopskel.test, 78
hotbox, 210
hotrod, 211

idw, 212, 439, 440
Iest, 12, 214
im, 47, 341, 410, 461
im.object, 16, 102, 104, 105, 108, 117, 214,

267, 268, 440
image, 382
image.default, 382
image.ssf (plot.ssf), 382
imcov, 130, 446
increment.fv, 216
integral, 217, 218, 327
integral.fv, 217
integral.im, 267, 268
integral.ssf (methods.ssf), 325
intensity.ppp, 335
intensity.quadratcount, 416

interp.im, 41, 414
is.marked.ppp, 331

Jcross, 12, 19, 20, 218, 222, 223, 225, 234,
235

Jcross.inhom, 221, 236
Jdot, 12, 19, 20, 219, 220, 223, 226, 227, 234,

235
Jdot.inhom, 222, 225, 227, 236
Jest, 10, 17, 19, 20, 145, 167, 178, 196, 197,

214–216, 219, 220, 223–225, 227,
231–235, 256

Jfox, 13
Jfox (Gfox), 196
Jinhom, 11, 170, 200, 230, 230
jitter, 315, 414, 418
Jmulti, 12, 219, 220, 223, 225, 233, 236
Jmulti.inhom, 222, 226, 227, 235

K3est, 13, 152, 162, 181, 237, 352, 353
kaplan.meier, 167, 196, 230
Kcross, 11, 19, 20, 137, 239, 243, 245, 247,

255, 256, 269, 270, 282, 293, 294,
305, 309, 312, 317, 319, 343–348,
356, 360

Kcross.inhom, 12, 242, 252, 274, 283, 284,
305

Kdot, 11, 19, 20, 137, 240, 241, 246, 248, 250,
252, 255, 256, 269, 270, 285, 286,
297, 298, 305, 309, 312, 319,
343–348, 355, 359, 360

Kdot.inhom, 12, 245, 249, 274, 286, 287
Kest, 10, 17, 19, 20, 22, 23, 53, 83, 87, 94,

133, 135, 136, 144, 145, 148,
155–157, 167, 174, 175, 178, 196,
230, 238, 240, 241, 244, 247, 248,
251, 252, 257, 258, 260, 262,
267–270, 276–279, 288–293, 296,
298, 300, 305, 306, 308, 311, 339,
343–349, 351, 355, 363, 377, 392,
393, 463, 464, 467

Kest.fft, 11, 257
Kinhom, 11, 243, 245, 250, 252, 254, 256, 258,

273, 276, 289, 290, 296, 300, 305,
306, 343–348, 364, 365

km.rs, 167, 196, 230
Kmark, 12, 263, 312
Kmeasure, 11, 174, 175, 257, 258, 266

480 INDEX

Kmulti, 11, 12, 240, 241, 247, 248, 255, 256,
268, 272, 274, 343, 344, 346–348

Kmulti.inhom, 245, 252, 271
kppm, 25
ks.test, 70, 72, 73
Kscaled, 11, 274
Ksector, 11, 278, 339

laslett, 279, 379
layered, 28
Lcross, 11, 19, 20, 281, 283, 284, 286, 294,

305
Lcross.inhom, 12, 283, 287, 305
Ldot, 11, 19, 20, 282, 285, 286, 287, 298, 305
Ldot.inhom, 12, 286
legend, 375
Lest, 10, 19, 20, 90, 94, 122, 282, 286, 288,

290, 292, 305
Linhom, 11, 283, 284, 286, 287, 289, 296, 300,

305
load, 404
localK, 11, 256, 291, 294, 296, 298, 300, 303,

305, 306
localKcross, 12, 293, 296, 305, 306
localKcross.inhom, 12, 294, 295, 305, 306
localKdot, 12, 297, 305, 306
localKinhom, 11, 292, 299, 303, 305, 306
localL, 11, 294, 296, 298, 300, 305
localL (localK), 291
localLcross, 12, 296, 305, 306
localLcross (localKcross), 293
localLcross.inhom, 12, 305, 306
localLcross.inhom (localKcross.inhom),

295
localLdot, 12, 305, 306
localLdot (localKdot), 297
localLinhom, 11, 292, 294, 305
localLinhom (localKinhom), 299
localpcf, 11, 301, 305, 306
localpcfinhom, 11, 305, 306
localpcfinhom (localpcf), 301
locfit, 415, 417
loess, 136, 307, 309, 314, 318, 436
lohboot, 11, 13, 143, 255, 304, 350, 351, 464,

465
Lscaled (Kscaled), 274

mad.progress, 14
mad.progress (dclf.progress), 88

mad.sigtrace (dclf.sigtrace), 90
mad.test, 14, 36–39, 89–91, 119, 120, 126,

128, 142, 145
mad.test (dclf.test), 93
markconnect, 12, 137, 307, 312, 319, 356, 360
markcorr, 12, 137, 264, 265, 307, 309, 309,

