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Outline

I Confidence sets for linear model:

Y = θT∗ X + noise

I Linear bandit problem with side information

I Sparse θ∗



Linear Model

Yt = θ
T
∗ Xt + ηt t = 1, 2, . . .

I ηt is zero-mean, R-sub-Gaussian

I We observe (X1,Y1), (X2,Y2), . . .

I Xt ∈ Rd and can depend on past observations

Goal: Estimate θ∗ and construct a confidence set for it.



Confidence Set

Given δ ∈ (0, 1), construct

Cn := Cn(X1,Y1, . . . ,Xn,Yn, δ) ⊆ Rd

such that
Pr[θ∗ ∈ Cn] ≥ δ



Previous Construction: Least Squares

I Least squares solution

X =



XT

1
...

XT
n


 Y =



Y1
...
Yn


 θLS = (XTX+ λI)−1XTY

I Confidence set is an ellipsoid centered at θLS

Cn =
{
θ ∈ Rd : (θ− θLS)

T (XTX+ λI)(θ− θLS) ≤ “radius”
}

I “Radius” depends on n, d , δ,X, λ,R etc.

θLS

θ∗



Previous Construction: Theorem

[Dani et al., 2008], [Rusmevichientong and Tsitsiklis, 2010]

Theorem ([Abbasi-Yadkori et al., 2011])

Assume ‖θ∗‖2 ≤ S and ‖Xt‖2 ≤ L. With probability ≥ 1 − δ, θ∗
lies in the set

Cn =

{
θ ∈ Rd :

√
(θ− θLS)T (XTX+ λI)(θ− θLS)

≤ R

√
2d log

(
1 + nL2/λ

δ

)
+ S
√
λ

}

Note: More refined version exists.



Why a different confidence set?

I There are algorithms that are good at estimating sparse θ∗
I Can “radius” of the ellipsoid be smaller if θ∗ is sparse? (Yes!)



Our construction: Reduction

Assume that we have a black-box prediction algorithm

(X1, Y1), . . . , (Xt−1, Yt−1), Xt ŶtPrediction Algorithm
Black-Box

with regret at most Bn

Regret =
n∑

t=1

(Ŷt − Yt)
2 −

n∑
t=1

(Ŷt − θ
T
∗ Xt)

2 ≤ Bn

Such black-boxes do exist!



Our construction, continued

I Collect black-box predictions Ŷ1, . . . , Ŷn

I Confidence set

Cn =

{
θ ∈ Rd :

n∑
t=1

(Ŷt − θ
TXt)

2 ≤ poly(Bn,R, log(1/δ))

}

I Note 1: It’s an ellipsoid centered at unregularized least
squares solution

θ ′LS = (XTX)†XT Ŷ

where we replaced Y by Ŷ!

I Note 2: The smaller Bn, the tighter the confidence set.



Aside: Low-regret Prediction Algorithms

Assume ‖Xt‖2 ≤ 1 and |Yt | ≤ 1

Theorem ([Vovk, 2001] & [Azoury and Warmuth, 2001])

If ‖θ∗‖2 ≤ 1, online regularized least squares has regret O(d log n)

Theorem ([Gerchinovitz, 2011])

If ‖θ∗‖∞ ≤ 1 and ‖θ‖0 ≤ p, SeqSEW has regret O(p log(nd))

Note: Confidence set via Vovk-Azoury is roughly the same as best
known confidence set for least squares.



Application: Linear Bandits

I Online game. In round t

1. receive set of actions Dt ⊆ Rd

2. choose an action Xt ∈ Dt

3. receive reward Yt = θ
T
∗ Xt + ηt

I Minimize regret

ρ =

n∑
t=1

(
max
X∗
t ∈Dt

θT∗ X
∗
t

)
−

n∑
t=1

θT∗ Xt

I Note: Classical d-armed bandit problem is Dt = {e1, . . . , ed }



Optimistic Algorithm

I Maintain confidence set Ct

I In round t choose

(θ̂t ,Xt) = argmax
(θ,X )∈Ct−1×Dt

θTX

I Note: This reduces to UCB for Dt = {e1, . . . , ed }



Regret of Optimistic Algorithm

Theorem
If |θT∗ X | ≤ 1 for all X ∈ Dt and t, then with probability ≥ 1 − δ,
for all n, regret is

O
(√

dnBn · polylog(n, d , 1/δ,Bn)
)

For ‖θ‖0 ≤ p using SeqSEW we get

O
(√

pdn · polylog(n, d , 1/δ)
)

Improvement over O(d
√
n · polylog(n, d , 1/δ)) in

[Dani et al., 2008]
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