

Linköping Studies in Science and Technology

Dissertation No. 1120

Management of Real-Time Data Consistency and
Transient Overloads in Embedded Systems

by

Thomas Gustafsson

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2007

Copyright © 2007 Thomas Gustafsson

ISBN 978-91-85831-33-3
ISSN 0345-7524

Printed in Linköping, Sweden, by LiU-Tryck

Abstract

This thesis addresses the issues of data management in embedded systems’
software. The complexity of developing andmaintaining software has increased
over the years due to increased availability of resources, e.g., more powerful
CPUs and larger memories, as more functionality can be accommodated using
these resources.
In this thesis, it is proposed that part of the increasing complexity can

be addressed by using a real-time database since data management is one
constituent of software in embedded systems. This thesis investigates which
functionality a real-time database should have in order to be suitable for
embedded software that control an external environment. We use an engine
control software as a case study of an embedded system.
The findings are that a real-time database should have support for keeping

data items up-to-date, providing snapshots of values, i.e., the values are derived
from the same system state, and overload handling. Algorithms are developed
for each one of these functionalities and implemented in a real-time database for
embedded systems. Performance evaluations are conducted using the database
implementation. The evaluations show that the real-time performance is
improved by utilizing the added functionality.
Moreover, two algorithms for examining whether the system may become

overloaded are also outlined; one algorithm for off-line use and the second
algorithm for on-line use. Evaluations show the algorithms are accurate and
fast and can be used for embedded systems.

i

ii

Acknowledgements

I have learned many things during my time as a doctoral student. One thing,
that is related to this very page, is that if people is reading something of a thesis
it is very probably the acknowledgements. Why is that? I think it is normal
human curiosity and I better start meeting the expectations... The cover does
not reflect anything in my research nor has it any other deeper meaning; it is
just a nice picture of a sand dune in Alger close to the West Saharan border
taken by Elinor Sundén in February 2006.
Has life as a doctoral student been as I expected? Of course not! Have I

learned as much as I thought I would? I have indeed. Probably a lot more. Most
importantly, have I taken steps towards becoming a researcher? People must
judge by themselves, but I certainly hope so. My supervisor JörgenHansson has
believed in me and created an environment and an atmosphere where I have
had the opportunity to develop skills necessary for my studies. I thank him,
Mehdi Amirijoo, Aleksandra Tešanović and AnneMoe, and the rest of RTSLAB,
ESLAB, TCSLAB, and late Emma Larsdotter Nilsson for providing this “world of
research” where I have been living the past 5 years. It has been a great pleasure
to get to know and work together with you.
I would like to thank the master thesis students Martin Jinnerlöv, Marcus

Eriksson, Hugo Hallqvist, and Ying Du who have contributed to implementa-
tions for the research project. I would also like to thank Anders Göras, Gunnar
Jansson and Thomas Lindberg from Mecel AB (now HOERBIGER Control
Systems AB) for valuable input and comments to my research. Further, I thank
Sven-Anders Melin, Jouko Gäddevik, and David Holmgren at GM Powertrain
Europe.
My studies has been funded by Information Systems for Industrial Control

and Supervision (ISIS) and I have been enrolled in theNational Graduate School
in Computer Science (CUGS).
Since September 2006 I amworking in a newgroup at School of Engineering,

iii

iv

Jönköping University. I thank especially Kurt Sandkuhl and his group for giving
me this opportunity of conducting research in a, to me, new compelling area.
Last I would like to send my love to my family and in particular Elinor who

makes life so much more fun.

Thomas Gustafsson
Jönköping, July 2007

CONTENTS

1 Introduction 1
1.1 Summary . 1
1.2 Motivation . 2

1.2.1 Software Development and Embedded Systems 2
1.2.2 Software Development and Engine Management Systems . 3
1.2.3 Databases and Software Development 5

1.3 Goals . 6
1.4 Contributions . 6
1.5 Papers . 7
1.6 Thesis Outline . 9

2 Preliminaries 11
2.1 Real-Time System . 11

2.1.1 Scheduling . 12
2.1.2 Scheduling and Feasibility Tests 14
2.1.3 Precedence Constraints . 16
2.1.4 Servers . 16

2.2 Databases . 17
2.2.1 Transactions . 18
2.2.2 Consistency . 19

2.3 Updating Algorithms . 22
2.4 Linear Regression . 23
2.5 Electronic Engine Control Unit . 25

2.5.1 Data Model . 27
2.6 Concurrency Control . 27

2.6.1 Serializability . 27
2.6.2 Concurrency Control Algorithms 30

2.7 Checksums and Cyclic Redundancy Checks 36

v

vi CONTENTS

3 Problem Formulation 38
3.1 Software Development and Data Management 38
3.2 Notations and Assumptions . 39
3.3 Problem Formulation . 41

3.3.1 Computational Complexity of Maintaining Data Freshness 43
3.4 Wrap-Up . 46

4 Data Freshness 47
4.1 Database System: DIESIS . 48

4.1.1 Implementation of Database System 50
4.2 Data Freshness . 51

4.2.1 Data Freshness in Time Domain 52
4.2.2 Data Freshness in Value Domain 52
4.2.3 Example of Data Freshness in Value Domain 55

4.3 Marking of Changed Data Items 56
4.3.1 Correctness of Determining Potentially Affected Data Items 57

4.4 On-Demand Updating Algorithms in Time Domain 58
4.5 On-Demand Updating Algorithms in Value-Domain 59

4.5.1 On-Demand Depth-First Traversal 61
4.5.2 Relevance Check: ODDFT_C 62
4.5.3 On-Demand Top-Bottom with relevance check 62
4.5.4 RADEx++ Settings . 63
4.5.5 Performance Results . 65
4.5.6 DIESIS in EECU . 71

4.6 Wrap-Up . 72

5 Multiversion Concurrency Control With Similarity 75
5.1 Multiversion Concurrency Control With Similarity 76

5.1.1 MVTO with Similarity . 76
5.2 Implementation of MVTO-S . 80

5.2.1 MVTO-SUV . 80
5.2.2 MVTO-SUP . 80
5.2.3 MVTO-SCRC . 82

5.3 Single-version Concurrency Control With Similarity 84
5.4 Implementation Details of Concurrency Control 86
5.5 Performance Results of Snapshot Algorithms 87

5.5.1 Experiment 4a: Committed User Transactions 87
5.6 Wrap-Up . 92

6 Analysis of CPU Utilization of On-Demand Updating 93
6.1 Specialized Task Model . 93
6.2 Preliminaries . 95

6.2.1 Workload and Schedulability Tests 98
6.3 Estimation of Mean Interarrival Times of On-Demand Updates . 99

6.3.1 Time Domain using AVI . 99
6.3.2 Value Domain . 102

CONTENTS vii

6.3.3 Estimation Formula Using Similarity 102
6.4 Evaluations using AVI . 104

6.4.1 Simulator Setup . 104
6.4.2 Performance Evaluations of Workload 105
6.4.3 Performance Evaluations of Estimations 107

6.5 Wrap-Up . 111

7 Overload Control 113
7.1 Introduction . 114
7.2 Extended Data and Transaction Model 115

7.2.1 Update Functions . 116
7.3 Admission Control Updating Algorithm 119
7.4 Admission Control using ACUA 123
7.5 Analyzing CPU Utilization . 123
7.6 Performance Evaluations . 126

7.6.1 Evaluated Algorithms . 126
7.6.2 Simulator Setup . 127
7.6.3 Experiments . 128

7.7 Wrap-Up . 131

8 On-line Estimation of CPU Utilization 133
8.1 MTBI in a System with Arbitrary Number of Levels in G 134

8.1.1 Model . 134
8.1.2 Analysis of Data Dependency Graphs 134
8.1.3 Multiple Regression . 137

8.2 CPU Estimation Algorithm . 141
8.3 Performance Results . 141
8.4 Wrap-Up . 148

9 RelatedWork 151
9.1 Updating Algorithms and Data Freshness 151
9.2 Concurrency Control . 154
9.3 Admission Control . 156

10 Conclusions and FutureWork 159
10.1 Conclusions . 159
10.2 Discussions . 161
10.3 Future Work . 162

A Abbreviations and Notation 176

B On-Demand Updating Algorithms in Value-Domain 178
B.1 Updating Schemes . 178
B.2 Binary marking of stale data items 179
B.3 Bottom-Up Traversal: Depth-First Approach 180
B.4 Bottom-Up Traversal: Breadth-First Approach 182

viii CONTENTS

B.5 ODKB_C Updating AlgorithmWith Relevance Check 185
B.6 Top-Bottom Traversal: ODTBWith Relevance Check 185
B.7 Supporting Mechanisms and Algorithms 189

B.7.1 BeginTrans . 189
B.7.2 ExecTrans . 189
B.7.3 AssignPrio . 190

B.8 Performance Results . 190
B.8.1 Experiment 1b: Deriving Only Actuator User Transactions 192
B.8.2 Experiment 1c: Comparison of Using Binary Change Flag

or pa Timestamp . 193
B.8.3 Experiment 1e: Effects of Blocking Factor 193
B.8.4 Experiment 2a: Consistency and Throughput With Rele-

vance Check . 196
B.8.5 Experiment 2b: Effects of Blocking Factors and Only

Deriving Actuator Transactions 202

C Multiversion Concurrency Control with Similarity 206
C.1 Performance Results . 206

C.1.1 Simulator Setup . 206
C.1.2 Experiment 4b: Memory Pool Size 207
C.1.3 Experiment 4c: Priority Levels 207
C.1.4 Experiment 4d: Overhead 208
C.1.5 Experiment 4e: Low Priority 209
C.1.6 Experiment 4f: Transient State 209

D Confidence Intervals 213

CHAPTER 1

Introduction

This chapter gives an introduction to the research area of this thesis. Theworkis part of the project entitled “Real-Time Databases for Engine Control in
Automobiles”, and was done in collaboration with Mecel AB and General
Motors Powertrain Sweden; both companies are working with engine control
software for cars. This thesis addresses data management issues that have
been identified as challenges during the course of maintaining and developing
embedded systems’ software.
Section 1.1 gives a short summary of this thesis. Section 1.2 presents data

management problems of embedded systems’ software. Section 1.3 states the
research goals of the thesis. Section 1.4 summarizes the research contributions
achieved in this thesis. Section 1.5 lists published papers by the author, and,
finally, Section 1.6 outlines the thesis.

1.1 Summary

This section gives a short summary of the problem we have studied and our
achieved results.
Real-time systems are systems where correct functionality depends on de-

rived results of algorithms and at which time a result was derived [24]. An
embedded system is part of a larger system in which the embedded system has a
specific purpose, e.g., controlling the system in a well-defined way [32]. Embed-
ded systems have usually resource constraints, e.g., limited memory, limited
CPU and limited energy. Further, some embedded systems are controlling
systems that control the environment they are installed in. These embedded
systems perform control actions by monitoring the environment and then cal-
culating responses. Thus, it is important that data values the calculations use
are up-to-date and correct. This thesis focuses on maintaining consistency of

1

2 Introduction

data values and at the same time utilizing the CPU efficiently. The performance
of soft real-time embedded systems is measured with respect to deadline miss
ratio. Algorithms are proposed that utilizes the CPU better, compared to ex-
isting algorithms, by enlarging the time between updates. Further, analytical
formulae are proposed to estimate the workload imposed by updates of data
items when using our algorithms. In addition, the proposed analytical formulae
can be used both on-line and off-line to estimate the schedulability of a task set.

1.2 Motivation

This section gives an introduction to software development and database
systems that highlight difficulties in developing software, which motivates the
work we have conducted.

1.2.1 Software Development and Embedded Systems

Embedded systems are nowadays commonplace and can be found in many
different application domains, from domestic appliances to engine control.
Embedded systems are typically resource-constrained, dependable, and have
real-time constraints [106]. A large part of all CPUs that are sold are used in em-
bedded systems, thus, software that runs in embedded systems constitutes the
main part of all software that is developed [23], which stresses the importance
of finding adequate methods for developing software for embedded systems.
The software in embedded systems is becoming increasingly complex be-

cause of more functional requirements being put on them [32]. Verum Con-
sultants analyzed embedded software development in the European and U.S.
automotive, telecommunications, medical systems, consumer electronics, and
manufacturing sections [31], and they found that currently used software de-
velopment methods are unable to meet the demands of successfully developing
software on time that fulfills specified requirements. They also observed that
some embedded software roughly followsMoore’s law and doubles in size every
two years. Figure 1.1 gives a schematic view of areas that contribute to the com-
plexity of developing and maintaining a software [34]. As we can see in Figure
1.1, software complexity does not only depend on the software and hardware
related issues—e.g., which CPU is used—but also on the human factor, e.g., how
hard/easy it is to read and understand the code. Many techniques have been
proposed over the years that address one or several of the boxes in Figure 1.1.
Recently, the most dominant technique has been component-based software
development [36]. An example of this is a new initiative in the automotive
industry called AUTomotive Open System ARchitecture (AUTOSAR) where
the members, e.g., the BMW Group and the Toyota Motor Corporation, have
started a standardization of interfaces for software in cars [2, 67]. The ideas of
AUTOSAR are to support:

• management of software complexity;

1.2. Motivation 3

Software
complexity

Mathematics
- Number of components
- Number of relationships
among components
- High dimensions

Computer Science
- Difficulty to change, maintain,
understand software
- Resource consumption (labor,
technology, etc.)
- Number of errors
- Software metrics

Economy
- Resource consumption

Psychology and cognitive
science

- Mental effort to understand
- Difficulty to understand

Social sciences
- Unpredictable and unexpected
or nonlinear interactions among
events or subsystems
- Coupling level

System science
- Large number of elements
- High dimentionality

Figure 1.1: Software complexity [34].

• flexibility for product modification, upgrade and update;

• scalability of solutions within and across product lines; and

• improved quality and reliability of embedded systems in cars.

The embedded systems we focus on in this thesis are composed of a
controlled system and a controlling system [110], which is typical of a large
class of embedded systems. Moreover, we have access to an engine control
software that constitutes our real-life system where proof of concepts can be
implemented and evaluated. This embedded system adheres to the control and
controlling system approach.
The controlling system monitors the external environment by reading sen-

sors, and it controls the controlled system by sending actuator values to
actuators. Normally, the timing of the arrival of an actuator signal at an
actuator is important. Thus, most embedded systems are real-time systems
where the completion of a task must be within a specified time-frame from its
start (for a further discussion of real-time systems see Section 2.1, Real-Time
System). It is critical that values used by calculations correctly reflect the
external environment. Otherwise actuator signals might form inaccurate values
and therefore the controlling system does not control the controlled system in
a precise way. This may lead to degraded performance of the system, or even
have catastrophic consequences where the system breaks down, e.g., lengthy
and repeating knocking of an engine.

1.2.2 SoftwareDevelopment andEngineManagement Systems

Now we introduce a specific embedded system that is used throughout this
thesis. It is an engine management system where we have concentrated on the

4 Introduction

engine control software.
Computing units are used to control several functional parts of cars, e.g.,

engine, brakes, andclimate control. Every suchunit is denotedanelectronic con-
trol unit (ECU). Development and maintenance costs of software is increasing
and one large part of this cost is data handling [17,89]. The industrial partners
have recognized that also the ECU software is becoming more complex due to
increasing functionality (this is also acknowledged elsewhere [2,22,23,45,67]).
The software in the engine electronic control unit (EECU) is complex and con-
sists of approximately 100,000 lines of C and C++ code. One reason for this
complexity is law regulations put on the car industry to extensively diagnose the
ECUs; the detection of a malfunctioning component needs to be done within
a certain time after the component breaks [99]. The diagnosis is a large part
of the software, up to half of it, and many data items are introduced in the
diagnosis [99]. Moreover, the software has a long life cycle, as long as several
car lines, and several programmers are involved in maintaining the software. In
addition to this, calculations in the EECU software have time constraints, which
means that the calculations should be finished within given time frames. Thus,
the EECU is a real-time system. The control-theoretic aspects of controlling
the engine are well understood and implemented as event-based sporadic tasks
with hard or soft real-time requirements. Further, the specifications of the
engine management system we have access to are a 32-bit 16.7 MHz CPU with
64 kB RAM and it started to be used circa 15 years ago. Our intentions are to
learn the properties of embedded systems’ software, and in particular how data
is managed in embedded systems.
The industrial partners have identified problemswith their current approach

of developing embedded software. These include:

• Efficiently managing data items since they are partitioned into several
different data areas—global and application-specific1. This makes it
difficult for programmers to keep track of what data items exist. Also, a
data item can accidentally exist in several data areas simultaneously. This
increases both CPU and memory usage.

• Making sure data is updated such that accurate calculations of control
variables and diagnosis of the system can be done.

• Using CPU and memory resources efficiently allowing to choose cheaper
devices which cuts costs for the car manufacturers.

Data freshness in an ECU is currently guaranteed by updating data items
with fixed frequencies. There is work done on determining fixed updating
frequencies on data items to fulfill freshness requirements [68,76,88, 136] (see
Chapter 6). This means that a data item is recalculated when it is about to
be stale, even though the new value of the data item is exactly the same as

1In the context of an EECU software, an application is a collection of tasks responsible for one
main part of the engine, e.g., control of fuel and the related problem of knocking.