314, 315, 318, 319
markcorrint (Kmark), 263
markcrosscorr, 12, 312, 313
markmarkscatter, 12, 315
markmean, 12
markmean (Smooth.ppp), 437
marks, 327
marks.ssf, 453
marks.ssf (methods.ssf), 325
marks<-.ssf (methods.ssf), 325
markstat, 317
marktable, 12, 316
markvar, 12
markvar (Smooth.ppp), 437
markvario, 12, 137, 309, 312, 317
Math.fasp, 319
Math.fv, 177, 321
max, 327
max.ssf (methods.ssf), 325
mctest.progress, 91
mctest.progress (dclf.progress), 88
mctest.sigtrace (dclf.sigtrace), 90
methods.rho2hat, 322, 412
methods.rhohat, 24, 324, 419
methods.ssf, 325, 453
min, 327
min.ssf (methods.ssf), 325
mincontrast, 25
miplot, 10, 328

nearest.neighbour (Gest), 193
nnclean, 10, 80, 329
nncorr, 331
nncross, 210
nndensity (nndensity.ppp), 334
nndensity.ppp, 16, 334
nndist, 76, 195, 196, 210, 330, 455
nnmap, 334, 335
nnmark, 214, 382, 440
nnmean, 12
nnmean (nncorr), 331
nnorient, 335, 339
nnvario, 12

INDEX 481

nnvario (nncorr), 331
nnwhich, 195, 196

Ops.fasp (Math.fasp), 319
Ops.fv, 177
Ops.fv (Math.fv), 321
overlap.owin, 134
owin, 28
owin.object, 27, 28, 465, 466

pairMean, 337
pairorient, 337, 338
pairs, 340–342
pairs.default, 340–342
pairs.im, 88, 340, 342
panel.contour, 341, 341
panel.histogram (panel.contour), 341
panel.image, 341
panel.image (panel.contour), 341
panel.smooth, 342
par, 341, 373
parent.frame, 466
parres, 419
pcf, 10, 11, 57, 58, 70, 87, 144, 145, 240, 241,

244, 245, 247, 248, 251, 252, 255,
256, 261, 262, 269, 270, 273, 274,
276, 277, 289, 290, 303, 305, 306,
343, 345, 347, 348, 351, 353, 355,
356, 359, 360, 365

pcf.fasp, 343, 344, 344
pcf.fv, 276, 343, 344, 346
pcf.ppp, 58, 59, 343, 344, 348, 348, 356–358,

360, 362–365, 367
pcf3est, 13, 152, 162, 181, 238, 352
pcfcross, 12, 19, 309, 354, 358, 360, 366, 367
pcfcross.inhom, 12, 356, 362
pcfdot, 12, 355, 356, 358, 362, 367
pcfdot.inhom, 12, 358, 361
pcfinhom, 11, 57–59, 302, 303, 305, 306, 358,

362, 363
pcfmulti, 12, 356, 360, 366
pixelcentres, 9
pixellate.ppp, 97, 100, 112, 443
pixellate.psp, 103
plot, 323, 324, 382
plot.anylist, 17
plot.bermantest, 33, 368
plot.cdftest, 72, 73, 369
plot.default, 370

plot.ecdf, 368
plot.envelope, 142, 143, 145, 371
plot.fasp, 17–20, 163, 372
plot.fv, 11, 17, 23, 25, 90, 92, 130, 143, 145,

156, 166, 169, 172, 173, 176–180,
195, 199, 207, 215, 229, 232, 255,
282, 285, 288, 290, 292, 294, 296,
298, 300, 303, 323, 325, 336, 339,
356, 360, 371–374, 374, 384, 394,
462

plot.im, 341, 342, 379, 381
plot.laslett, 279, 281, 378
plot.owin, 379
plot.ppp, 315, 379, 382, 454, 455
plot.quadratcount, 380
plot.quadrattest, 379
plot.rho2hat (methods.rho2hat), 322
plot.rhohat (methods.rhohat), 324
plot.scan.test, 380, 427
plot.solist, 379
plot.ssf, 382, 453
plot.studpermutest, 383, 456
plot.tess, 380
points, 341
polygon, 422
pool, 86, 385, 386–393, 401
pool.anylist, 386, 390
pool.envelope, 143, 145, 386, 387, 389
pool.fasp, 386, 388, 388
pool.fv, 11, 386, 389, 393
pool.quadrattest, 390, 399
pool.rat, 386, 390, 391
pp3, 152, 162, 181, 238, 353
ppm, 33, 73, 145, 419
ppp, 145
ppp.object, 102, 105, 165, 194, 213–215,

