A Query Processing Approach for XML Database Systems

Christian Mathis, Theo Harder

University of Kaiserslautern
{mathis | haerder}@informatik.uni-kl.de

Abstract: Besides the storage engine, the query processor of a database system is the most crit-
ical component when it comes to performance and scalability. Research on query processing for
relational database systems developed an approach which we believe should also be adopted for the
newly proposed XML database systems. It includes a syntactic and semantic analyzation phase, the
mapping onto an internal query representation, algebraic and cost-based optimization, and finally the
execution on a record-oriented interface. Each step hides its own challenges and will therefore be
discussed throughout this paper. Our contribution can be understood as a road-map that reveals a
desirable set of functionalities for an XML query processor.

1 Introduction

After relational, network-based, hierarchical, object-oriented, object-relational, and deductive database
systems, academic research and businesses raise their attention to database-driven processing of XML
documents, resulting in a new kind of information system, namelyriaéve) XML database system
(XDBS). This development is reasonable, because for the management of a possibly large collection of
XML documents, the classical advantages of database systems over file systems still hold: convenient use
of XML data through a standardized application programming interface (API); transactional warranties
for all operations on XML data; processing of large volumes of data, measured in number of documents
as well as document size.

In [1], Michael Haustein outlines the realization for a subset of these concepts<Mhéelransaction
Coordinator(XTC), a native XDBS. Currently, XTC provides an internal node interface called taDOM,
which includes the features of the Document Object Model enhanced with user transactions. Every
sequence of DOM operations can be encapsulated by a transaction and can thus benefit from the ACID
warranties. For declarative language access, an XQuery processor resides on top of this interface. Its
implementation follows the concepts given in the XQuery formal semantics, thereby neglecting important
optimization technigues, which were crucial for the success of relational database systems in the past
thirty years.

Throughout this paper, we focus on the problem of query evaluation for declarative XDBS access using
XQuery. Our contribution can be understood as a road-map that reveals a desirable set of functionalities
for the XTC query processor.

2 Levels of Abstraction in XML query processing

To handle the complexity of query processing, several levels of abstraction between a declarative query
expression and its procedural evaluation using a set of low-level operations can be identified. These
levels are depicted in Table 1. To facilitate comprehension, the new XML-related concepts are compared
to their well-known counterparts of relational query processing. The most abstract view of a query is its
formulation in a way that only describes the desired result in a certain declarative language. The same
guery may be represented using an algebra expression, whose operators express the quagiagathe
Access ModelOptimization technigues at this level only rely on the expression itself, but do not cope



Level of Abstraction XDBS RDBS

Language Model XQuery SQL

Logical Access Model XML Query Algebra Relational Algebra

Physical Access Model Physical XML Query Algebra Physical DB-Operators
Storage Model XTC, Natix, Shredded Documents Record-oriented DB-Interface

Table 1. XML Query processing abstraction levels

with system-specific information. In general, this is the task of the layer below-Ptlgsical Access

Model Finally, the bottom layer accomplishing the storage of XML documents plays also an important
role, because the efficiency of operations is critically dependent on the chosen storage structure. An
explicit separation of this abstraction level helps to cope with mapping requirements when multiple
heterogenous storage models are present. Each of the depicted layers has its own associated tasks for
guery evaluation and hides its own challenges. Therefore, we will elaborate on them.

2.1 The Language Model

So far, several declarative XML query languages have beefesuit>{
proposed, among them Lorel, XML-QL, XML-GL, and  for $dep in doc(deptxml)/dept,
. . $emp in doc(’emp.xml’)//femp

XQuery. A survey of these languages in [2] singles XQuery where $dep/@depnr = $emp/@depnr  and
out as the most universal language, measured by the de-  $dep/loc = 'Kaiserslautern’