1.2. Motivation 5

before. Hence, the recalculation is essentially unnecessary and resources are
not utilized efficiently.

1.2.3 Databases and Software Development

Databases are used in many different applications to organize and store data
[15, 19, 104]. They consist of software modules that take care of issues related
to application-specific data (see Section 2.2, Databases, for more details), e.g.,
transaction management and secondary memory storage. The benefits from
using a database are clear; by keeping data in one place it is more easily
accessible to many users, and the data is easier maintained compared to if it
was partitioned, each partition residing on one isolated computer. Queries can
be issued to retrieve data to analyze. It is the task of the database to parse
the query and return a data set containing the requested data. Databases are
often associated with the storage of orders of Gb of data and advanced query
languages such as SQL. One feature of a database is the addition and deletion
of data items, i.e., the data set can be dynamic and change when the system is
running. However, the benefits of a database, especially as a complete system
to maintain data, can of course be applied to systems with a fixed data set.
Olson describes different criteria for choosing a database for an em-

bedded system [102]. He classifies databases into client-server relational
databases, client-server object-oriented databases, and, finally, embedded li-
brary databases. The embedded library databases are explicitly designed for
embedded systems. The embedded database links directly into the software,
and there is no need for a query language such as SQL. Existing client-server
databases are not appropriate for real-time systems, because transactions can-
not be prioritized. Nyström et al. identify that there currently are no viable
commercial alternatives of embedded databases suited for embedded real-time
systems [125]. The referenced technical report was published 2002 and to check
current development of embedded databases a search in Google for the key-
word ‘embedded database’ was conducted. The search yields the following top
results that are not covered in [125]: eXtremeDB [96] that is a main-memory
database that is linked with the application, DeviceSQL [46] that also is a
main-memory database, Microsoft’s SQL Server 2005 Compact Edition [98]
that is an in-process relational database. These database systems do not, with
respect to embedded real-time systems, improve upon the listed databases
in [125] since they require relatively high memory foot-print (e.g., it is 100
Kb for eXtremeDB [96]) or operating systems not suitable for embedded sys-
tems (Microsoft’s SQL Server 2005 Compact Edition requires at least Windows
2000).
Olson also points out that most database systems use two-phase locking

to ensure concurrent transactions do not interfere with each other [102].
Two-phase locking is an approach to concurrency control that guarantees the
consistency of the data [19]. However, for some applications the consistency
can be traded off for better performance [90] (see Chapter 4). This trade-off is

6 Introduction

not possible if only conventional two-phase locking is available.

1.3 Goals

As discussed above, embedded systems’ software becomes more and more
complex, which increases the development times and costs. Further, data plays
an important role in embedded systems especially in control and controlling
systems, because monitored data is refined and then used to control the system.
Thus, there is an identified need to find efficientmethods to handle application-
specific requirements on data consistency. These methods must also consider
the non-functional requirement, that is usually found in embedded systems, of
timeliness.
Databases have been successfully used in large systems to maintain data

during several decades now. The hypothesis in this thesis is that databases can
be used in embedded systems as means to efficiently handle data consistency
and timeliness and at the same time reduce development time and costs. Thus,
our goals are

G1: to find means—focusing on data management—to reduce development
complexity;

G2: to meet the non-functional requirement of timeliness; and

G3: to utilize available computer resources efficiently.

Our approach is to assume the concept of databases is usable in embedded
system. This assumption is based on the success of using databases in a wide
range of applications over the years. We intend to investigate what the specific
requirements on a database for an embedded real-time system are. We aim
at using an EECU software as a case study to derive a data model that the
database should support. EECU systems constitute a typical embedded system
with a mix of hard and soft real-time tasks that use data values with consistency
requirements. Thus, results presented in this thesis can be generalized to other
types of computer systems that have deadlines associated with calculations and
the calculations need to use consistent values of data items.

1.4 Contributions

The contributions of the research project “Real-Time Databases for Engine
Control in Automobiles” and this thesis are:

• A database systemplatform for embedded real-time systemsdenotedData
In Embedded Systems maIntenance Service (DIESIS). DIESIS features:

1.5. Papers 7

– A new updating scheme, simply denoted AUS, for marking changed
data items and scheduling algorithms that schedule data items that
need to be updated. The combination of marking data items and
scheduling data items has shown to give good performance. Re-
sources are used efficiently since scheduled data items reflect changes
in the external state, i.e., the number of scheduled data items is
adapted to the speed of changes in the current state of the external
environment.

– A new algorithm, MVTO-S, that ensures data items’ values used in
calculations are from the same system state. Such an algorithm
is said to provide a snapshot of the data items’ values at a time
t. Moreover, updates of data items are scheduled using AUS and
a scheduling algorithm. Using MVTO-S is shown to give good
performance because historical values on data items remain in the
database, and these data values do not need be updated if used by a
calculation, i.e., less number of calculations need to be done using a
snapshot algorithm. However, more memory is needed.

– Overload handling by focusingCPU resources on calculating themost
important data items during overloads. Performance results show
that overloads are immediately suppressed using such an approach.

• Two new algorithms for analyzing embedded real-time systems with
conditioned precedence constrained calculations:

– An off-line algorithm denotedMTBIOfflineAnalysis that analyzes the
mean time between invocations of calculations in a system where the
execution of a calculation depends on values of data items.

– An on-line algorithm denoted MTBIAlgorithm that estimates the
CPU utilization of the system by using a model that is fitted to data
using multiple regression.

1.5 Papers

The results in this thesis have been published and presented in the following
peer-reviewed conferences:

[56] Thomas Gustafsson and Jörgen Hansson.Dynamic on-demand updating
of data in real-time database systems. In Proceedings of the 2004 ACM
symposium on Applied computing, pages 846–853. ACM Press, 2004.

[55] Thomas Gustafsson and Jörgen Hansson.Data management in real-time
systems: a case of on-demand updates in vehicle control systems. In
Proceedings of the 10th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’04), pages 182–191. IEEE Computer
Society Press, 2004.

8 Introduction

[53] Thomas Gustafsson, Hugo Hallqvist, and Jörgen Hansson. A similarity-
aware multiversion concurrency control and updating algorithm for up-
to-date snapshots of data. In ECRTS ’05: Proceedings of the 17th
Euromicro Conference on Real-Time Systems (ECRTS’05), pages 229–
238, Washington, DC, USA, 2005. IEEE Computer Society.

[60] Thomas Gustafsson, Jörgen Hansson, Anders Göras, Jouko Gäddevik,
and David Holmberg. 2006-01-0305: Database functionality in engine
management system. SAE 2006 Transactions Journal of Passenger
Cars: Electronic and Electrical Systems, 2006.

[57] Thomas Gustafsson and Jörgen Hansson. Data freshness and overload
handling in embedded systems. In Proceedings of the 12th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA06), 2006.

[59] Thomas Gustafsson and Jörgen Hansson. Performance evaluations and
estimations of workload of on-demand updates in soft real-time systems.
In Proceedings of the 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA07). To
appear, 2007.

The following papers have been co-authored by the author but these are not
part of this thesis:

[124] Aleksandra Tešanović, ThomasGustafsson, and JörgenHansson.Separat-
ing active and on-demand behavior of embedded systems into aspects. In
Proceedings of the InternationalWorkshop onNon-functional Properties
of Embedded Systems (NFPES’06), 2006.

[61] ThomasGustafsson, AleksandraTešanović, YingDu, and JörgenHansson.
Engineering active behavior of embedded software to improve evolution
and performance: an aspect-oriented approach. In Proceedings of the
2007 ACM symposium on Applied computing, pages 673–679. ACM
Press, 2007.

The following technical reports have been produced:

[54] Thomas Gustafsson and Jörgen Hansson. Scheduling of updates of
base and derived data items in real-time databases. Technical report,
Department of computer and information science, Linköping University,
Sweden, 2003.

[58] Thomas Gustafsson and Jörgen Hansson. On the estimation of cpu uti-
lization of real-time systems. Technical report, Department of Computer
and Information Science, Linköping University, Sweden, 2006.

1.6. Thesis Outline 9

1.6 Thesis Outline

The outline of this thesis is given below. Figure 1.2 summarizes the developed
algorithms and where they are presented and evaluated.
Chapter 2, Preliminaries, introduces real-time systems and scheduling of

real-time tasks, database systems and their modules, concurrency control algo-
rithms, serializability and similarity as correctness criterion, overload handling
in real-time systems, and analysis of event-based systems.
Chapter 3, Problem Formulation, presents the challenges the industrial

partners have found in developing large and complex ECU software. Notation
and assumptions of the system used throughout this thesis are presented.
Finally, the problem formulation of this thesis is stated.
Chapter 4, Data Freshness, introduces data freshness in the value domain.

This kind of data freshness is then used in updating algorithms whose purpose
is to make sure the value of data items is up-to-date when they are used. The
updating algorithms are evaluated and their performance results are reported
in this chapter.2

Chapter 5, Multiversion Concurrency Control With Similarity, describes an
algorithm that presents snapshots of data items to transactions. Implementa-
tions of the snapshot algorithm are evaluated and the performance results are
reported in this chapter.3

Chapter 6, Analysis of CPU Utilization of On-Demand Updating, compares
CPU utilization of updating on-demand to well-established algorithms for
assigning deadlines and period times to dedicated updating tasks. Further,
Chapter 6 develops analytical formulae that estimate mean interarrival times of
on-demand updates, which can be used to estimate the workload of updates.
Chapter 7, Overload Control, describes how DIESIS handles overloads and

how a developed off-line algorithm, MTBIOfflineAnalysis, can analyze the total
CPU utilization of the system and investigate whether the system may become
overloaded. Performance results of overload handling are also reported in the
chapter.
Chapter 8, On-line Estimation of CPU Utilization, describes an on-line

algorithm, MTBIAlgorithm, for analysis of CPU utilization of real-time systems.
Chapter 9, Related Work, gives related work in the areas of data freshness

and updating algorithms, concurrency control, and admission control.
Chapter 10, Conclusions and Future Work, concludes this thesis and gives

directions for future work.

2In order to ease the reading of the main results some detailed explanations of algorithms and
some experiments are presented in Appendix B.
3Some experiments are moved to Appendix C in order to ease the reading.

10 Introduction

U
p

d
a

ti
n

g

D
a

ta
C

h
ap

te
r

4

T
im

e
D

om
ai

n
V

al
u

e
D

om
ai

n

O
D

B
ot

to
m

-u
p

gr

ap
h

tr

av
er

sa
l

O
D

D
F

T
O

D
B

F
T

T
op

-b
ot

to
m

gr

ap
h

tr

av
er

sa
l

W
it

h
ou

t
re

le
va

n
ce

ch

ec
k

W
it

h

re
le

va
n

ce

ch
ec

k

O
D

D
F

T
_

C
O

D
B

F
T

_
C

O
D

T
B

W
it

h

re
le

va
n

ce

ch
ec

k

W
it

h
ou

t
re

le
va

n
ce

ch

ec
k

W
it

h

re
le

va
n

ce

ch
ec

k

O
D

O
O

D
K

B
O

D
_

C
O

D
O

_
C

O
D

K
B

_
C

M
a

th
e

m
a

ti
ca

l
m

o
d

e
ls

M
T

B
IO

ff
li

n
eA

n
al

ys
is

C
h

ap
te

r
6

M
T

B
IA

n
al

ys
is

C
h

ap
te

r
8

S
n

a
p

sh
o

t
C

h
ap

te
r

5

M
V

T
O

-S
U

V
M

V
T

O
-S

U
P

M
V

T
O

-S
C

R
C

O
v

e
rl

o
a

d

h
a

n
d

li
n

g
C

h
ap

te
r

7

A
C

U
A

Figure 1.2: Algorithms presented in the thesis.

CHAPTER 2

Preliminaries

The purpose of this chapter is to prepare for the material in coming chapters.Real-time scheduling and admission control are introduced in Section 2.1.
Databases and consistency are introduced in Section 2.2. Algorithms to update
data items are discussed in Section 2.3. Linear regression is introduced in
Section 2.4. Section 2.5 describes the engine management system we have
investigated. Section 2.6 describes concurrency control algorithms, and, finally,
Section 2.7 describes checksums and cyclic redundancy checks.

2.1 Real-Time System

A real-time system consists of tasks, where some/all have time constraints on
their execution. It is important to finish a task with a time constraint before
its deadline, i.e., it is important to react to an event in the environment before
a predefined time.1 A task is a sequence of instructions executed by a CPU in
the system. In this thesis, only single-CPU systems are considered. Tasks can
be either periodic, sporadic, or aperiodic [79]. A periodic task is periodically
made active, e.g., to monitor a sensor at regular intervals. Every activation
of the task is called a task instance or a job. Sporadic tasks have a minimum
interarrival time between their activations. An example of a sporadic task in
the EECU software is the ignition of the spark plug to fire the air-fuel mixture
in a combustion engine. The shortest time between two invocations of this
task for a particular cylinder is 80 ms since—assuming the engine cannot run
faster than 6000 rpm and has 4 cylinders—the ignition only occurs every second
revolution. Aperiodic tasks, in contrast to sporadic tasks, have no limits on
how often they can be made active. Hence, both sporadic and aperiodic tasks

1The term task and real-time task are used interchangeably in this thesis.

11

12 Preliminaries

are invoked occasionally and for sporadic tasks we know the smallest possible
amount of time between two invocations. The real-time tasks constitute the
workload of the system.
The correct behavior of a real-time system depends not only on the values

produced by tasks but also on the time when the values are produced [24].
A value that is produced too late can be useless to the system or even have
dangerous consequences. A task is, thus, associated with a relative deadline
that is relative to the start time of the task. Note that a task has an arrival time
(or release time) when the system is notified of the existence of the ready task,
and a start time when the task starts to execute. Tasks are generally divided
into three types:

• Hard real-time tasks. The missing of a deadline of a task with a hard
requirement on meeting the deadline has fatal consequences on the
environment under control. For instance, the landing gear of an aeroplane
needs to be ejected at a specific altitude in order for the pilot to be able to
complete the landing.

• Soft real-time tasks. If the deadline is missed the environment is not
severely damaged and the overall system behavior is not at risk but the
performance of the system degrades.

• Firm real-time tasks. The deadline is soft, i.e., if the deadline is missed it
does not result in any damages to the environment, but the value the task
produces has no meaning after the deadline of the task. Thus, tasks that
do not complete in time should be aborted as late results are of no use.

The deadlines of tasks can be modeled by utility functions. The completion of a
task gives a utility to the system. These three types of real-time tasks are shown
in Figure 2.1. A real-time system can be seen as optimizing the utility the system
receives from executing tasks. Thus, every task gives a value to the system, as
depicted in 2.1. For instance, for a hard-real time system the system receives an
infinite negative value if the task misses its deadline.
A task can be in one of the following states [84]: ready, running, and

waiting. The operating system moves the tasks between the states. When
several tasks are ready simultaneously, the operating system picks one of them,
i.e., schedules the tasks. The next section covers scheduling of tasks in real-time
systems. A task is in the waiting state when it has requested a resource that
cannot immediately be serviced.

2.1.1 Scheduling

Areal-time systemconsists of a set of tasks, possiblywith precedence constraints
that specify if a task needs to precede any other tasks. A subset of the tasks may
be ready for execution at the same time, i.e., a choice has to be made which task
should be granted access to the CPU. A scheduling algorithm determines the
order the tasks are executed on the CPU. The process of allocating a selected task

2.1. Real-Time System 13

time

deadline

value

-∞

(a) Hard real-time task.

time
deadline

value

(b) Firm real-time task.

timedeadline

value

(c) Soft real-time task.

Figure 2.1: Hard, soft and firm real-time tasks.

to the CPU is called dispatching. Normally, the system has a real-time operating
system (RTOS) that performs the actions of scheduling and dispatching. The
RTOS has a queue of all ready tasks from which it chooses a task and dispatches
it.
A feasible schedule is an assignment of tasks to the CPU such that each task

is executed until completion and constraints are met [24].
The computational complexity of algorithms constructing a schedule taking

job characteristics, e.g., deadlines and the critically of them, into consideration
depends on a number of things. First, the number of resources, i.e., the number
of CPUs plays an important role. Further, type of conditions influences the
complexity as well. Below we give a condensed overview of the computational
complexity of algorithms with at least the condition that tasks have deadlines
[24, 48, 114, 119]. A schedule can be preemptive, i.e., a task can interrupt an
executing task, or non-preemptive, i.e., a started task runs to completion or
until it becomes blocked on a resource before a new task can start to execute.

• Non-preemptive scheduling on uniprocessor. We will not use this further
in this thesis. The problem Sequencing with Release Times and Deadlines
in [48] shows that the general problem is NP-complete but can be solvable
in polynomial time given specific constraints, e.g., all release times are
zero.