228, 254, 317, 439, 440
PPversion, 393
predict, 323, 324
predict.rho2hat (methods.rho2hat), 322
predict.rhohat (methods.rhohat), 324
predict.smooth.spline, 345–348
print, 323, 324, 327
print.rho2hat (methods.rho2hat), 322
print.rhohat (methods.rhohat), 324
print.ssf (methods.ssf), 325
psp.object, 104

qqplot.ppm, 13

482 INDEX

QQversion (PPversion), 393
quadrat.test, 13, 29, 33, 73, 380, 391, 394,

399
quadrat.test.ppp, 399
quadrat.test.splitppp, 396, 397, 398
quadratcount, 29, 329, 395–397, 399, 416
quadratresample, 14, 397, 399
quadrats, 397, 399, 465
quantile.default, 304, 448, 449, 451, 452
quote, 177

radcumint, 399, 424
range, 327
range.ssf (methods.ssf), 325
rat, 392, 393, 401
rect, 342
rectcontact, 402
rectdistmap, 402
reduced.sample, 167, 196, 230, 256
reload.or.compute, 403
relrisk, 10, 11, 63, 101, 102, 404, 405, 407,

427, 433
relrisk.ppm, 405, 409
relrisk.ppp, 405, 405, 411, 432
relriskHeat, 64, 409
relriskHeat.ppp, 64, 65
rho2hat, 10, 323, 411, 419
rhohat, 10, 23, 24, 44, 325, 412, 413
rhohat.ppp, 43, 44
rknn, 11
rlabel, 141, 432
rmax.Ripley (edge.Ripley), 132
rmax.Trans, 133, 135
rmax.Trans (edge.Trans), 133
rmh, 28, 142
rnoise, 9
roc, 10, 30, 31, 420
rose, 74, 336, 339, 421
rotmean, 400, 423
rpoisline, 9
rpoislinetess, 9
rpoispp3, 9, 152
rpoisppx, 10
rshift, 14
rthin, 14
rug, 323, 325
runifpoint3, 9
runifpointx, 10

save, 404
scan.test, 11, 13, 14, 381, 425, 428, 429
scanLRTS, 381, 426, 427, 427
sdr, 10, 128, 129, 429, 431
sdrPredict, 430, 431
segregation.test, 13, 432
setcov, 130, 134, 135, 446
sharpen, 80, 433
sharpen.ppp, 9–11, 102
shift.owin, 400, 424
simulate, 324
simulate.kppm, 142
simulate.rhohat (methods.rhohat), 324
Smooth, 40, 435, 436–438, 440, 442, 450
Smooth.fv, 11, 166, 435, 436
Smooth.im, 9, 435
Smooth.im (blur), 40
Smooth.msr, 435
Smooth.ppp, 9–11, 41, 68, 101, 102, 213, 214,

382, 409, 434, 435, 437, 441, 442,
444, 449

smooth.spline, 118, 119, 345–348, 436, 437
Smooth.ssf, 440, 453
Smoothfun, 111
Smoothfun (Smoothfun.ppp), 441
Smoothfun.ppp, 441
SmoothHeat, 442
SmoothHeat.im, 443
SmoothHeat.im (blurHeat), 41
SmoothHeat.ppp, 443, 443
solist, 410
spatcov, 444
spatialcdf, 10, 400, 446
SpatialMedian, 449, 452
SpatialMedian (SpatialQuantile), 450
SpatialMedian.ppp, 214, 448, 450, 452
SpatialQuantile, 449, 450
SpatialQuantile.ppp, 449, 450, 451
spatstat.explore

(spatstat.explore-package), 7
spatstat.explore-package, 7
spatstat.options, 161, 257, 258, 268, 376,

377
split.ppp, 105, 108, 330
ssf, 327, 383, 441, 453, 468, 469
stieltjes, 218, 337
stienen, 454
stienenSet (stienen), 454

INDEX 483

studpermu.test, 13, 384, 385, 455
subspaceDistance, 129, 430, 457
substitute, 177
summary, 327
Summary.fasp (Math.fasp), 319
Summary.fv, 177
Summary.fv (Math.fv), 321
summary.ssf (methods.ssf), 325
Sweave, 404
symbolmap, 315

table, 317
tess, 29, 465
text.default, 380
thresholdCI, 458, 460
thresholdSelect, 10, 458, 459
transect.im, 9, 460
Tstat, 10, 462

unmark, 327, 453
unmark.ssf (methods.ssf), 325
update.kppm, 168, 198, 231, 243, 250, 259,