. . and $emp/sal > '50000’
mands posed in [3] Furthermore, XQuery is likely to return
be standardized by the W3C and will therefore presumably <person>{
play a similar role for XML data as SQL does for relational igg:zgg{“e
data. The language was designed to meet the demands }</person>
of both the “document-centric” community—notably text}</resui>
search functionality and document-order awareness—and
the “data-centric” community—expecting powerful selec- Figure 1. Example Query
tions and transformatioRs The design efforts resulted in
a complex, strongly typed language allowing nested subexpressions at almost every position. Con-
tribution [4] shows that XQuery has the same expressive powegr@eursive functions, and is thus
Turing-Complete. Because of an inherent trade-off between expressiveness and evaluation complexity,
the question which sublanguages of XQuery may effectively be evaluated, gains significant importance.
For XPath, Gottlob et.al. answered this question in [5] stating that XPath is evaluable in polynomial
time and space. However, for special extensions of XPath towards complete XQuery, this complexity
determination is still an open problem.
Furthermore, several practical problems regarding the language model arise: the syntactic and semantic
analysis of a query and its transformation into a convenient internal representation to be used throughout
the subsequent optimization steps. As observed in [2], XQuery may be syntactically analyzed using an
LR parser. The semantic processing requires a specific phase for static type and reference checking to
recognize user errors as early as possible. As demanded in [6], an internal query representation should
be efficiently accessible, flexible w.r.t. subsequent transformation steps, and should reflect a kind of
procedural evaluation strategy. So far, we have only dealt with operator trees and we may legitimately
ask whether there is the need for a further refinement of the internal representation structure. We con-

clude this section with our running XQuery example depicted in Figure 1. Given the departments and

1 However, unlike Lorel, XQuery does not support document modification operations, which certainly will be added in
future versions.

2 These expectations resemble the different qualities represented by the object-oriented model for “vertical search” and the
relational model for “horizontal search”



employees of an organization in the documetgpt.xml andemp.xml , it returns a list of all persons
who work in Kaiserslautern and earn more than 50000.

2.2 The Logical Access Model

After the transformation of a query into its internal repre-

sentation, the optimization phase can begin. In general, 0p- €1 = O[g,,c($depy="KL" Adsz($Semp>50000
timization goals are the reduction of query processing time
or the maximization of throughput. The main obstacle is
the possibly large number of equivalent evaluation strate-
gies for a given query, originating from varying operator i i
orders, different operator implementations, the existence of ﬁ$emp¢//emp(s( empxm ))}
indices, and so on. In a first step, the query may be opti-

mized regarding only the logical query structure, neglect- C,qq,(C
ing all further system-specific issues. This process is called
non-algebraic optimization or query restructuring. Its key Figure 2. Algebraic Expression

idea is to minimize intermediary results by executing the

most selective operations as early as possible. To achieve

this goal, the query has to be transformed in a semantics-preserving way. A general approach to identify
these transformations is the use of algebra expressions onto which queries are mapped.

To facilitate the operation tracking of our running exam-

ple across the various abstraction levels, we will use ouft = |Bsdepts, gepocrii- (S dEPLXmI’))

own algebra notation here, although several others have .

been published over the past years. Figure 2 contains the [9@depnisdeps =0@depnisemp]

algebraic equivalence for the query in Figure 1. Each alge- [3$emp¢//emqsal>soooq(S("empxml”))}

bra operator relies on a set of ordered sequences of tuples,

depending on the arity of the operator, and produces a sin-

gle result sequence containing n-ary tuples. For example, resull(Cpersondnamdsempogsa(emp (€1))

a binary join operator processes two_ ipput sequences andFigure 3. Optimized Expression

produces one output sequence containing composed tuples.

The expression in Figure 2 can be read as follows: The innermost op&éfwurce”) provides the
document node of the specified documents in a singleton sequence. Tlielativeperator §) eval-

uates the specified relative path expressions and its result sequence is pptmthe variables &ep

and &mp Afterwards, the join operator can be evaluated, generating a sequence of binary tuples which
obeys the join order. Theelectionoperator filters these tuples by its predicate before the result is pro-
duces by two construct operato€®)( So far, various proposals for an XQuery algebra have not lead to a
standardization. In fact, the published approaches differ a lot in the following features: underlying data
model, operator input and output format, existence of a designated evaluation operatgrfikg€Path,

handling of order, expressive power, representation of XQuery expressions, treatment of query nesting,
etc. Nevertheless, each approach identifies certain algebraic equivalence rules which permit a heuristics-
based optimization to reduce the intermediate result. This heuristics is primarily based on selection push
down. Figure 3 holds an optimized version of the query in Figure 2, where the selection predicate is split
up and embedded in the two path expressions that generate the departments and employees of interest.