14 Preliminaries

• Preemptive scheduling on uniprocessor. This problem can be solved in
polynomial time, e.g., rate-monotonic (RM) and earliest deadline first
(EDF) (see section below for a description) run in polynomial time.
A polynomial time algorithm even exists for precedence constrained
tasks [28].

• Multiprocessor scheduling. We do not use multiprocessor systems in
this thesis. An overview of results of computational complexity is given
in [119].

Tasks have priorities reflecting their importance and the current state of the
controlled environment. Scheduling algorithms that assume that the priority
of a task does not change during its execution are denoted static priority
algorithms [79].

2.1.2 Scheduling and Feasibility Tests

Under certain assumptions it is possible to tell whether a construction of a
feasible schedule is possible or not. The two most known algorithms of static
and dynamic priority algorithms are rate monotonic (RM) [91] and earliest
deadline first (EDF) [69], respectively. The rate monotonic algorithm assigns
priorities to tasks based on their period times. A shorter period time gives a
higher priority. The priorities are assigned before the system starts and remain
fixed. EDF assigns the highest priority to the ready task which has the closest
deadline. The ready task with the highest priority, under both RM and EDF, is
executing.
Under the assumptions, given below, A1–A5 for RM and A1–A3 for EDF,

there are necessary and sufficient conditions for a task set to be successfully
scheduled by the algorithm. The assumptions are [79]:

A1 Tasks are preemptive at all times.

A2 Only process requirements are significant.

A3 No precedence constraints, thus, tasks are independent.

A4 All tasks in the task set are periodic.

A5 The deadline of a task is the end of its period.

Under the assumptions A1–A5 the rate monotonic scheduling algorithm
gives a condition on the total CPU utilization that is sufficient to determine if
the produced schedule is feasible. The condition is

U ≤ n(21/n − 1), (2.1)

where U is the total utilization of a set of tasks and n is the number of
tasks [24, 79]. The total utilization U , i.e., the workload of the system, is
calculated as the sum of fractions of task computation times and task period

2.1. Real-Time System 15

times, i.e., U =
∑

∀τ∈T
wcet(τ)

period(τ) , where T is the set of tasks, wcet(τ) the worst-
case execution time of task τ , and period(τ) the period time of task τ . Note
that if U is greater than the bound given by n(21/n − 1) then there may exist a
schedule that is schedulable, but if U is less than the bound, then it is known to
exist a feasible schedule, namely the one generated by RM.
The sufficient and necessary conditions for EDF still hold if assumptions A4

and A5 are relaxed. EDF is said to be optimal for uniprocessors [24, 79]. The
optimality lies in the fact that if there exists a feasible schedule for a set of tasks
generated by any scheduler, then EDF can also generate a feasible schedule. As
for RM, there exists a condition on the total utilization that is easy to check. If

U ≤ 1, (2.2)

then EDF can generate a feasible schedule. When the system is overloaded, i.e.,
when the requested utilization is above one, EDF performs very poorly [24,119].
The domino effect occurs because EDF executes the task with the closest
deadline, letting other tasks to wait, and when the task finishes or terminates,
all blocked tasks might miss their deadlines. Haritsa et al. introduce adaptive
earliest deadline (AED) and hierarchical earliest deadline (HED) to enhance the
performance of EDF in overloads [66].

Feasibility Tests and Admission Control

Baruah says that exact analysis of the schedulability of a task set is coNP-
complete in the strong sense, thus, no polynomial time algorithm exists unless
P = NP .
A test that checks whether the current state of the CPU (assuming unipro-

cessor) and the schedule of tasks lead to a feasible execution of the tasks is
called a feasibility test. The test can be used in a system as depicted in Figure
2.2. Remember that exact algorithms do not exist for certain cases, e.g., when
the deadline is less than period time [24]. Thus, feasibility tests probably take
too long time to execute in on-line scenarios because they might not run in
polynomial time. Polynomial algorithms do exist but they do not give exact
answers, i.e., they might report a feasible schedule as infeasible, e.g., the RM
CPU utilization test. However, all schedules they report as feasible are indeed
feasible schedules. We say these algorithms are not as tight as the exact tests.
The tests in Equation (2.1) and Equation (2.2) can be implemented to run

in polynomial time [24], e.g., an EDF feasibility test takes time O(n2), n is
the number of tasks. Tighter algorithms than Equation (2.1) are presented
in [11,43,87, 105]
Two well-established scheduling algorithms with inherent support for han-

dling overloads are (m, k)-firm and Skip-over scheduling. The (m, k)-firm
scheduling algorithm says that m invocations out of k consecutive invocations
must meet their deadlines [63]. A distance calculated is based on the history
of the k latest invocations. The distance is transformed into a priority and the
task with the highest priority gets to execute. The priority is calculated in the

16 Preliminaries

Feasibility test

τi

τj

τk

A
rr

iv
in

g
ta

sk
s

Admitted tasks

τj

Figure 2.2: Admission control of tasks by utilizing a feasibility test.

following way: p = k − l(m, s) + 1, where s contains the history of the latest k
invocations and l(m, s) returns how many invocations since themth invocation
meeting its deadline. The lower the p the higher is the priority.
In Skip-over scheduling, task invocations are divided into blue and red (note

the resemblance to red, blue and green kernel in Rubus, Section 4.1.1) where
red invocations must finish before their deadlines and blue invocations may
be skipped, and, thus, miss their deadlines [77]. Feasibility tests are provided
in [77] and also some scheduling algorithms, e.g., Red Tasks Only which means
that only the task invocations being red are executed.

2.1.3 Precedence Constraints

Precedence constraints can be taken care of bymanipulating start and deadlines
of tasks according to the precedence graph—A precedence graph is a directed
acyclic graph describing the partial order of the tasks, i.e., which tasks need to
be executed before other tasks—and ready tasks. One example is EDF* where
start times and deadlines are adjusted and the adjusted tasks are sent to an
EDF scheduler. It is ensured that the tasks are executed in the correct order.
A description of the algorithm for manipulating time parameters can be found
in [24].
Another method to take care of precedence constraints is the PREC1 algo-

rithm described in [79]. The precedence graph is traversed bottom-up from the
task that is started, τ , and tasks are put in a schedule as close to the deadline of τ
as possible. When the precedence graph has been traversed, tasks are executed
from the beginning of the constructed schedule.

2.1.4 Servers

The dynamic nature of aperiodic tasks makes it hard to account for them in the
design of a real-time system. In a hard real-time system, where there is also a
need to execute soft aperiodic real-time tasks, a server can be used to achieve
this. The idea is that a certain amount of the CPU bandwidth is allocated to

2.2. Databases 17

aperiodic soft real-time tasks without violating the execution of hard real-time
tasks. A server has a period time and a capacity. Aperiodic tasks can consume
the available capacity for every given period. For each server algorithm, there
are different rules for recharging the capacity. The hard real-time tasks can
either be scheduled by a fixed priority scheduler or a dynamic priority scheduler.
Buttazzo gives an overview of servers in [24].
An interesting idea presented by Chetto and Chetto is the earliest deadline

last server [27]. Tasks are executed as late as possible and in the meantime
aperiodic tasks can be served. An admission test can be performed before
starting to execute an arrived aperiodic task. Period times and WCET of hard
real-time tasks need to be known. Tables are built that holds the start times
of hard real-time tasks. Thomadakis discusses algorithms that can make the
admission test in linear time [126].

2.2 Databases

A database stores data and users retrieve information from the database.
A general definition of a database is that a database stores a collection of
data representing information of interest to an information system, where an
information system manages information necessary to perform functions of a
particular organization2 [15], whereas a database is defined as a set of named
data items where each data item has a value in [19]. Furthermore, a database
management system (DBMS) is a software system able to manage collections of
data, which have the following properties [15].

• Large, in the sense that the DBMS can contain hundreds of Mb of data.
Generally, the set of data items is larger than the main memory of the
computer and a secondary storage has to be used.

• Shared, since applications and users can simultaneously access the data.
This is ensured by the concurrency control mechanism. Furthermore, the
possibilities for inconsistency are reduced since only one copy of the data
exists.

• Persistent, as the lifespan of data items is not limited to single executions
of programs.

In addition, the DBMS has the following properties.

• Reliability, i.e., the content of a database in the DBMS should keep the
data during a system failure. TheDBMSneeds to have support for backups
and recovery.

2In [15] an organization is any set of individuals having the same interest, e.g., a company. We
use the broader interpretation that an organization also can be a collection of applications/tasks in
a software storing and retrieving data.

18 Preliminaries

• Privacy/Security, i.e., different users known to the DBMS can only carry
out specific operations on a subset of the data items.

• Efficiency, i.e., the capacity to carry out operations using an appropriate
amount of resources. This is important in an embedded system where
resources are limited.

A database system (DBS) can be viewed to consist of software modules that
support access to the database via database operations such as Read(x) and
Write(x, val), where x is a data item and val the new value of x [19]. A database
system and its modules are depicted in Figure 2.3. The transaction manager
receives operations from transactions, the transaction operations scheduler
(TO scheduler) controls the relative order of operations, the recovery manager
manages commitment and abortion of transactions, and the cache manager
works directly on the database. The recovery manager and the cache manager is
referred to as the data manager. The modules send requests and receive replies
from the next module in the database system.

Transaction
manager Scheduler Recovery

manager

Cache
managerDatabase

User
Transactions

D
at

a
M

an
ag

er

Figure 2.3: A database system.

The database can either be stored on stable storage, e.g., a hard drive or in
main-memory. A traditional database normally stores data on a disk because of
the large property in the list above.
Different aspects of databases for real-time systems, so called real-time

databases, have been extensively investigated in research work. In the case of a
real-time database, the schedulermust be aware of the deadlines associatedwith
the transactions in the system. Commercial databases, e.g., Berkeley DB [71],
do not have support for transactions whichmakes them unsuitable for real-time
systems [125].

2.2.1 Transactions

A transaction is a function that carries out database operations in isolation
[15, 19]. A transaction supports the operations Read, Write, Commit and

2.2. Databases 19

Abort. All database operations are enclosed within the operations begin of
transaction (BOT) and end of transaction (EOT). All writings to data items
within a transaction have either an effect on the database if the transaction
commits or no effect if the transaction aborts. A transaction is well-formed if
it starts with the begin transaction operation, ends with the end transaction
operation, and only executes one of commit and abort operations.
The properties atomicity, consistency, isolation, and durability (abbreviated

ACID) should be possessed by transactions in general [15]. Atomicity means
that the database operations (reads and writes) executed by a transaction
should seem, to a user of the database, to be executed indivisibly, i.e., all or
nothing of the executed work of a finished transaction is visible. Consistency
of a transaction represents that none of the defined integrity constraints on a
database are violated (see section Consistency (Section 2.2.2)). Execution of
transactions should be carried out in isolation meaning that the execution of
a transaction is independent of the concurrent execution of other transactions.
Finally, durability refers to that the result of a successful committed transaction
is not lost, i.e., the database must ensure that no data is ever lost.

2.2.2 Consistency

Transactions should have an application-specific consistency property, which
gives the effect that transactions produce only consistent results. A set of
integrity constraints is defined for the database as predicates [15, 19]. A
database state is consistent if, and only if, all consistency predicates are true.
Consistency constraints can be constructed for the following types of con-

sistency requirements: internal consistency, external consistency, temporal
consistency, and dynamic consistency. Below each type of consistency is
described [81].

• Internal consistencymeans that the consistency of data items is based on
other items in the database. For instance, a data item Total is the sum of
all accounts in a bank, and an internal consistency constraint for Total is
true if, and only if, Total represents the total sum.

• External consistency means that the consistency of a data item depends
on values in the external environment that the system is running in.

• Temporal consistency means that the values of data items read by a
transaction are sufficiently correlated in time.

• Dynamic consistency refers to several states of the database. For instance,
if the value of a data item was higher than a threshold then some action is
taken that affects values on other data items.

It is important to notice that if the data items a transaction reads have
not changed since the transaction was last invoked, then the same result
would be produced if the transaction was executed again. This is under

20 Preliminaries

the assumption that calculations are deterministic and time invariant. The
invocation is unnecessary since the value could have been read directly from the
database. Furthermore, if a calculation is interrupted by other more important
calculations, then read data items might origin from different times, and, thus,
also from different states of the system. The result from the calculation can
be inconsistent although it is finished within a given time. This important
conclusion indicates that there are two kinds of data freshness consistency to
consider: absolute and relative. Absolute consistency means that data items
are derived from values that are valid when the derived value is used; relative
consistency means that derived data items are derived from values that were
valid at the time of derivation, but not necessarily valid when the derived
value is used. Ramamritham introduces absolute and relative consistency for
continuous systems [108] and Kao et al. discuss the consistency for discrete
systems [75]. A continuous system is one where the external environment
is continuously changing, and a discrete system is one where the external
environment is changing at discrete points in time. In both [108] and [75], the
freshness of data items is defined in the time domain, i.e., a time is assigned to
a data item telling how long a value of the data item is considered as fresh.
Absolute consistency, as mentioned above, maps to internal and external

consistency, whereas relative consistency maps to temporal consistency. The
following two subsections cover absolute and relative consistency definitions in
the time domain and value domain respectively.

Data Freshness in Time Domain

Physical quantities do not change arbitrarily and, thus, engineers can use this
knowledge by assuming an acquired value is valid a certain amount of time. The
validity of data items using the time domain has been studied in the real-time
community [7,9,39,55,56,75,76,88, 101, 108, 127, 130].
A continuous data item is said to be absolutely consistent with the entity it

represents as long as the age of the data item is below a predefined limit [108].

Definition2.2.1 (AbsoluteConsistency). Letxbeadata item. Let timestamp(x)
be the time when x was created and saved and avi(x), the absolute validity
interval (AVI), be the allowed age of x. Data item x is absolutely consistent
when:

current_time− timestamp(x) ≤ avi(x). (2.3)

Note that a discrete data item is absolutely consistent until it is updated,
because discrete data items are assumed to be unchanged until their next
update. An example of a discrete data item is engineRunning that is valid until
the engine is either turned on or off. Thus, since a discrete data item is valid for
an unknown time duration, it has no absolute validity interval.
There can be constraints on the values being used when a value is derived.

The temporal consistency of a database describes such constraints, and one

2.2. Databases 21

constraint is relative consistency stating requirements on data items to derive
fresh values. In this thesis we adopt the following view of relative consistency
[75].

Definition 2.2.2 (Relative Consistency). Let validity interval for a data item
x be defined as V I(x) = [start, stop] ⊆ <, and V I(x) = [start,∞] if x is a
discrete data item currently being valid. Then, a set of data itemsRS is defined
to be relatively consistent if⋂

{V I(xi)|∀xi ∈ RS} 6= ∅. (2.4)

The definition of relative consistency implies a derived value from RS is
valid in the interval when all data items in the set RS are valid. The temporal
consistency, using this definition, correlates the data items in time by using
validity intervals. This means that old versions of a data item might be needed
to find a validity interval such that equation 2.4 holds. Thus, the database
needs to store several versions of data items to support this definition of relative
consistency. Datta and Viguire have constructed a heuristic algorithm to find
the correct versions in linear time [39]. Kao et al. also discuss the subject
of finding versions and use an algorithm that presents the version to a read
operation that has the largest validity interval satisfying equation 2.4.

Data Freshness in Value Domain

Kuo andMokpresent the notion of similarity as away tomeasure data freshness
and then use similarity in a concurrency control algorithm [81]. Similarity is a
relation defined as: similarity : D×D → {true, false}, whereD is the domain
of data item d. The data items can have several versions. The versions are
indicated by superscripting di, e.g., dj

i means version j of di. If there is no
superscript, the latest version is referred to. The value of a version is denoted
vdj

i
.
The value of a data item is always similar to itself, i.e., the similarity relation

is reflexive. Furthermore, if a value of data item di, v′di
, is similar to another

value of data item di, v′′di
, then v′′di

is assumed to be similar to v′di
. This is a

natural way to reason about similar values. If value 50 is similar to value 55,
it would be strange if value 55 is not similar to value 50. Thus, the relation
similarity is symmetric. The relation in Figure 2.4 is reflexive, symmetric and
transitive, but a similarity relation does not need to be transitive. The similarity
relation |v′di

− v′′di
| ≤ bound is reflexive since v′di

= v′′di
⇐⇒ |v′di

− v′di
| ≤ bound,

and symmetric since |v′di
− v′′di

| ≤ bound ⇐⇒ |v′′di
− v′di

| ≤ bound, but not
transitive since, e.g., |5− 7| ≤ 3, |7− 9| ≤ 3, but |5− 9| 6≤ 3.
The intervals where two temperatures are considered to be similar might be

entries in a lookup table, thus, all temperatures within the same interval result
in the same value to be fetched from the table, motivating why similarity works

22 Preliminaries

in real-life applications. Transactions can use different similarity relations
involving the same data items.
It should be noted there are other definitions of relative consistency than

definition 2.2.2. Ramamritham defines relative consistency as the timestamps
of data items being close enough in time, i.e., the values of the data items
originate from the same system state [108]. The difference between the two
described ways to define relative consistency is that in definition 2.2.2 values
need to be valid at the same time, but in [108] the values need to be created at
roughly the same time. Algorithms presented in this thesis use data freshness in
the value domain by using similarity relations which have the effect of making
data items to become discrete since the value of data items are updated only due
to changes in the external environment. The definition of relative consistency
(definition 2.2.2) is aimed at describing relative consistency for discrete data
items, and is, thus, the definition we use.

f(t1, t2):
if t1 < 50 and t2 < 50

return true
else if t1 >= 50 and t1 < 65 and t2 >= 50 and t2 < 65

return true
else if t1 >= 65 and t1 < 95 and t2 >= 65 and t2 < 95

return true
else if t1 >= 95 and t1 < 100 and t2 >= 95 and t2 < 100

return true
else if t1 = 100 and t2 = 100

return 100
else

return false

Figure 2.4: An example of a similarity relation for temperature measurements.