272, 296, 300, 302, 364
update.ppm, 168, 198, 231, 243, 250, 259,

272, 296, 300, 302, 364

varblock, 11, 13, 143, 255, 306, 463
Vmark, 12
Vmark (Emark), 135

Window, 131, 465, 466
Window.ppp, 466
Window.psp, 466
Window.quadrattest, 465
with, 466, 467
with.default, 468
with.fv, 11, 35, 119, 142, 177, 437, 466
with.ssf, 453, 468, 469

xy.coords, 460

	spatstat.explore-package
	adaptive.density
	allstats
	alltypes
	as.data.frame.envelope
	as.function.fv
	as.function.rhohat
	as.fv
	as.owin.quadrattest
	as.tess
	auc
	berman.test
	bind.fv
	bits.envelope
	bits.test
	blur
	blurHeat
	boyce
	bw.abram.ppp
	bw.CvL
	bw.CvL.adaptive
	bw.CvLHeat
	bw.diggle
	bw.frac
	bw.optim.object
	bw.pcf
	bw.ppl
	bw.pplHeat
	bw.relrisk
	bw.relriskHeatppp
	bw.scott
	bw.smoothppp
	bw.stoyan
	cdf.test
	circdensity
	clarkevans
	clarkevans.test
	clusterset
	collapse.fv
	compatible.fasp
	compatible.fv
	compileCDF
	compileK
	cov.im
	dclf.progress
	dclf.sigtrace
	dclf.test
	density.ppp
	density.psp
	density.splitppp
	densityAdaptiveKernel.ppp
	densityAdaptiveKernel.splitppp
	densityfun.ppp
	densityHeat
	densityHeat.ppp
	densityVoronoi
	deriv.fv
	dg.envelope
	dg.progress
	dg.sigtrace
	dg.test
	dimhat
	distcdf
	domain.quadrattest
	edge.Ripley
	edge.Trans
	Emark
	envelope
	envelope.envelope
	envelope.pp3
	envelopeArray
	eval.fasp
	eval.fv
	Extract.fasp
	Extract.fv
	F3est
	fasp.object
	Fest
	Finhom
	FmultiInhom
	formula.fv
	fryplot
	fv
	fv.object
	fvnames
	G3est
	Gcross
	Gcross.inhom
	Gdot
	Gdot.inhom
	Gest
	Gfox
	Ginhom
	Gmulti
	GmultiInhom
	harmonise.fv
	Hest
	hopskel
	hotbox
	idw
	Iest
	increment.fv
	integral.fv
	Jcross
	Jcross.inhom
	Jdot
	Jdot.inhom
	Jest
	Jinhom
	Jmulti
	Jmulti.inhom
	K3est
	Kcross
	Kcross.inhom
	Kdot
	Kdot.inhom
	Kest
	Kest.fft
	Kinhom
	Kmark
	Kmeasure
	Kmulti
	Kmulti.inhom
	Kscaled
	Ksector
	laslett
	Lcross
	Lcross.inhom
	Ldot
	Ldot.inhom
	Lest
	Linhom
	localK
	localKcross
	localKcross.inhom
	localKdot
	localKinhom
	localpcf
	lohboot
	markconnect
	markcorr
	markcrosscorr
	markmarkscatter
	marktable
	markvario
	Math.fasp
	Math.fv
	methods.rho2hat
	methods.rhohat
	methods.ssf
	miplot
	nnclean
	nncorr
	nndensity.ppp
	nnorient
	pairMean
	pairorient
	pairs.im
	panel.contour
	pcf
	pcf.fasp
	pcf.fv
	pcf.ppp
	pcf3est
	pcfcross
	pcfcross.inhom
	pcfdot
	pcfdot.inhom
	pcfinhom
	pcfmulti
	plot.bermantest
	plot.cdftest
	plot.envelope
	plot.fasp
	plot.fv
	plot.laslett
	plot.quadrattest
	plot.scan.test
	plot.ssf
	plot.studpermutest
	pool
	pool.anylist
	pool.envelope
	pool.fasp
	pool.fv
	pool.quadrattest
	pool.rat
	PPversion
	quadrat.test
	quadrat.test.splitppp
	radcumint
	rat
	rectcontact
	reload.or.compute
	relrisk
	relrisk.ppp
	relriskHeat
	rho2hat
	rhohat
	roc
	rose
	rotmean
	scan.test
	scanLRTS
	sdr
	sdrPredict
	segregation.test
	sharpen
	Smooth
	Smooth.fv
	Smooth.ppp
	Smooth.ssf
	Smoothfun.ppp
	SmoothHeat
	SmoothHeat.ppp
	spatcov
	spatialcdf
	SpatialMedian.ppp
	SpatialQuantile
	SpatialQuantile.ppp
	ssf
	stienen
	studpermu.test
	subspaceDistance
	thresholdCI
	thresholdSelect
	transect.im
	Tstat
	varblock
	Window.quadrattest
	with.fv
	with.ssf
	[.ssf
	Index