B$dept¢//dept(s(” d € thmI” ))

l><][¢@depnr($dept) :¢@depnr($emp]

pers dname Sempodsz (Semp (€1))

2.3 The Physical Access Model

At the next lower level of abstraction, system-specific issues become visible. Each operator of the log-
ical algebra can be composed of one or more physical operators. Those operators embody a specific
evaluation algorithm that possibly relies on the existence of indices, document structure, and element
order. The overall goal during this step of optimization—called query transformation or non-algebraic
optimization—is a query execution plan (QEP) for which appropriate physical operators have to be cho-



sen and subsequently arranged in a sequential manner. As in the relational case, we expect the various
system-dependent parameters to span a large search space for possible QEPs.

In Figure 3 two critical parts of the non-algebraic optimization can be identified: the path expressions
and the join operator. Because XPath is a little bit older than XQuérias been the subject of more
intense research. Several evaluation strategies can be pointed oytureha@gorithmic evaluatiorms
presented by Gottlob et. al. relies on a dynamic programming technigue avoiding duplicate nodes, which
may be produced by most afeand, thus, may cause the repeated evaluation of certain path steps. The
algorithm is the basis for a complexity estimation which reveals that XPath may be evaluated in com-
bined complexity ofO(|D|* x|Q|?), where|D| is the size of the input document af@| the size of the

qguery. This strategy may be chosen, when no indices are present. However, it remains to be explored
whether or not the presented algorithm can benefit from index support.

A second alternative is thiadex-based evaluatior-or example, the T-Index tries to evaluate a path ex-
pression at once, i. e., without further decomposition. Because path expressions can extremely vary and
it seems utopian to support each type of expression by a single index, the appearance of an expression
has to be limited using path templates. Only those queries that match such templates can be evaluated
using the associated index. The knowledge of which kinds of expression have to be supported may ei-
ther be derived from the structure of the underlying documents (using heuristics) or has to be provided
from outside (e. g., by the database administrator). Another possible application area could be the use of
ad-hoc indices.

Finally, furtheralgebraic techniqueas in [7] may be applied. This approach is listed for completeness
only, because it actually belongs to the logical access model. As part of the mapping of a query expres-
sion to an algebraic equivalence, all path expressions are also decomposed into operators which can be
considered under non-algebraic optimization.

Creating indices for a class of path expressions seems to be too restrictive. Therefore, we believe that
a combination of all three strategies results in a conceivable solution. XPath expressions should be in-
cluded in the algebraic optimization and further processed keeping the findings of Gottlob et. al. in mind.
To speed up certain common evaluation tasks, indices may be used.

In relational query processing, there are three major physical operator classes for the join operation:
nested-loop-, sort-merge-, and hash-based algorithms. When considering a join in XQuery, order plays
an important role, because XML documents are inherently ordered by their textual representation. There-
fore, when a sort-merge join or hash join is used—both do not obey document order in general—or when
the join order is altered to minimize the intermediary result size, a sort operator has to process the gener-
ated result sequence. We will explore whether there are further circumventions of this non-commutativity
and whether their cost is lower than the quadratic bound of the nested-loop join.

2.4 Storage Model

A critical input for the QEP optimizer is the cost model, because it builds the foundation of the QEP
rating. It has to include information about the following four issues: 1/0 costs where the (physical) page
references should be counted rather than the (logical) node references; CPU costs reflecting the processor
usage during query execution; storage costs for intermediary results and, finally, communication costs,
which are especially relevant in a distributed system environment. Of course, the overall costs of a QEP
can only be estimated, and because many different system properties as well as document-related statis-
tics (meta-data) have to be taken into account, there will be a trade-off between cost model accuracy and
meta-data maintenance overhead. If, e. g., the system gathers data about the names and occurrences of
child nodes for each node in the document, rather than only the average number of children for that type
of node, the selectivity estimation of a child axis in a path expression may be more accurate. However,
when the document is modified, the more accurate information becomes obsolete much earlier, requiring
a recalculation of the meta-data. Therefore “stable” meta-data items have to be identified.