2.3 Updating Algorithms

In order to keep data items fresh according to either of the data freshness
definitions given above, on-demand updating of data items can be used [7,9,39,
51,54–56]. A triggering criterion is specified for every data itemand the criterion
is checkedevery timeadata item is involved inacertainoperation. If the criterion
is true, then the database system takes the action of generating a transaction to
resolve the triggering criterion. Thus, a triggered transaction is created by the
database system and it executes before the triggering transaction3 continues to
execute. Considering data freshness, the triggering criterion coincides with the
data freshness definition and the action is a read operation, i.e., the updating
algorithms either use data freshness defined in the time domain by using

3A triggering transaction is the transaction that caused the action of starting a new transaction.

2.4. Linear Regression 23

absolute validity intervals or in the value domain by using a similarity relation.
Formally, we define the triggering criterion as follows.

Definition 2.3.1 (On-Demand Triggering). Let O be operations of a transac-
tion τ ,A an action, and p a predicate overO. On-demand triggering is defined
as checking p whenever τ issues an operation in O and taking A if and only if
p is evaluated to true.

An active database reacts to events, e.g., when a value in the database
changes. The events can be described as ECA rules, where ECA stands for
Event-Condition-Action [40]. An ECA rule should be interpreted as: when a
specific event occurs and some conditions are fulfilled then execute the action.
The action can, e.g., be a triggering of a transaction. Thus, definition 2.3.1 is in
this respect an active behavior.

2.4 Linear Regression

Linear regression regards the problem of building a model of a system that has
been studied. The model takes the following form [44, 113]:

Y = Xβ + ε, (2.5)

whereY is an (n×1) vector of observations,X is an (n×p)matrix of known
form, β is a (p × 1) vector of parameters, and ε is an (n × 1) vector of errors,
and where the expectation E(ε) = 0, the variance var(ε) = Iσ2 meaning that
the elements of ε are uncorrelated.
In statistics, an observation of a random variable X is the value x. The

values of X occur with certain probabilities according to a distribution F (x).
The random sample x = (x1, x2, . . . , xn) represents observations of the random
variables X = (X1, X2, . . . , Xn). The distribution depends on an unknown
parameter θ with the parameter spaceA. The point estimate of θ is denoted θ̂ or
θ̂(x) to indicate that the estimate is based on the observations inx. The estimate
θ̂(x) is an observation of the random variable θ̂(X) and is denoted a statistic.
This random variable has a distribution. A point estimate θ̂(x) is unbiased if
the expectation of the random variable is θ, i.e., E(θ̂(X)) = θ. Further, the
point estimate is consistent if ∀θ ∈ A and ∀ε > 0 then P (|θ̂(X) − θ| > ε) → 0
when n → ∞, i.e., as the sample size increases the better becomes the point
estimate. Further information of an estimate θ̂ is given by a confidence interval.
A100(1−α)%confidence interval says that100(1−α)%of intervalsbasedon θ̂(x)
cover θ. If the distribution F (x) is assumed to be a normal distributionN(m,σ),
whereσ is unknown, thena confidence interval is derivedusing the t-distribution
in the following way [21]: (x̄ − tα/2(n − 1)d, x̄ + tα/2(n − 1)d), where x̄ is the

mean of the n values in x and d is the standard error
√

1
n−1

∑n
1 (xj − x̄)2/

√
n.

24 Preliminaries

A common method to derive estimates of the values of β is to use the least
square method [44, 113]. The estimates of β are denoted b. By squaring the
errors and differentiating them the so called normal equations are [44, 113]

(X ′X)b = X ′Y . (2.6)

Thus, the least square estimates b of β are

b = (X ′X)−1X ′Y . (2.7)

The solution b has the following properties [44, 113]:

1. It minimizes the squared sum of errors irrespective of any distribution
properties of the errors.

2. It provides unbiased estimates of β which have the minimum variance
irrespective of distribution properties of the errors.

If the following holds, which are denoted as the Gauss-Markov conditions,
the estimates b of β have desirable statistical properties:

E(ε) = 0 (2.8)

var(ε) = Iσ2 (2.9)

E(εiεj) = 0 when i 6= j (2.10)

The conditions (2.8)–(2.10) give that [44, 113]:

1. The fitted values are Ŷ = Xb, i.e., the model predicts values based on the
values set on the parameters of the model, b, and on the readings used as
inputs,X.

2. The vector of residuals is given by e = Y − Ŷ .

3. It is possible to calculate confidence intervals of values in b based on the
t-distribution.

4. The F -distribution can be used to perform hypothesis testing, e.g., check
whether the hypothesis that b = 0 can be rejected.

There are different metrics that measure how well Ŷ estimates Y . One such
metric is the R2 value which is calculated as

1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2

. (2.11)

A test of normality can be conducted using the Kolmogorov-Smirnov
test [5] by comparing the distribution of the residuals to a normal distri-
bution using s2 as σ2. The Kolmogorov-Smirnov test examines the great-
est absolute distance between cumulative distribution functions. A value

2.5. Electronic Engine Control Unit 25

D = maxi≤i≤n

(
F (Yi)− i−1

n , i
n − F (Yi)

)
is compared to a critical value and ifD

is greater then the hypothesis that the data has a normal distribution must be
rejected. In Matlab Statistical toolbox [4], there is a command called kstest
that can be used.

2.5 Electronic Engine Control Unit

Nowwe give a more detailed description of the engine management system that
was introduced in Section 1.2.2.
A vehicle control system consists of several electronic control units (ECUs)

connected through a communication link normally based on CAN [125]. A
typical example of an ECU is an engine electronic control unit (EECU). In the
systems of today, the memory of an EECU is limited to 64Kb RAM, and 512Kb
Flash. The 32-bit CPU runs at 16.67MHz.4

The EECU is used in vehicles to control the engine such that the air/fuel
mixture is optimal for the catalyst, the engine is not knocking,5 and the fuel
consumption is as low as possible. To achieve these goals the EECU consists
of software that monitors the engine environment by reading sensors, e.g., air
pressure sensor, lambda sensor in the catalyst, and engine temperature sensor.
Control loops in the EECU software derive values that are sent to actuators,
which are the means to control the engine. Examples of actuator signals are
fuel injection times that determine the amount of fuel injected into a cylinder
and ignition time that determines when the air/fuel mixture should be ignited.
Moreover, the calculations have to be finishedwithin a given time, i.e., they have
deadlines, thus, an EECU is a real-time system. All calculations are executed in
a best effort way meaning that a calculation that has started executes until it is
finished. Some of the calculations have deadlines that are important to meet,
e.g., taking care of knocking, and these calculations have the highest priority.
Some calculations (the majority of the calculations) have deadlines that are
not as crucial to meet and these calculations have a lower priority than the
important calculations.
The EECU software is layered, which is depicted in Figure 2.5. The

bottom layer consists of I/O functions such as reading raw sensor values
and transforming raw sensor values to engineering quantities, and writing
actuator values. On top of the I/O layer is a scheduler that schedules tasks.
Tasks arrive both periodically based on time and sporadically based on crank
angles, i.e., based on the speed of the engine. The tasks are organized into
applications that constitute the top layer. Each application is responsible for
maintaining one particular part of the engine. Examples of applications are air,
fuel, ignition, and diagnosis of the system, e.g., check if sensors are working.
Tasks communicate results by storing them either in an application-wide data

4This data is taken from an EECU in a SAAB 9-5.
5An engine is knocking when a combustion occurs before the piston has reached, close enough,

its top position. Then the piston has a force in one direction and the combustion creates a force in
the opposite direction. This results in high pressure inside the cylinder [99].

26 Preliminaries

ad2

ad1

gd1

gd2

ad1

Scheduler

I/O

gd3

...

...

ApplicationsTo other applications

Fuel
Air

Figure 2.5: The software in the EECU is layered. Black boxes represent tasks,
labeled boxes represent data items, and arrows indicate inter-task communica-
tion.

area (denoted ad, application data in Figure 2.5) or in a global data area
(denoted gd, global data in Figure 2.5). There are many connections between
the applications in the software and this means that applications use data that is
also used, read or written, by other applications. Thus, the coupling [32] is high.
In the EECU software, when the system is overloaded, only some values needed
by a calculation have to be fresh in order to reduce the execution time and still
produce a reasonably fresh value. By definition, since all calculations are done
in a best effort way, the system is a soft real-time system but with different
significance on tasks, e.g., tasks based on crank angle are more important than
time-based tasks, and, thus, tasks based on crank angle are more critical to
execute than time-based tasks.
Data items have freshness requirements and these are guaranteed by invok-

ing the task that derives the data item as often as the absolute validity interval
indicates. This way of maintaining data results in unnecessary updates of data
items, thus leading to reduced performance of the overall system. This problem
is addressed in Chapter 4.
The diagnosis of the system is important because, e.g., law regulations

force the software to identify malfunctioning hardware within a certain time
limit [99]. The diagnosis is running with the lowest priority, i.e., it is executed
when there is time available but notmore often than given by two periods (every
100 ms and 1 s). The diagnosis is divided into 60 subtasks that are executed in

2.6. Concurrency Control 27

sequence and results are correlated using a Manager. Now, since the diagnosis
has the lowest priority, this means that the calculations might be interrupted
often by other parts of the system and if we measure the time from arrival to
finishing one diagnosis, the elapsed time can be long [62]. Apart from delaying
the completion of diagnosis, the low priority of the diagnosis can also lead to,
as indicated in Chapter 1, that diagnosis functions use relatively inconsistent
values.
In summary, embedded systems may become overloaded and the software

must be designed to cope with it, e.g., at high revolutions per minute of an
engine the engine control software cannot perform all calculations. Usually a
few data items are compulsory in a calculation to derive a result. For instance
the calculation of fuel to inject into a cylinder consists of several variables, e.g.,
temperature compensation factor, and a sufficiently good result can be achieved
by only calculating a result based on few of these variables.

2.5.1 Data Model

In the EECU software, calculations derive either actuator values or intermediate
values. A calculation uses one or several data items to derive a new value of one
data item, i.e., every data item is associated with a calculation, which produces
a result constituting the value of the data item. The data dependency graph in
Figure 2.6 is used throughout the thesis as an example.
We note above that a calculation has a set of input values. This set can be

divided into a set of required data items that are crucial to keep up-to-date. The
other set of data items contains not required data items. If the optional data
items are up-to-date, the result of the calculation is refined. We assume it is
sufficient that mandatory data items are based only on up-to-date mandatory
data items.

2.6 Concurrency Control

This section describes different concurrency control algorithms that usually are
used in databases.

2.6.1 Serializability

As described in the section Transactions (Section 2.2.1), a transaction consists
of operations: read, write, abort, and commit.6 The task of the database system
is to execute operations of concurrent transactions such that the following
anomalies cannot occur [15]:

• Lost update, where a transaction overwrites the result of another transac-
tion, and, hence, the result from the overwritten transaction is lost.

6In general, other operations are possible, see [19] for more details.

28 Preliminaries

b5

b6

d2 d3 d4

d8
d7d6

b1

d9

* Enr. = enrichment

b1

b2

b3

b4

b5

b6

b7

b8

b9

Basic fuel factor

Lambda status variable

Lambda status for lambda ramp

Enable lambda calculations

Fuel adaptation

Number of combustions

Airinlet pressure

Engine speed

Engine temperature

b7 b8 b9

d5

b2 b3 b4

d1

d1

d2

d3

d4

d5

d6

d7

d8

d9

Lambda factor

Hot engine enr. factor

Enr.* factor one started engine

Enr. factor two started engine

Temp. compensation factor

Basic fuel and lambda factor

Start enrichment factor

Temp. compensation factor

Tot. mult. factor TOTALMULFAC

Figure 2.6: Data dependency graph in the EECU.

• Dirty read, where a transaction reads and uses a result of a transaction
that is aborted later on, i.e., the transaction should not have used the
results.

• Inconsistent read, a transaction reading the same data item several times
gets, because of the effects of concurrent transactions, different values.

• Ghost update, where a transaction only sees some of the effects of another
transaction, and, thus, consistency constraints do not hold any longer.
For example, consider two transactions, τ1 and τ2, and the constraint
s = x + y + z = 1000 [15]. The operations are executed in the order given
in Figure 2.7. The value of s in τ1 at commit time is 1100 since τ1 has seen
intermediate results from τ2.

A transaction operation scheduler (TO scheduler) is used to schedule incom-
ing operations from transactions such that lost updates, dirty reads, inconsistent
reads, and ghost updates cannot occur. The task scheduler schedules tasks that
invoke transactions, and the TO scheduler schedules the operations from these
transactions. The TO scheduler produces a history of the operations of active
transactions. A transaction is active if its BOT operation has been executed and
it has not yet aborted or committed. Thus, a history is a recording of all opera-
tions, and their relative order, that have executed and completed. Two histories
are said to be equivalent if they are over the same set of transactions and have

2.6. Concurrency Control 29

τ1 τ2

BOT(τ1)
Read1(x)

BOT(τ2)
Read2(y)

Read1(y)
τ2 : y = y − 100
Read2(z)
τ2 : z = z + 100
Write2(y)
Write2(z)
Commit(τ2)

Read1(z)
s = x + y + z
Commit(τ1)

Figure 2.7: Example of ghost update.

the same operations, and conflicting operations of non-aborted transactions
have the same relative order.
In a serial history, for every pair of transactions all operations of one

transaction execute before any operation from the other transaction. The
anomalies described above cannot occur in a serial history. However, from
a performance perspective, it is not efficient to execute transactions non-
preemptibly in sequence since one transaction can wait for I/O operations to
finish and in the meantime other transactions could have been executed. From
a real-time perspective, important transactions should always have priority
over less important transactions. This means that executing transactions non-
preemptibly gives bad performance and does not obey priorities. Hence, the TO
scheduler needs to schedule operations preemptibly and consider priorities on
transactions.
The committed projection of a history H contains only the operations from

transactions that commit. We say H is serializable if the effect of executing
operations from a committed projection of history H generated by a TO
scheduler is the same as the effect of executing operations from the committed
projection of a serial history [19].
The computational complexity of deciding if operations in a history can

be executed in an order such that the four anomalies above do not occur is
NP-hard [19, 104].

Recovery

The recovery module (see Figure 2.3) is designed to make the database system
resilient to failures. The recovery module must ensure that when the database
system is recovered from a system failure only effects from committed transac-

30 Preliminaries

tions are seen. The database system clears the effect of transactions that need
to be aborted by restoring the values of write operations. When a transaction
aborts, possibly other transactions also need to abort. This is called cascading
aborts.
A history is recoverable if a transaction τ commits after the commitment of

all transactions producing results that are read by τ , i.e., those transactions have
written values to data items that τ has read and the write operation occurred
before the read operation of τ . Cascading aborts are avoided if transactions only
read values written by already committed transactions.
Further, when clearing the effect of write operations when transactions are

aborted, the so called before images of the data items need to be stored. These
images are needed because the history the DBS has produced after transactions
are aborted is the history where all operations of the aborted transactions are
removed from the history. The value of a data item might need to be altered
when awrite operation is undone. This gives someproblems, which is illustrated
by the following two examples [19]:

Example2.1. Consider the followinghistory of two transactions:Write1(x,1),
Write1(y,3),Write2(y,1), Commit1, Read2(x), Abort2. TheoperationWrite2(y,1)
should be undone, which it is by writing its before image of 3 into y.

However, it is not always the case that the before image of a write operation
in the history is the correct value to write into a data item.

Example 2.2. Consider the following history: Write1(x,2), Write2(x,3),
Abort1. The initial value of x is 1. The before image of Write1(x,2) is 1,
but the value the write operation should be restored with is 3, i.e., the write
operation of transaction τ1 does not have any effect because it is overwritten
by Write2(x,3).

In example 2.2, the miss in before images and values that should be written
to data items arises when several, not yet terminated, transactions have written
to the same data item. This problem can be avoided by requiring that write
operations are delayed until all transactions previously writing into the same
data items have either committed or aborted. An execution sequence of
operations that satisfies the discussed delays for both read and write operations
is called strict.

2.6.2 Concurrency Control Algorithms

The objective of a concurrency control algorithm is to make sure operations
issued by transactions are executed in an order such that the results produced
by the involved transactions are consistent. The correctness criterion in non-
real-time settings is normally serializability, i.e., the effect of the execution of
the transactions is equivalent to a serial schedule. A TO scheduler implementing
a concurrency control algorithm can either delay, accept, or reject an incoming
operation. A concurrency control algorithm can be conservative, meaning that

2.6. Concurrency Control 31

operations are delayed to still have the possibility to reorder operations in the
future, or aggressive where incoming operations are immediately accepted [19].
There are three general ways to implement a concurrency control algorithm.

The algorithms can either be based on (i) locks, (ii) conflict graph, or (iii)
timestamps. Lock and timestamp ordering algorithms are presented in the
remainder of this section. Note that for locking-based concurrency control algo-
rithms, conservative TO schedulers are denoted pessimistic concurrency control
algorithms, and aggressive TO schedulers are denoted optimistic concurrency
control algorithms. Papadimitriou gives a good overview of concurrency control
algorithms [104]. Another good book on the subject is Bernstein et al. [19].

Pessimistic

This section on pessimistic concurrency control algorithms covers the basic
two-phase locking algorithm (2PL) and the enhanced high-priority two-phase
locking algorithm, which is more suited for real-time systems than the former
algorithm.
Locking is a well-known and well-explored technique to synchronize access

to shared data. It is used in operating systems for the same purpose by using
semaphores. In a database, before a transaction may access a data item it has
to acquire a lock. When the database system grants a lock to a transaction, the
transaction can continue its execution. Since a transaction accesses data items
via the operations read and write, two types of locks are used, one for each
operation. A read-lock on data item x is denoted rl[x] and, correspondingly a
write-lock wl[x]. Hence, a way to order conflicting operations is needed, and
therefore the write-lock is stronger than the read-lock since a conflict always
involves at least one write. The effects of this are that several transactions can
read-lock the same data item, but only one transaction can hold a write-lock on
a data item. The rules for the two-phase locking algorithm are [19]:

1. An incoming operation issues a lock and a test is done to see if a conflicting
lock is already held by another transaction on the data item. If the data
item is already locked and the new requested lock conflicts with it, then
the operation is delayed until the conflicting lock is released. Otherwise,
the data item is locked and the operation is accepted.

2. When the TO scheduler has set a lock for a transaction, the TO scheduler
may not release the lock until the database module acknowledges that it
has processed the corresponding operation.

3. When the TO scheduler has released one lock it may not acquire anymore
locks for this transaction.

Rule three is called the two-phase rule, since it divides the locking into two
phases, a growing phase where all locks are acquired and a shrinking phase
where the locks are released.

32 Preliminaries

The three rules above order operations such that a recording of them is
serializable [19,104]. Unfortunately, this algorithm can be subject to deadlocks,
which means that two or more transactions cannot continue their execution
because they are waiting for locks to be released, but the locks are never being
released since they are held by transactions involved in the waiting. An example
clarifies the reasoning.

Example 2.3. Transaction τ1 holds awrite-lock on x and requests a read-lock
(for instance) on y. Transaction τ2 already holds awrite-lock on y and requests
a read-lock on x. Now, both τ1 and τ2 wait infinitely for the locks on x and y
to be released. Of course, deadlocks give unbounded blocking times that are
unwanted in a real-time system.

Strict 2PL (or conservative 2PL) avoids deadlocks by requiring every trans-
action to acquire all its locks before the execution of operations start. Thus, the
read and write sets need to be predeclared. When the TO scheduler is given the
read and write sets of a transaction, it is investigated if any of the locks are held
by another transaction. If that is the case, the transaction is put on a waiting list
together with the locks. When a transaction reaches its commit operation and
its locks are released, the TO scheduler checks if a transaction on the waiting
list can acquire all locks. When all locks can be acquired, a transaction starts to
send its operations to the data manager.

High-Priority Two-Phase Locking

The high-priority two-phase locking (HP2PL) algorithm improves upon the
two-phase locking algorithm in that priorities on transactions are taken into
account in the scheduling of transaction operations [6]. Conflicts are resolved
in favor for higher prioritized transactions. When a transaction issues a write
operation and the TO scheduler tries to acquire a lock for the transaction, but
the data item is already locked, then either the transaction waits if it does not
have a higher priority than any of the transactions holding a lock on the data
item, or the transaction has the highest priority and then all lock holders are
aborted and the transaction acquires the write-lock. If the operation is a read
instead, then if a conflicting lock is already given to another transaction—i.e., a
write-lock—then that transaction is aborted if it has a lower priority. Otherwise,
the issuing transaction waits. The HP2PL concurrency control algorithm is well
suited for real-time systems since the TO scheduler preempts transactions and
priority on transactions are considered. Furthermore, this algorithm is free of
deadlocks.

Optimistic

As mentioned above, operations can be delayed or accepted immediately by
the TO scheduler. The two-phase locking algorithm presented above is a
conservative TO scheduler. An aggressive approach would be to immediately

2.6. Concurrency Control 33

accept incoming operations. This is an optimistic approach since the TO
scheduler accepts operations and hopes that they do not conflict. The only
means to resolve conflicts now are to restart transactions that are involved in
a conflict. The TO scheduler checks the status of accepted operations when
a commit operation arrives from a transaction. The process of checking if a
commit operation should be accepted or rejected is called a certification, and TO
schedulers that make such decisions are called certifiers. There exist certifiers
for the three main concurrency control algorithms: locking, serializability
graphs, and timestamp ordering. A certifier based on locking is presented here
since that is the most well-known version of an optimistic concurrency control
algorithm.
A transaction is divided into a read phase, a validation phase, and a

write phase. In the read phase, write operations write to local memory, in
the validation phase it is investigated if the transaction conflicts with other
transactions and if it can continue to its write phase where writes are made
global. One of the following three conditions must hold (τi is the validating
transaction and τj is any other active transaction, and rs(τ) and ws(τ) are
the read set and write set of τ respectively) [80]: (i) the write phase of τi

completes before the read phase of τj starts, (ii) ws(τi) ∩ rs(τj) = ∅ and the
write phase of τi completes before thewrite phase of τj , and (iii)ws(τi)∩ws(τj) =
∅ ∧ws(τi)∩ rs(τj) = ∅ and the read phase of τi completes before the read phase
of τj . Kung and Robinson present a validation phase ensuring conditions (i)
and (ii) and a validation phase ensuring all three conditions [80]. Ensuring the
two first conditions, at the arrival of the commit operation of transaction τ , the
TO scheduler checks whether the read set of τ has any common element with
the write set of all other active transactions. If no common element appears in
these checks, the TO scheduler accepts the commit operation, otherwise, τ is
aborted. This algorithm can be shown to be serializable [19,104]. For details on
a validation phase fulfilling conditions (i)–(iii) see [70,80].
Every transaction execute to the verification phase before the decision of

aborting or committing the transaction is taken. The fact that a transaction
needs to be restarted can be investigated in the write operation of some other
transaction [6]. Concurrent readers of a data item that is being written by
another transaction need to be aborted. This decision can be broadcast to
these transactions immediately at the write operation. Upon the arrival of
such a message, a transaction is aborted. Hence, there is no need to execute
transactions to their commit operation, and, thus, CPU resources can be
saved. This enhanced algorithm is denoted optimistic concurrency control with
broadcast commit (OPT-BC) [112].
The optimistic concurrency control algorithm is deadlock-free and automat-

ically uses priorities since transactions reach the commit operation based on
how the operating system schedules the tasks that execute transactions.

34 Preliminaries

Timestamp

In this concurrency control algorithm, the TO scheduler orders operations in
strictly timestamp order. Each transaction is assigned a unique timestamp
from a function ts and every operation of a transaction inherits the timestamp
of the transaction issuing the operation. It is important that function ts is
strictly monotonic, because then transactions get unique timestamps. The basic
timestamp ordering works as follows [19]: operations are accepted immediately
and are output to the database module in a first-come-first served order. An
operation is considered too late if the TO scheduler has already accepted a
conflicting operation on the same data item, i.e., an operation oi on data item x
conflicts with operation oj and ts(τi) > ts(τj). The TO scheduler can only reject
the operation from τi and, hence, aborts τi. When τi restarts it is assigned a
higher timestamp from ts and has a higher chance of executing its operations.
It has been shown that the basic timestamp ordering algorithm generates

a serializable history. Strictness and recoverability of timestamp ordering
concurrency control are discussed in [19]. TO schedulers can be combined, e.g.,
two-phase locking for read-write conflicts and timestamp ordering for write-
write conflicts. Such TO schedulers are denoted integrated TO schedulers.

Multiversion Concurrency Control

Another way to consider concurrency control is to use several versions on data
items. The correctness criterion for execution of concurrent transactions is
serializability, and conflicting operations lead to transactions being aborted or
blocked. Now, if a write operation does not overwrite the value a concurrent
transaction has read, but instead creates a new version of the data item, then
late read operations can read an old version instead of being rejected resulting
in the abortion of the transaction. Schedulers based on multiversion concur-
rency control can be based on two-phase locking, timestamp ordering, and
serialization graph algorithm. Multiversion based on timestamp ordering and
two-phase locking is described next, starting with the multiversion timestamp
ordering (MVTO) algorithm [19, 104]. In MVTO, operations are processed in a
first-come-first-served manner and read operations, Readi(x), are transformed
into Readi(xk)—where xk is a version produced by transaction τk—with xk

having the largest timestamp less than ts(τi). It is said that the read operation
is reading the proper version of the data item. A write operation Writei(xi)
of transaction τi has to be rejected if a transaction τj has read version xh and
ts(xh) < ts(τi) < ts(τj), i.e., a later transaction reads a too early version which
breaks the timestamp ordering of the transactions. Otherwise the write opera-
tion is translated into Writei(xi), i.e., a version is created with the timestamp of
the transaction.

2.6. Concurrency Control 35

Snapshots

A snapshot of a set of data items at a time t contains the values of the data items
at time t [122].

Relaxation of Correctness Criteria

The correctness criterion discussed so far is the well-known serializability, i.e.,
the effect of execution of transactions is as an execution of the transactions
in sequence. One benefit or using serializability as a correctness criterion, as
pointed out by Graham [52], is that it is easy to reason about the execution of
transactions in sequence. However, asmentioned above, serializability punishes
the performance of the database system, i.e., serializability might exclude
execution orderings of operations that make sense for the application. Thus,
the performance of the system can be increased by relaxing the serialization as
correctness criterion. New concurrency control algorithms can be developed to
support application-specific optimizations that extend the set of valid histories,
i.e., the concurrency canbe increasedand thenumberof aborts canbedecreased.
An example of such concurrency control algorithms is the one developed by Kuo
and Mok using similarity [81,82].

Concurrency Control and Consistency

A concurrency control algorithm can affect the relative and absolute consistency
in the following ways:

• Relative consistency can be affected due to interruptions and blocking
from transactions. An example is given.

Example 2.4. Assume transaction τ3 reads data items a, b, and c, and
writes d. Further, τ1 reads e and writes c, and τ2 reads f and writes
g. Now, τ3 arrives to the database system and it starts to execute. At
this time data items a, b, and c are relatively consistent. Transaction τ3

reads a, but then τ2 arrives. After a while, τ1 also arrives to the system.
Transaction τ1 updates data item c. Transactions τ1 and τ2 finish and
τ3 continues with reading b and c. Due to transaction τ1 data item c is
not relatively consistent with a and b any longer. If the old value of c
would have been saved, it could later be read by τ3 having read relatively
consistent values. Using multiversion concurrency control, the old value
of c would have been read by τ3. Another approach to solve this is to use
snapshot data structures [123].

• Absolute consistency can be affected due to restarts of transactions,
interruptions and blocking from transactions. The value of a data item is
valid from a given time, but it takes time to store the value in the database.
Conflicts and concurrent transactions can delay the writing of the value
to the database. Hence, fewer restarts of transactions could speed up the
writing of the value to the database.

36 Preliminaries

2.7 Checksums and Cyclic Redundancy Checks

Checksums and cyclic redundancy check (CRC) are used to verify that some
data is correct.
A checksum is constructed by adding up the basic elements of the data.

Checksums are of a fixed length, typically 8, 16, or 32 bits. The longer the
checksum is the more errors can be detected. The fixed length also means that
there is a many to one mapping from data to a checksum. To detect errors in
the data, the checksum should consider the order of the data elements (e.g., the
bytes) rather than only adding them together, adding zero-valued data elements
should be detected, i.e., altering the checksum, and multiple errors that cancel
should preferably not be able to occur.
Well-known checksum algorithms are the Fletcher’s checksum [138] and

Adler32 [42]. Note that a CRC is not considered a checksum since binary
divisions are used in their algorithmic steps. However, CRCs are considered
stronger, i.e., better at detecting errors than checksums, but the CRC algorithms
use heavier instructions in terms of CPU cycles, and, thus, it takes a longer time
to calculate a CRC than a checksum.
The 8-bit Fletcher’s checksum algorithm is now described [138]. Two

unsigned 8-bit 1’s-complement accumulators are used, denoted A and B. They
are initially set to zero and are calculated over the range of all data elements.
The accumulators are calculated in a loop ranging from 1 to N , where N
is the number of data elements, by doing the following in each iteration:
A = A + D[i] and B = B + A. When all octets D[i] have been added A holds
the 1’s-complement of the sum of all octets, i.e.,

∑N
i=1 D[i], and B contains

nD[1] + (n− 1)D[2] + · · ·+ D[N].
A CRC is the remainder of a division [133]. The data is a string of bits, and

every bit represents a coefficient in a polynomial. The divisor is a polynomial,
e.g., x16 + x15 + x2 + 1, and the dividend polynomial is divided with the
divisor polynomial using binary arithmetic with no carries. The remainder
is interpreted as binary data and constitutes the CRC. CRCs are considered
stronger than checksums since the remainder is affected by every bit in the
dividend. Figure 2.8 shows a pseudo-code of a CRC implementation [133]. The
algorithm can be table-driven, which reduces the time it takes to calculate the
CRC. A C implementation of a table-driven CRC can be found in [3].

2.7. Checksums and Cyclic Redundancy Checks 37

Load the register with zero bits.
Augment the message by appending W zero bits to the end of it.
While (more message bits)

Begin
Shift the register left by one bit, reading the next bit of

the augmented message into register bit position 0.
If (a 1 bit popped out of the register during step 3)

Register = Register XOR Poly.
End

The register now contains the remainder.

Figure 2.8: The pseudo-code of an algorithm producing a CRC.

CHAPTER 3

Problem Formulation

This chapter presents, in Section 3.1, a description of software developmentand data management problems of embedded systems’ software. Notations
used throughout the thesis are given in Section 3.2, and Section 3.3 gives the
formulation of the problems this thesis addresses. Section 3.4 wraps up the
chapter.

3.1 Software Development and Data Management

When developing software for embedded systems there are development issues
in several areas that need to be considered. Below we review three areas that
are pivotal to data-intensive embedded systems that control a system.

• Data management. As we saw in Chapter 1 software maintenance is an
expensive and complicated task [2, 17, 22, 23, 31, 45, 67, 89]. The reason
is that the complexity of software for embedded systems has increased
over the years as a response to more available resources such as CPU and
memory, and increased functional requirements on the systems. Below
we list two areas of datamanagement that we have found challenging [56].

– Organizing data. We have found that (see Section 2.5) a commonly
adopted and ad hoc solution is to store data inmodules, which is sup-
ported by programming languages such as C and C++. However, the
coupling between the modules is high which increases the software
complexity [32, 37]. For instance, partitioning data into data struc-
tures accessible fromdifferentmodulesmakes it hard to keep track of
which data items exist, and what their time and freshness constraints
are, and also their location in more complex architectures.

38

3.2. Notations and Assumptions 39

– Data freshness. Data items need to be fresh, i.e., they need to
reflect the current state of the external environment [108]. The
problem of keeping data fresh relates to the problem of scheduling
of tasks that updates data items’ values, which is NP-hard in the
strong sense (see Section 3.3.1). Yet the scheduling and execution of
tasks should be efficient, i.e., tasks keeping data fresh should not be
executed too often.

– Act on events. Embedded systems need to react to events in the
external environment, and conventional databases outside the area
of embedded systems have had such functionality for a long time,
e.g., in the form of ECA rules.

• Concurrency control. Even though tasks, performing calculations, in
embedded systems might use task-specific data, our experience is that
tasks share data to a high degree. When a system has concurrent tasks
sharing data, there might be concurrent reading and writing to the same
data items (see Section 2.6 for further discussions of concurrency control).
Thus, there must be a way to handle such situations. Also, sometimes
it is important that tasks read values that originate from exactly the
same system state. Examples include diagnosis of a system, e.g., model-
based diagnosis [100] where a mathematical model is used to calculate
an expected value of a sensor and then it is compared with a reading of
the sensor. Thus, the software needs functionality to handle concurrent
accesses to data and to be able to ensure that data values origin from the
same system state.

• Overload handling. Many embedded systems consist of a mix of
hard and soft real-time tasks where the interarrival times of the tasks,
particularly soft real-time tasks, are not fixed. An example is the tasks
being triggered by crank angles in the engine control software (see Section
2.5). This leads to a system whose workload changes over time and the
workload of the tasks can occasionally be so high that the system starts
missing deadlines. We say that the system has a transient overload, in
which the system needs to gracefully degrade the performance of the
system.