3 XPath was released as a standard by the W3C in 1999 whereas the first working draft of XQuery was proposed in 2001.
4 The parent axis is an example for this problem.



So far, several alternatives for DBS-supported storing of XML documents have been explored, from
simple LOBs [arge Object} over certain XML-to-relational mappingshredding, as well as the use

of object-oriented DBS, to specifically tailored (native) storage formats. Certainly, the costs for 1/O
and CPU usage heavily depend on the underlying storage model. The evaluation of the path expression
/l[departement[location="KL"] from Figure 3 requires a possibly large number of physical
page lookups, depending on how many pages have to be fetched to evaluate a child axis. In turn, this
number depends on information contained in the specific storage model like, for example, the node num-
bering scheme and the storage layout of the document. Therefore, if the QEP evaluator is parameterized
by the different cost models resulting from the specific storage models of heterogenous XDBS, we are
able to optimize a query on behalf of each of those systems.

3 Conclusion

In this article, we introduced an approach to XML query evaluation, inspecting queries on four differ-
ent layers of abstraction. For each layer, we highlighted several tasks: On the layerlahtheage
Modelwe have chosen XQuery. Because of its complexity, a first step is the search for an “optimizable”
sublanguage. Furthermore, a suitable internal representation has to be found. [Fayita¢ Access
Modelvarious XML query algebras have been proposed so far, but none has lead to a standard. A com-
parative survey of these algebras with respect to expressive power, underlying data model, and the set
of equivalence rules has still to be done. For our own algebra, we have shown a brief example together
with its algebraic optimization. Each operator of the logical access model has to be mapped onto its im-
plementation in th&hysical Access Modetgarding information about existing index structures, object
orders, document structure, etc. Interchangeable physical operators lead to different QEPs that have to
be rated using a cost model. Because path expressions and joins are frequent operations, their effective
implementation is crucial. Finally, cost models are heavily influenced by the assbsioedje Model
Parameterizing the rating of QEPs by cost models enables query optimization on behalf of different XML
database systems.

In the future, we will focus our work on the two lowermost layers. Therefore we will assume a limited
algebra that handles only central XQuery constructs like path expressions, joins, etc. Regarding the phys-
ical access model, we will elaborate on effective operator implementation, index support, and optimal
operator order. Furthermore, the creation of a QEP enumeration and rating framework, customizable by
different cost models, is our aim.

References

[1] Michael P. Haustein. Eine XML-Programmierschnittstelle zur transaktionsgeschiitzten Kombination von DOM, SAX
und XQuery. Inll. Gl-Fachtagung fir Datenbanksysteme in Business, Technologie und Web, @D&) http:
/Iwwwdvs.informatik.uni-kl.de/pubs/papers/Hau04.BTW.html .

[2] Christian Mathis. Anwendungsprogrammierschnittstellen fur XML-Datenbanksysteme. Master’s thesis, Kaiserslautern
University of Technology, 2004. (german only).

[3] David Maier. Database Desiderata for an XML Query Language, 18€®://www.w3.org/TandS/QL/QL98/
pp/maier.html

[4] Stephan Kepser. A Simple Proof for the Turing-Completeness of XSLT and XQuéextiame Markup Languages 2004,
Montreal Quebec?2004. http://tcl.sfs.uni-tuebingen.de/~kepser/papers/EML2004KepserO1.
pdf .

[5] G. Gaottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath Queriéxom of the 28th International
Conference on Very Large Data Bases (VLDB 20@Rp2.

[6] Bernhard Mitschang.Anfrageverarbeitung in Datenbanksystemen, Entwurfs- und Implementierungskon¥epteg
Verlag, 1995. (german only).

[7] Matthias Brantner, Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte. Full-fledged Algebraic XPath Processing
in Natix. Technical report, University of Mannheim, 2005.