3.2 Notations and Assumptions

A summary of notations used in this thesis is given in Appendix A. This section
introduces a basic data and transaction model that is extended in chapters 4
and 6. Based on the description of an embedded system’s software in Section
2.5, we use the following notations in the rest of the thesis. Relationships of
data items are described in a directed acyclic graph (DAG) denotedG = (N,E),
whereN is the set of nodes where each node corresponds to a data item and to a
calculation that updates the value of the data item. The set E contains directed

40 Problem Formulation

edges, (i, j) ∈ E where i is the tail and j the head, describing the relationships
of the data items. The partially ordered set (poset) described by G is denoted
<G. The in-degree of a node is the sum of edges having the node as their head.
The out-degree of a node is the sum of edges having the node as their tail. Data
items belong either to the set of base itemsB, which are those nodes inG having
zero in-degree (these nodes may be referred to as source nodes), or to the set of
derived itemsD, which are the nodes inG having an in-degree larger than zero.
Nodes with zero out-degree are referred to as leaf nodes. A path is a sequence
of nodes and directed edges n1e1n2e2 . . . emnm, where every ei ∈ E and every
ni ∈ N , 1 ≤ i ≤ m. The ancestors of n ∈ N are all nodes belonging to paths
with n as their final node. The descendants of n ∈ N are all nodes on paths
where n is the starting node in the sequence of nodes and edges. The immediate
parents of a node n constitute the read set of the data items that a calculation
representing the node reads. The read set of a data item d ∈ D is denoted R(d).
The immediate children of n ∈ N are all nodes c such that (n, c) ∈ E. Nodes
with positive out-degree and in-degree are called intermediate nodes. Next we
define the level of a data item.

Definition 3.2.1 (Level of a Data Item). Each base item b has a fixed level of
1. The level of a derived data item d is determined by the longest path in a data
dependency graph G from a base item to d. Hence, the level of d is

level(d) = max
∀x∈R(d)

(level(x)) + 1, (3.1)

where R(d) is the read set of data item d.

A data item has one or several versions and the set of versions of data item di

is denoted V (di). Each version dj
i of data item di has a write timestampwt(dj

i). A
version is said to be valid during a time interval starting from its timestamp until
the timestamp of the following version, i.e., [wt(dj

i), wt(dj+1
i)]. If dj

i is the newest
version it is assumed to be valid until a newer version is installed. Hence, the
time interval is [wt(dj

i),∞]. A proper version with respect to a timestamp t is the
latest versionwith awrite timestamp less than or equal to t, i.e., a proper version
of di at t has the following timestamp:max{wt(dj

i)|∀d
j
i ∈ V (di), wt(dj

i) ≤ t}. The
proper version with respect to the current time is denoted the current version.
The worst-case execution time, excluding blocking times and updates, of a

transaction/calculation τ is denoted wcet(τ) and is assumed to be known. A
transaction has an arrival time at(τ), a release time rt(τ), a logical timestamp
ts(τ),1 a relative deadline dt(τ), and a priority prio(τ).
Throughout the thesis, the following system assumptions are made about

the system:

• SA1. The embedded system has a single CPU.

1It is important that the logical timestamp assigned to transactions is monotonically increasing.
However, it is easy to achieve this in a central database system by atomically assigning a timestamp
to the transaction in its BOT operation.

3.3. Problem Formulation 41

• SA2. The embedded system is a controlling system that controls an
environment.

• SA3. A task calls a transaction that performs the calculation of a data item
represented by one of the nodes in G and the transaction executes with
the same priority as the task and once a transaction has started its priority
cannot be changed by itself or other tasks. Tasks are scheduled according
to RM or EDF.

• SA4. Hardware settings put the requirement that all data needs to be
stored in RAM and/or in flash memory. Moreover, at a detected but
irrecoverable system failure the system is restarted which means that all
transactions also start over.

• SA5. The system consists of tasks with interarrival times that may change
dynamically.

Assumption SA1 states that the embedded system has one CPU, because
nowadays many of embedded systems use one core and the engine control
system we studied has one core.
Assumption SA2 states that the embedded system needs up-to-date data in

order to correctly control the environment.
Assumption SA3 states that the priority of a user transaction cannot be

lowered during its execution, letting another user transaction to interrupt it
and start to execute. This is the normal case for real-time operating systems
where the ready task with the highest priority is always executing. In desktop
operating systems, e.g., Windows 2000, tasks get higher priority as they wait
in the waiting queue. Hence, assumption SA3 removes the possibility to use
a general purpose operating system. Priority inversion can occur if locks are
used [93].
Assumption SA4 states that only main-memory databases are considered

and that transactions need not be recovered since they all restart and therefore
recoverability is not an issue.
Assumption SA5 states that the workload of the system can change dy-

namically, which also indicates that the system also might enter into transient
overloads.

3.3 Problem Formulation

The overall objective of this thesis is to provide efficient data management
for real-time embedded systems, i.e., provide efficient resource utilization and
increased maintainability of the software.
Efficient datamanagement can be achieved in several ways. The focus of this

particular thesis is to investigate how a real-time database can give advantages
in maintainability and resource utilization in real-time embedded applications.

42 Problem Formulation

The initial requirements were that an embedded system—and in particular an
EECU—needs to have [50]:

• R1. A way to organize data to ease maintenance of the software, because
of the large amount of data items (in the order of thousands) and the long
life-cycle of the software.

• R2. Support for monitoring data. The data management software should
activate the correct task when some data fulfill specified conditions.

• R3. Functionality to:

– R3a protect a data item from being written by several concurrent
tasks;

– R3b avoid duplicate storage of data items;

– R3c guarantee correct age on data items used in a task; and

– R3d give low overhead, i.e., efficient utilization of resources.

A database, per definition, has the properties to address R1, R3a, and R3b,
because it is the task of a database to store data in a structured way and perform
user initiated actions on the data and to maintain the consistency of data. Since
data is stored in a structured way, duplicate storage can be detected. In addition
to these requirements, we have also identified the need to have support for the
following requirements:

• R4 Gracefully degrade performance in the case of a transient overload.

• R5 Determine whether the system is in a transient overload.

We believe requirements R1–R5 are reasonable requirements on data man-
agement functionality in data-intensive applications, because they are derived
from problems identified by industry and by our own experience of working
with the thesis, and by taking part in conferences on real-time systems. We also
believe that many real-life systems can be mapped to the data and transaction
model (see Section 3.2) we use. Therefore, we are confident that the algorithms
we describe in chapters 4, 5, 6, 7, and 8 are also applicable to systems other
than EECUs, that are our main target platform to test algorithms on.
The requirements, R1–R5, on data management for embedded systems are

translated into the three goals that were presented in Section 1.3. We repeat
them here. The goals are

G1: to find means—focusing on data management—to reduce development
complexity;

G2: to meet the non-functional requirement of timeliness; and

G3: to utilize available computer resources efficiently.

3.3. Problem Formulation 43

3.3.1 Computational Complexity of Maintaining Data Fresh-
ness

The requirements listed above are concernedwith using resources in an efficient
way. This section ends this chapter with a discussion of how difficult it is with
respect to computation time to decide which data items that should, at a given
time, be updated in order to keep data items up-to-date. We say that updates of
data items are scheduled and put into a schedule.
Assumewe have the following general problem of scheduling updates of data

items. The relationships among data items are described in a data dependency
graph G and one of the data items, di, in G is requested for being used in a
user transaction. We say a data item is potentially affected if it lies on a path
where a data item whose value has changed is the starting node (see Figure
3.1). Potentially affected data items need to be considered for being recalculated
before di is recalculated. All recalculations, including the one of di, must be
executed within a specified deadline. The immediate parents of di should be
fully updated, i.e., all ancestors of dj ∈ R(di) that are potentially affected have
to be scheduled for recalculation (dj and dk in Figure 3.1). We have two sets:
the set of potentially affected ancestors, PAA(di), which is {dj , dk} in Figure
3.1, and the set of potentially affected read set, PAR(di), which is {dj} in Figure
3.1. The affected data items that are ancestors of di are denoted A(di), which
is {dj , dk} in Figure 3.1. The problem is mathematically formulated below as
an integer programming optimization problem. We refer to the problem as
General Scheduling of Updates Concerning Data Freshness (GSUCDF).

maximize
∑

∀dj∈R(di)

rj

subject to
∑

∀dj∈R(di)

rjwcet(dj) +
∑

∀dj∈A(di)\R(di)

xjwcet(dj) ≤ dt(τ),

rj ≤G xk, dk ∈ PAA(dj), dj ∈ PAR(di),
rj = xk, dk ∈ A(dj), dj ∈ PAR(di), j = k,

rj ∈ {0, 1},
xj ∈ {0, 1}.

(3.2)

GSUCDF maximizes the number of immediate parents that are up-to-date,
i.e., the ancestors of the immediate parents are also up-to-date, such that all
recalculations can be executed within the given time frame. The variable rj is
one if there is a scheduled update of dj and dj is an immediate parent of di. The
variable xk is one if dk is an ancestor of an immediate parent that is scheduled
for being updated.
The set-union knapsack problem (SUKP) considers N items and a set

P := {1, . . . ,m} of elements where each item j corresponds to a subset of
elements Pj ⊆ P (see Figure 3.2). Every item has a nonnegative profit pj and
every element i of P has a weight wi. The weight of an item j is the sum of

44 Problem Formulation

dk

dj dn

dp

dodi

dm

Data dependency graph G

Requested by user transaction
and potentially affected by change in dk

H
as

 b
ee

n
 u

p
d

at
ed

Figure 3.1: Data dependency graph.

weights of the elements in Pj . The objective is to find a set Q ⊆ N that fits in a
knapsack of capacity c and hasmaximal possible profit. SUKP can be formulated
as a linear programming problem as follows.

maximize
∑
j∈Q

pj

subject to
∑

i∈PQ

wi ≤ c.
(3.3)

The computational complexity of SUKP is NP-hard in the strong sense even
when pj = wi = 1 and |Pj | = 2 [49]. To determine the computational complexity
of GSUCDF the following steps should be taken [48].

1. Show GSUCDF is in NP.

2. Choose an NP-complete problem Π.

3. Construct a transformation fromΠ to GSUCDF. A lemma (page 34 in [48])
says that if there exists a polynomial transformation of a problem into
another problem which can be solved in polynomial time, then the first
problem can also be solved in polynomial time. However, if there exists
a polynomial transformation of a problem, Π1, which is not in P , into
another problem, Π2, then Π2 is also not in P .

3.3. Problem Formulation 45

1

2

N

1

2

3

m

Items

Elements

Profit

p1=2

Weight

w1=3

w2=2

Weight

w1=5

Figure 3.2: Set-union knapsack problem (SUKP).

4. Show that the transformation takes polynomial time.

Step 1 is carriedout by showing that a verificationof a schedule of calculations
toperformtogetup-to-datedata itemsgivenbyaguessingof anon-deterministic
computer takes polynomial time in the size of the schedule. Lets assume a data
item di is about to be used by a transaction, and thus a schedule of updates needs
to be created. A non-deterministic algorithm would guess such a schedule. It
should be checked that the order of updates in the schedule follows the
relationships in G and that all ancestors of scheduled immediate parents of di

are also scheduled. It is easy to see that these checks take polynomial time in
the size of the schedule. Hence, GSUCDF is in NP.
In step 2 we choose the problem SUKP, which is similar to the GSUCDF

problem.
In step 3 we construct the algorithm presented in Figure 3.3. This algorithm

constructs a data dependency graph G of ancestors of a data item x from an
instance of SUKP where pj = 1,∀j ∈ N .
The algorithm in Figure 3.3 adds a node for each item in N and they

correspond to immediate parents of x. A node is created and added to G for
each element in each set Pj if the element has not been already created. For
each element k in a set Pj , a directed edge (k, j) is added to G.
The last step is to prove that the algorithm described in Figure 3.3 is a

transformation. Assume SUKP has found Q, then each item i ∈ Q corresponds
to an immediate parent and all elements inPi are also scheduled. Since the profit

46 Problem Formulation

1: Start with empty graph G
2: Add |N | to each element of each set Pj in order to make elements distinct

from items
3: for all i ∈ N do
4: add node i to G
5: for all j ∈ Pi do
6: if j ∈ G then
7: add edge (j, i) to G
8: else
9: add node j to G
10: add edge (j, i) to G
11: end if
12: end for
13: end for
14: Let every data item in G corresponding to an item have execution time 0.
15: Let every data item in G corresponding to an element have execution time

wi

16: Let c be available time until deadline of the transaction using data item x

Figure 3.3: Transformation from SUKP to GSUCDF.

pi = 1, the value
∑

j∈Q pj counts the number of items in Q. This corresponds
to

∑
j∈Q rj in GSUCDF, i.e., the items in Q corresponds to a schedule found

by GSUCDF. Now, assume GSUCDF finds a schedule with a certain number of
immediate parents

∑
j∈Q rj . Then SUKP would put these data items in Q.

3.4 Wrap-Up

This chapter introduces three areas that are important to data-intensive em-
bedded systems, namely, data management, concurrency control, and overload
handling. This chapter also summarizes requirements on functionality of data
management for software for an EECU. This chapter also shows a reduction
from the set-union knapsack problem to choosing data items to update such
that the number of data items being chosen is maximized with respect to the
available time to execute updates.

CHAPTER 4

Data Freshness

The requirements presented in the previous chapter state requirements onthe data handling part of a software. As mentioned in Chapter 3 our data
management software is a database with functionality aimed at being useful for
embedded real-time systems. In this chapter, we discuss the aspect of database
functionality for embedded systems that is concerned with data freshness and
updating algorithms. Note that some sections related to updating algorithms
are presented in Appendix B in order to ease the reading of this chapter.
The objectives of introducing updating algorithms are (i) to use CPU re-

sourcesmore efficiently (addresses requirement R3d), and (ii) ease the develop-
ment efforts of developing the software (addresses requirement R1). We show
in this chapter that the updating algorithms we propose use the CPU resource
more efficient than updating data items using algorithms proposed by other
research groups. Furthermore, the development efforts can be eased due to
functionality being encapsulated in the database. Programmers do not have to
write code to ensure data items have up-to-date values, because it is ensured by
the updating algorithms in the database.
The performance of introducing on-demand updating algorithms is evalu-

ated in several experiments. These experiments are:

• Experiment 1: Thepurposeof this experiment is to evaluateperformance
of on-demand updating algorithms that do not use relevance checks (see
Definition 4.3.2 for a definition of relevance check). Their performance
is compared to well-established updating techniques. The concurrency
control algorithm is fixed and different updating algorithms are evaluated.
Adiscrete event simulator denotedRADEx++ isused in these experiments.
The simulator setup is described in Section 4.5.4. Performance evaluations
are described in Section 4.5.5.

47

48 Data Freshness

• Experiment 2: The purpose of this experiment is to evaluate perfor-
mance of on-demand updating algorithms that use relevance checks. The
same simulator settings as for Experiment 1 are used. The evaluations are
presented in Section B.8.

• Experiment 3: The purpose of this experiment is to evaluate DIESIS in a
real-life setting. DIESIS is configured for HP2PL and ODTB and it is used
in an engine control software, where a subset of the data in the engine
control software is stored in DIESIS. This experiment is used as proof
of concept and investigates if using similarity and on-demand updating
algorithms behave as intended in a real-life setting.

The outline of this chapter is as follows. Section 4.1 gives an overview of
DIESIS that is being used in the performance evaluations. DIESIS has support
for the algorithms that are described in this chapter. A key part of updating
algorithms is the way data freshness is measured and this is formally described
in Section 4.2. Section 4.3 describes a mechanism to mark data items such that
an updating algorithm can find data items needing to be updated. Sections 4.4
and 4.5 describe algorithms that determine, in a best-effort way, which data
items to update to keep them up-to-date. Section 4.5 also includes performance
evaluations that compare our algorithms towell-established algorithms. Section
4.6 wraps up this chapter.

4.1 Database System: DIESIS

In this section, we introduce our database system that we denote Data In
Embedded Systems maIntenance Service (DIESIS), and in Section 4.1.1 we
discuss implementation details. DIESIS is used in the performance evaluations
in sections 4.5.6 and 5.5 in order to compare the updating and snapshot
algorithms we propose to well-established updating and concurrency control
algorithms. DIESIS is designed for resource-constrained real-time embedded
systems and based on our experiences from studying an engine control software
we use the design outlined in Figure 4.1. The following design decisions have
been taken.

• DIESIS is a main-memory database meaning that data is stored in main-
memory because of assumption SA4 (page 41). Furthermore, this assump-
tion states that data values are reset at a system restart which means that
no before images of data items’ values are needed. This assumption holds
true for the engine control software we have studied.

• DIESIS has no query language, because in embedded systems data records
are simple and need not be represented as tables as in relational databases.
Thus, one data value usually corresponds to one data item, i.e., instead of
using a query and an indexing mechanism to fetch a value of a data item
it is more efficient to access it directly. Furthermore, the set of data items

4.1. Database System: DIESIS 49

may be fixed in embedded systems. The data set is fixed in the engine
control software. When the set is fixed there is no need for database
operations to insert and delete data items. Furthermore, no indexing is
needed since the values of data items can be stored in an array.

• DIESIS is designed for simplistic real-time operating systems, e.g., Rubus
and µC/OS-II, because they, or similar RTOSes, are likely to be used in an
embedded system. Limitations of these RTOSes are: started transactions
cannot restart in themiddle of its execution and started transaction cannot
be removed without finishing its execution.

The depicted database system in Figure 2.3 has a transaction manager that
receives transactions from tasks in the application. However, as mentioned
earlier, transactions calculating a value might result in deriving the same value
again. To effectively use available resources, requirement R3d, an updating
algorithm rejecting unnecessary calculations is added to the database system.
Also, the values that transactions use need to be relatively consistent. Hence,
a snapshot algorithm is also added to the data management module. The
functionality of the depicted admission control is discussed in Chapter 7. The
database system developed in this project is depicted in Figure 4.1.

DIESIS

Central
Repository

Transaction
Manager

Concurrency
Control

TO Scheduler

Data
Management

U
se

r
T

ra
n

sa
ct

io
n

s Updating
alg.

Snapshot
alg.

Admission
control

Figure 4.1: Modules in DIESIS.

The data management module, dashed module in Figure 4.1, interacts with
the central repository module and decides if incoming transactions should
be sent to the transaction manager and if additional transactions need to be
triggered due to data freshness requirements. The central repository module is
responsible for storing data and its meta-information.

50 Data Freshness

DIESIS uses the following transactions. A user transaction (UT) is an
incoming transaction, and it derives data item dUT , a sensor transaction (ST)
derives data item bST , and a triggered update (TU) derives data item dTU . A
triggered update is a transaction that is the result of a triggering criterion being
fulfilled in an executing user transaction. Section Updating Algorithms (Section
2.3) contains a description of triggering of transactions. A user transaction
deriving a data item corresponding to a leaf node is referred to as an actuator
transaction.
In DIESIS, a triggered update is updating a data item. The TU executes

within the same task starting the UT but before the UT starts. A TU can only
be triggered by user transactions, and TUs are generated when a UT arrives
to the database system. Furthermore, the condition for triggering updates
is implemented in the data management module meaning that the database
system has no general support for triggering of transactions as opposed to active
databases.
In DIESIS, transactions are prioritized either according to RM or EDF,

and the ready transaction with the highest priority is executing. Transactions
may be preempted. The TO scheduler, together with the concurrency control
module, orders operations from transactions such that the priority of the
transaction is considered, i.e., operations from a higher prioritized transaction
have precedence over operations from lower prioritized transactions. The
central repository stores data items (and possibly several versions of them) and
meta-information in main-memory.

4.1.1 Implementation of Database System

In the implementation of the database system, two real-time operating systems
are used: Rubus version 3.02 and µC/OS-II v2.53. The reasons for using two
real-time operating systems are:

• Rubus was the only operating system available for the EECU system.

• Rubus exists for Windows, but we experienced problems with real-time
tasks’ execution and measuring of time under Windows. Since µC/OS-II
has the same functionality as Rubus and runs under DOS, where the
real-time task execution and time measurements are stable even in a DOS
box in Windows, we choose to also use µC/OS-II. It is used in situations
where it is more convenient to use a PC than an EECU system to execute
simulations.

Rubus, fromArcticus Systems AB [1], is used in the EECU for scheduling and
communication between tasks (see Section 4.5.6 for performance evaluations).
Rubus consists of basic services and three kernels: red, green, and blue. The
basic services supply primitives for intertask communication through signals
and mail boxes, mechanisms for locking critical regions, and memory pools.
The red kernel is used for static off-line generated schedules that can guarantee

4.2. Data Freshness 51

successful execution of hard real-time tasks, i.e., they finish within deadlines. A
tool called Rubus Visual Studio is used to define a set of schedules and then it
is possible to switch between the schedules in Rubus on-line. The green kernel
maps interrupt handlers to the operating system. By doing this it is possible to
send signals from an interrupt handler to a blue task. The blue kernel schedules
tasks which are soft real-time tasks and denoted blue tasks. The blue kernel
executes in idle time, i.e., no guarantees can be given on the successful execution
of a blue task. Blue kernel supports 14 priority levels and several blue tasks can
have the same priority. Tasks cannot be dynamically created and the priority of
a task cannot be changed during run-time.
The DIESIS configuration used in the EECU uses HP2PL and the EDF

scheduling algorithm. We are currently using the periodic tasks of the EECU
software, i.e., not the crank angle based tasks, because Rubus has no support for
dynamic priorities on tasks and dynamic creation of tasks, which is necessary
to properly map crank angle interrupts to blue tasks. The reason is that crank
angle interrupts have a higher priority than time-based interrupts. The priority
of the interrupt dispatcher is lowered one level during the execution of some
code parts meaning that a new crank interrupt can interrupt the handler of the
previous crank interrupt. The execution time of the interrupts handlers are
quite long and the response time of an interrupt needs to be short, therefore the
priority is lowered.
All time-based tasks are mapped to blue tasks in Rubus. One red task is

implemented as the scheduler of the blue tasks by measuring the time since a
blue task was last invoked and sending a signal if the time is longer than the
period of the task. Blue tasks have the following period times: 5 ms (which is
the period time of the red scheduling task), 10 ms, 25 ms, 50 ms, 100 ms, 250
ms, and 1000 ms. The database system is added to the EECU software and it
runs in parallel to the tasks of the original EECU software. Hence, it is possible
to compare the number of needed updates of data items between the original
EECU software and the added database system.
An example of a transaction in DIESIS is given in Figure 4.2. BeginTrans-

action starts a transaction with a relative deadline of 10000 µs that derives the
data item TOTALMULFAC, d9 in Figure 2.6. Read andwrite operations are han-
dled by ReadDB and WriteDB, and CommitTransaction notifies the database
system that the transaction commits. The next invocation of BeginTransaction
either breaks the loop due to a successful commit or a deadline miss, or restarts
the transaction due to a lock-conflict. Detailed elaboration of the interface is
presented in [47].

4.2 Data Freshness

We show in this thesis that one key part of using the CPU resource efficient is
how data freshness is measured. In this section, we first recollect data freshness
measured in the time domain followed by an introduction of our usage of

52 Data Freshness

void TotalMulFac(s8 mode)
{
s8 transNr = TRANSACTION_START;
while(BeginTransaction(&transNr,
10000, 10, HIGH_PRIORITY_QUEUE,
mode, TOTALMULFAC))
{
ReadDB(&transNr, FAC12_5, &fac12_5);
/* Do calculations */
WriteDB(&transNr, TOTALMULFAC,
local_fac, &TotalMulFac);

CommitTransaction(&transNr);
}
}

Figure 4.2: Example of a transaction in the EECU software (C-code).

similarity that we use to contrast data freshness measured in the time domain
and data freshness measured in the value domain throughout the remainder of
the thesis.

4.2.1 Data Freshness in Time Domain

A value of a data item is assumed to live for an amount of time, i.e., a value is
valid as long as it is younger than a certain age. We have definition 2.2.1 that we
repeat below.

Definition 2.2.1 (Absolute Consistency). Let x be a data item. Let
timestamp(x) be the time when xwas created and avi(x), the absolute validity
interval (AVI), be the allowed age of x. Data item x is absolutely consistent
when:

current_time− timestamp(x) ≤ avi(x).

4.2.2 Data Freshness in Value Domain

A fixed time might be a bad approximation of how much data values change
between succeeding calculations of them since the allowed age of a data value
needs to be set to correspond to the worst-case change of that data item.
Depending on the application and system state, it is not certain that the value
changes that much all the time, and, hence, a fixed time does not reflect the
true freshness of a data item. Similarity defines the relation between values
of a data item by the relation f : D ×D → {true, false} (described in Section
Consistency (Section 2.2.2)), where D is the value domain of two values of a
data item that are checked for similarity.

4.2. Data Freshness 53

In this thesis two different similarity relations are used. One considers
intervals in the value domain of data items, i.e., the value domain is divided into
fixed intervals and values falling within the same interval are similar. The other
relation is based on one value of a data item as the origin of an allowed distance,
i.e., all values that are within a given distance to the origin are similar to the
value of the origin. Figure 4.3 shows the distinction between the two similarity
functions.

Value

Time

Interval

Sampling
2 3 4 5 6 7

2

3

(a) Interval-based similarity

Value

Time

Sampling
2 3 4 5 6 7

(b) Distance-based similarity

Figure 4.3: Two similarity functions mapping to intervals and to distances.

The similarity relation based on distances is defined as follows:

Definition 4.2.1 (Distance-based similarity). Each pair (di, dk), where di is a
derived data item and dk is an item from R(di), has a data validity interval,
denoted δdi,dk

, that states howmuch the value of dk can change before the value
of di is affected. Let vt

dk
and vt′

dk
be values of dk at times t and t′ respectively. A

version j of di reading vt
dk
is fresh, with respect to the version of dk valid at t,

for all t′ fulfilling |vt
dk
− vt′

dk
| ≤ δdi,dk

.

Hence, the similarity relation f is equal to

f : vt
x × vt′

x → |vt
x − vt′

x | ≤ δd,x, (4.1)

where vt
x and vt′

x are two values of data item x and d is a child of x. We refer to
Equation (4.1) as distance-based similarity.
Using intervals, the freshness of a data item is as follows:

Definition 4.2.2 (Interval-based similarity). Let fixedintdk
be a function

mapping values of a data item dk to natural integers, i.e., fixedintdk
: D → N,

where D is the domain of values of data item dk. All values of dk mapping to
the same interval are similar. Let vt

dk
and vt′

dk
be values of dk at times t and t′

54 Data Freshness

respectively. A version j of di reading vt
dk
is fresh, with respect to the version

of dk valid at t, for all t′ fulfilling

fixedintdk
(vt

dk
) = fixedintdk

(vt′

dk
). (4.2)

One example of the function fixedint is: fixedintdk
(vt

dk
) =

⌊
vt

dk

64

⌋
, where

the value domain of data item dk is divided into intervals of size 64. As long as
the value of dk maps to the same number as the value of dk being used to derive
dj

i , the value changes of dk do not affect the value of d
j
i . We refer to equation

(4.2) as interval-based similarity.
There are slight differences in handling validity intervals as an interval or as

a distance. One can be seen in Figures 4.3(a) and 4.3(b). At the highest peak of
the plot, sampling number two is close to reading this value, sampling number
two and three map to different intervals in Figure 4.3(a), but in Figure 4.3(b)
sampling two and three map to the same interval. On the other hand, sampling
six and seven map to the same interval in Figure 4.3(a) but not so in Figure
4.3(b).
The two different ways of defining similarity are intuitive in different ways,

which is elaborated in Example 4.1. Mapping to intervals has better support for
being implemented as entries into tables since an entry into a table is a fixed
interval. A distance is intuitive in that it is easy to reason about changes in
values relative an already stored value. However, a new value of a data item
and the distance from it might cover several entries in a table. Hence, there are
applications where one way to define data freshness fits better than the other.
The following example reflects this.

Example 4.1. A distance is used as the similarity relation of water tempera-
ture, and the application considers all changes within 5 degrees to be similar.
At the temperature 97◦C, this means that we can accept changes to 102◦C. Such
a water temperature does not exist, and the similarity relation does not reflect
this. Therefore a division of the possible temperatures into intervals might be
a better similarity relation to use.

The staleness of a data item is described in the following definition.

Definition 4.2.3 (Staleness of a version of a data item). Let a version j of data
item di be derived at time t using values of data items in R(di). The value of d

j
i

is denoted vt
di
. The value vt

di
is stale at time t′ if there exists at least one element

dk in R(di) such that |vt
dk
− vt′

dk
| > δdi,dk

or fixedintdk
(vt

dk
) 6= fixedintdk

(vt′

dk
)

depending on which definition of freshness is used. The value of di is valid if it
is not stale.

The validity of a value of a data item can easily be derived in the following
way.

4.2. Data Freshness 55

Definition 4.2.4 (Validity of a version of a data item). A version j of data item
di derived at time t is valid at all times t′ when ∀x ∈ R(di), |vt

x − vt′

x | ≤ δdi,x or
∀x ∈ R(di), fixedintx(vt

x) = fixedintx(vt′

x) depending on which data freshness
is used.

4.2.3 Example of Data Freshness in Value Domain

Now we give an example on how changes in the value of a data item affect other
data items.

Example 4.2. An update of a data item d is only needed if the data item is
stale, i.e., when at least one of its ancestors has changed such that the update
might result in a different value compared to the value of d that is stored in
the database. A data item can have several ancestors on a path to a base item
in a data dependency graph G. For instance, one possible path from d9 to b6,
denoted Pathd9−b6 , in Figure 2.6 is: d9, d7, d2, b6. When a data item is updated
it may make its immediate children in G stale (this can be checked using
definition 4.2.3). If an update of data item makes d stale, then all descendants
of d are possibly stale since a recalculation of d may result in a new value of
d that does not affect its descendants. Using the path Pathd9−b6 , consider an
update of b6 making d2 stale. Data items d7 and d9 are potentially affected
and a recalculation of d2 is needed and when it has finished it is possible to
determine if d7 is stale, i.e., affected by the change in d2. Figure 4.4 shows this
example.

b6

d2

d7

d9

Changed

Affected by change

Potentially
affected by change

Potentially
affected by change

Figure 4.4: Depicting example 4.2.

56 Data Freshness

4.3 Marking of Changed Data Items

Example 4.2 shows that a data item might be potentially affected by a change
in a predecessor of it. The validity (definition 4.2.4) of a potentially affected
data item d can only be determined by recomputing all potentially affected data
items on paths leading to d. In order to find potentially affected data items,
every derived data item d has a timestamp that is denoted potentially affected
timestamp of d, pa(d), and is defined below.1

Definition 4.3.1 (Potentially Affected Timestamp). Let pa(d) be the latest
logical timestamp when data item d was directly or indirectly affected by a
change in another data item.

An updating scheme can be used to determine which data items are (po-
tentially) affected by a change of the value of a data item. The AUS updating
scheme is presented below. The steps of AUS are:

• AUS_S1: Update base items to always keep them up-to-date.

• AUS_S2:Mark data items as (potentially) affected by a change in a data
item.

• AUS_S3: Determine which data items should be updated before a UT
starts to execute. This step is an on-demand step as a response to the
arrival of a UT. A schedule of updates is generated and the scheduled
updates are executed before the arrived UT starts to execute.

In the first step (AUS_S1) all base items are updated with fixed frequencies
such that the base items are always fresh. When a base item b is updated, the
freshness (definition 4.2.4) is checked for each immediate child of b in data
dependency graph G. Thus, in our example, base items b1–b9 from Figure 2.6
are updated with fixed frequencies, e.g., base item b3 is updated, then d1 is
checked if it is still fresh.
The second step (AUS_S2) is performed when a data item d is found to be

stale due to the new value of ancestor x, where x can be either a base item or
a derived item. Data item d is marked as potentially affected by the change
in x. The pa timestamp is set to max(pa(d), ts(τ)), where ts(τ) is the logical
timestamp of the transaction updating x. This means that a data item is marked
with the timestamp of the latest transaction thatmakes the data item potentially
affected by the written value produced by the transaction.
The third step (AUS_S3) is an on-demand step and occurs every time a

UT starts to execute. The data items the UT reads must be valid. Hence, all
potentially affected data items on paths to dUT need to be considered for being
updated. Also in this step, when an update has updated a data item d, the

1Section B.2 discusses why a timestamp is needed to indicate stale data items.

4.3. Marking of Changed Data Items 57

timestamp pa(d) is set to zero if d is not potentially affected by changes in any
other data item, i.e.,

pa(x) =

{
0 if ts(τ) ≥ pa(x)
pa(x) otherwise.

(4.3)

Every executed TU ends withmarking any potentially affected data items. Thus,
step S2 is used for every single transaction including updates.
Formally we have the following definition of a relevance check.

Definition 4.3.2 (Relevance Check). Let τUT be an update for data item dUT .
Assuming transactions are deterministic and time invariant, the relevance of
executing τUT is determined by checking whether dUT is affected by a change
in an immediate parent, i.e., checking whether dUT is marked as affected.

As canbeunderstood from thedefinition above, a relevance check is intended
to be used to skip, if possible, updates of data items. The definition is applicable
to triggered updates and should be applied before the update starts to execute.
On-demand scheduling of updates of data items, which is discussed in Sections
4.4 and 4.5, can use relevance checks on scheduled updates to determine
whether they can be skipped or not.
Another similar scheme, denoted potentially affected updating scheme

(PAUS), used by some updating algorithms is described in Section B.1.

4.3.1 Correctness of Determining Potentially Affected Data
Items

Steps AUS_S1–AUS_S3, discussed above, give a mechanism to determine if a
data item is potentially affected by a change in any of its ancestors. Below we
show that a potentially affected timestamp greater than zero on a data item
means that the data item is stale.

Proposition 4.3.1. Let di be a data item and pa(di) the timestamp of the
current version set in steps AUS_S2 and AUS_S3. If data item di is stale
according to definition 4.2.3 then its timestamp is larger than zero, i.e.,
pa(di) > 0.

Proof. Proof by contradiction. Assume a data item di is stale. The pa(di)
timestamp has been set by AUS_S2 otherwise di is not stale. The pa(di)
timestamp isdeterminedby takingpa(di) = max(pa(di), ts(τ1)); further, assume
τ1 is the latest update affecting di, thus, pa(di) = ts(τ1) since timestamps
are monotonically increasing. If pa(di) = 0, then di has been updated by
a transaction τ2, implying ts(τ2) ≥ pa(di) and ts(τ2) > ts(τ1). Hence, τ2

arrived after τ1 since timestamps on transactions increase monotonically, and
di is up-to-date which is a contradiction. Thus, a stale data item di implies
pa(di) > 0.

58 Data Freshness

4.4 On-Demand Updating Algorithms in Time Do-
main

This section describes on-demand updating algorithms presented by Ahmed
and Vrbsky [9]. These algorithms use different predicates p in the definition
of on-demand triggering (definition 2.3.1) to divide updating algorithms into
consistency- and throughput-centric algorithms. In an overloaded system,
consistency-centric algorithms prioritize data freshness before timeliness, and
throughput-centric algorithms prioritize timeliness before data freshness. In
an underloaded system, the consistency- and throughput-centric algorithms
trigger the same updates.
Every time a data item is requested by a read operation in a transaction,

condition (2.3) in Definition 2.2.1 is checked. If the condition is evaluated
to true, the database system starts triggering a transaction2 that updates the
data item the read operation is about to read. The on-demand algorithm
using condition (2.3) is denoted OD. The triggering criterion can be changed to
increase the throughput of UTs in the case of an overload. Ahmed and Vrbsky
present three options of triggering criteria [9]. These are (i) no option, which
represents OD, (ii) optimistic option, where an update is only triggered if it can
fit in the slack time of the transaction that does the read operation (denoted
ODO), and (iii) knowledge-based option, where an update is triggered if it can
fit in the slack time when the remaining response time of the transaction has
been accounted for (denoted ODKB).
Formally, the triggering criteria for options (i)–(iii) above are [9]:

(i): current_time− timestamp(x) ≤ avi(x)

(ii): (current_time− timestamp(x) ≤ avi(x))
∧ (dt(τ)− at(τ)− wcet(τ) ≥ 0)

(iii): (current_time− timestamp(x) ≤ avi(x))
∧ (dt(τ)− at(τ)− wcet(τ)− rr(τ) ≥ 0), where rr(τ) is the remaining re-
sponse time of the transaction τ , and is calculated in the following way:

wait_factor=wait_time/(# executed operations)
rr=wait_factor*(# remaining operations in UT +

operations in TU)

and wait_time is the time the UT has been waiting so far for resources,
e.g., the CPU.

Computational Complexity

The computational time complexity of OD,ODO, andODKBgrows polynomially
with the size of the data dependency graph G. ODO and ODKB do not generate
2A transaction is triggered by the database system by creating a new transaction instance having

the same priority as the triggering transaction.

4.5. On-Demand Updating Algorithms in Value-Domain 59

triggered updates when they cannot fit in the remaining slack time. Thus,
since execution times are finite and have approximately the same size, then
ODO and ODKB schedule a polynomial number of updates, which, in the worst
case, is |N |. Checking p (a predicate, see page 23), which takes polynomial
time, precedes every scheduled update. Thus, the computational complexity is
O(|N |× poly(p)), where poly(p) is a polynomial of p describing its running time.
If we assume updated data items do not need to be updated again during

the execution of a UT, then p is checked at maximum once for every data
item. Since there is a fixed finite number of data items in the system the
computational complexity of OD is polynomial. However, if we assume that
every read operation needs to be preceded by an update of the data item, the
computational complexity of OD grows exponentially with the size of the graph.
Consider the graph in Figure 4.5. The number of paths from d at level k to a
node at level k − n, 0 ≤ n < k, ism(k−n−1). Making updates for data items then
involvem×m(k−1) = mk checks of p which takes exponential time.

d Level k

Level k-1

Level k-2

Level k-3

.

.

.

.

.

.

.

.

.

Figure 4.5: A graph that gives the worst-case running time of algorithms OD,
ODO, and ODKB.

4.5 On-Demand Updating Algorithms in Value-
Domain

In this section the on-demand updating algorithms OD, ODO, and ODKB
are extended with functionality to use data freshness in the value domain.
Furthermore, the on-demand updating algorithm, On-Demand Depth-First

60 Data Freshness

Table 4.1: A summary of updating algorithms.

Data Freshness
Abbreviation Long name Relevance

check
Time do-
main

Value do-
main

OD On-demand
√

ODO On-demand with
optimistic option

√

ODKB On-demand with
knowledge-based
option

√

OD_V OD with value do-
main

√

ODO_V ODOwith value do-
main

√

ODKB_V ODKB with value
domain

√

ODKB_C On-demand with
knowledge-based
option and rele-
vance check

√ √

ODDFT On-demand depth-
first traversal

√

ODBFT On-demand
breadth-first
traversal

√

ODTB On-demand top-
bottom traversal
with relevance
check

√ √

ODDFT_C On-demand depth-
first traversal with
relevance check

√ √

4.5. On-Demand Updating Algorithms in Value-Domain 61

Traversal (ODDFT), is also described. The algorithms On-Demand Knowledge-
Based option with relevance check (ODKB_C) and On-Demand Breadth-First
Traversal (ODBFT) are presented in Appendix B. Simulation results show that
using data freshness defined in the value domain gives better performance
compared to using data freshness defined in the time domain. Two experiments
are presented in this section. Three complementary experiments are described
in B.8.
We saw in Section 4.4 that the triggering criteria involve checking whether

the data item about to be read by a transaction is too old. This check can be
changed to either distance-based data freshness (definition 4.2.1) or interval-
based data freshness (definition 4.2.2). In this thesis we use distance-based
data freshness. The triggering criteria are changed as indicated below:

• For OD, the triggering criterion for a read operation, Read(x), at time t
is |vt

x − vt′

x | < δdi,x, where x ∈ R(di), vt
x is the current value of data item

x, and vt′

x is the value used at time t′ when di was last derived. This OD
algorithm is denoted OD_V.

• For ODO, the triggering criterion is changed to |vt
x− vt′

x | < δdi,x ∧ (dt(τ)−
at(τ)− wcet(τ)) ≥ 0, and the new algorithm is denoted ODO_V.

• For ODKB, the triggering criterion is changed to |vt
x−vt′

x | < δdi,x∧dt(τ)−
at(τ)− wcet(τ)− rr(τ) ≥ 0, and the new algorithm is denoted ODKB_V.

4.5.1 On-Demand Depth-First Traversal

Note that On-Demand Depth-First Traversal (ODDFT) uses the PAUS updating
scheme. The goal of step PAUS_S3, as also for AUS_S3, is to create a schedule
of updates that, when executed, make data items fresh before the UT continues
to execute. With ODDFT we try to achieve this with a simple algorithm.
The algorithmic steps of ODDFT are: (i) traverse data dependency graph G
bottom-up using depth-first order, (ii) in each reached node determine if the
corresponding data item needs to be updated, (iii) put needed updates in a
schedule, and (iv) execute the updates in the schedule.
The marking of potentially affected data items in step AUS_S2 includes

all descendants of the changed data item. The reason changes need to be
propagated down in the data dependency graph G is because ODDFT traverses
G bottom-up. In order to know whether a data item has stale ancestors, the
markings need to propagate down G.
Algorithmic step (i) of ODDFT is realized by recursively visiting every

ancestor of a node corresponding to the data item. In this way, G is traversed
bottom-up in depth-first order.3 In algorithmic step (ii) of ODDFT, every
reached node in step (i) needs to be considered for being updated. The PAUS
updating schememakes the pa timestamps available for determining potentially
affected data items. Ideally, only stale data items should be put in the schedule

3The algorithm PREC1 on page 16 is implemented in this way.

62 Data Freshness

of updates in algorithmic step (iii). Algorithmic step (iii) can be realized by
using a worst-case value change of data items together with the pa timestamp
to determine if potentially affected data items are stale.
Algorithmic step (ii) is implemented by the following if-statement (see

Section B.3 for the pseudo-code of ODDFT).
if pa(d) > 0 ∧ error(x, freshness_deadline) > δd,x then
code...

end if
Proposition 4.3.1 is used (the test pa(d) > 0) to check whether data

item d needs to be updated. The function, error, estimates how much the
value of data item x will change until the time freshness_deadline. Thus,
freshness_deadline is the latest time the values of used data items in a trans-
action should still be fresh. freshness_deadline is set to the deadline of the
UT that triggers the updating of a data item. The computational complexity of
ODDFT is given in Section B.3.

4.5.2 Relevance Check: ODDFT_C

ODDFT can be enhanced with a relevance check (definition 4.3.2) that checks if
the immediate parents of d that an update will recalculate, make d stale or not.
If they do not make d stale, then the update can be skipped. The algorithm is
denoted ODDFT_C, and it builds a schedule of updates by traversing the data
dependency graph bottom-up. When the schedule has been constructed and
the updates should start executing, a relevance check is done before an update
starts to execute. If the relevance check determines an update to be irrelevant
to execute because the data item’s value will not change, then the update is
skipped.
This algorithm has the same complexity as ODDFT since the schedule of

updates is generated by ODDFT.

4.5.3 On-Demand Top-Bottom with relevance check

In this section the on-demand top-bottom traversal with relevance checks
(ODTB) updating algorithm is presented. It is built upon the AUS updating
scheme and ODTB has the following algorithmic steps. Algorithmic step (i) of
ODTB is a top-bottom traversal of G to find affected data items. Step (ii) of
ODTB is a traversal from affected data items down to dUT—the data item a user
transaction will use—and updates of the traversed data items are inserted in a
schedule of updates. Step (iii) is to execute updates of the data items that are
put in the schedule.
In algorithmic step (i) of ODTB, the top-bottom traversal is done using a

pregenerated schedule, because on-line searching in the representation of data
dependency graphG for paths from base items to a specific derived data item is
too time consuming. We discuss how a schedule can be pregenerated and used
in ODTB in Appendix B (Section B.6) not to clutter the text.

4.5. On-Demand Updating Algorithms in Value-Domain 63

In algorithmic step (ii) of ODTB, the schedule of updates is created. In
algorithmic step (i) a set of sub-schedules is found. Every sub-schedule has a
start index which is dUT and a stop index that is the found affected data item.
The schedule of updates is constructed by determining which sub-schedules to
include in the final schedule of updates.
The computational complexity of ODTB can in the worst-case be exponential

and the derivation of this result is presented in Section B.6.

4.5.4 RADEx++ Settings

This section describes simulator settings in experiments using the RADEx++
discrete-event simulator. RADEx++ uses the auxiliary functions: BeginTrans,
ExecTrans, and AssignPrio that are described in Appendix B (Section B.7).
The experiments conducted using the RADEx++ simulator test the per-

formance of different on-demand updating algorithms: OD, ODKB, OD_V,
ODKB_V, ODDFT, ODBFT, ODDFT_C, ODKB_C, and ODTB. The experiments
are divided into experiments 1a, 1b, 1c, 1d, 1e, 2a, and 2b. They evaluate different
aspects of updating algorithms.
RADEx++ is set up to function as a firm real-time main-memory database.

Two queues for transactions are used: STs in the high priority queue, and
UTs in the low priority queue. HP2PL is used as concurrency control protocol
and transactions are scheduled based on EDF. The updating frequency of base
items is determined by their absolute validity intervals, avi(b). An avi(d) is also
assigned to each derived data item to determine the freshness for on-demand
algorithms OD, ODO, and ODKB. UTs are aperiodic and the arrival times of
UTs are exponentially distributed. The user transactions can use any data item
in all experiments except in one experiment (1b) where user transactions derive
only data items that reside in leaf nodes in G. The data item a UT derives is
randomly chosen from the set of all derived data items. In experiment 1b, the
leaf node is randomly determined from the set of all leaf nodes in the data
dependency graph G. The triggered updates are not executed if the calculated
release time is earlier than the current time, because scheduled updates are
scheduled as late as possible and, thus, the latest start time has been missed.
The number of read operations is the cardinality of read set R(dUT). The
WCET of a transaction is determined by the number of operations and the
maximum execution time of these. The single write operation for STs always
takes STProcCPU time. The maximum execution time for one operation in a
UT is UTProcCPU. During simulation each operation in a UT takes a uniform
time to execute, which has an average determined during initialization of the
database. This randomness models caches, pipelines, but also the usage of
different branches of an algorithm. The deadline of a transaction is its WCET
times a uniformly chosen value in the interval [1,7].
Values of thedata items are simulatedwith theparameter max_change, which

is individual for each data item, and it expresses the upper bound of how much
a valuemay change during its avi in the simulation. When a new value for a data

64 Data Freshness

item is written to the database, the stored value is increasedwith an amount that
is taken from a standard distribution, N(max_change/2,max_change/4), limited
to the interval (0, max_change). The value of max_change and avi are derived
from the same uniform distribution U(200,800). Data validity interval δdi,dj ,
where dj is an immediate parent of di, is given by avi(dj) times factor. A factor
equal to one implies that the avis give a good reflection of the value changes if
factor is greater than one, the absolute validity intervals are pessimistic, i.e.,
the values of data items are generally fresh for a longer time than the absolute
validity intervals indicate. The blocking factor blockingf is set to one if not
stated otherwise. The database parameters and the settings are given in Table
4.2.

Table 4.2: Parameter settings for database simulator.
Parameter Explanation Setting
avi absolute validity interval U(200,800) ms
δi,j data validity interval for i factor × avi(j)
max_change max change of a data item

during its avi
U(200,800)

STProcCPU max execution time of a ST
operation

1 ms

UTProcCPU max execution time of a UT
operation

10 ms

factor 1
blockingf Blocking factor 1 (default)

A database is given by |B| × |D|. The directed acyclic graph giving the
relationships among data items is randomly generated once for each database,
i.e., the same relationships are used during all simulations. In the experiments
a 45 × 105 database are used, implying that there are 150 data items in the
database, and the ratio of base items and derived items is 0.3. Moreover, the
maximum cardinality of a read set R(d) is 6, and the likelihood that a member
of R(d) is a base item is 0.6. This creates a broad database since it is more
likely that an ancestor is a base item than a derived item. We believe that
data dependency graphs in real-time systems are normally broad (as opposed
to deep) since intermediate nodes in the graphs are shared among transactions
and there are probably only a few derivations of a sensor value when the final
result of a UT is sent to an actuator (see Section 8.1.2 for a discussion). The
examples we have seen, e.g., the data dependency graph in Figure 2.6, contain
a few number of elements in the read sets. Therefore we have chosen the
cardinality of a read set to be maximum 6. The error function is defined as:
error(x, t) = t− timestamp(x).

4.5. On-Demand Updating Algorithms in Value-Domain 65

4.5.5 Performance Results

In this section we present Experiment 1a and Experiment 1d. Experiments
1b, 1c, and 1e are presented in Appendix B. The experiments show how
updating algorithms using time domain for defining data freshness, e.g., OD,
perform compared to updating algorithms using value domain for defining data
freshness, e.g., OD_V. A discrete-event simulator called RADEx++ has been
used to evaluate the presented updating algorithms. The simulator settings are
described in Section 4.5.4. The algorithms that are evaluated are listed in Table
4.1. Note that Chapter 6 shows comparisons between on-demand updating and
well-established updating using dedicated tasks. Further, Chapter 6 also shows
analytical formulae for estimating workload of on-demand updates.

Experiment 1a: Consistency and Throughput With No Relevance
Check

The objective of this experiment is to determine the performance of updating
algorithms without relevance checks, i.e., the algorithms are OD, ODO, ODKB,
ODO_V, ODKB_V, ODDFT, and ODBFT (described in Section B.4). The
main performance metric is the number of successfully committed valid UTs
according to the definition of an absolute system, definition follows below, i.e.,
a UT is valid if, at commit time, the deadline is met and the derived value is
unaffected by concurrent changes in other data items.

Definition 4.5.1 (Absolute Consistent System [75]). In an absolute consistent
system, a UT, with a commit time t and a read set R, is given the values of all
the data items inR such that this set of values can be found in an instantaneous
system at time t.

Figure 4.6 shows total number of committed UTs in Figure 4.6(a) and
number of committed UTs that are valid based on an absolute system in Figure
4.6(b). The ratio of number of valid committed UTs and number of generated
UTs over all simulation runs, i.e.,∑5

i=1 # valid committed UTs in run i∑5
i=1 # generated UTs in run i

,

is plotted in Figure 4.7. First, the distinction between the time domain on-
demand updating algorithms can easily be seen. OD is a consistency-centric
updating algorithm, i.e., the freshness of data items is more important than the
throughput of UTs, whereas ODO andODKB are throughput-centric since these
updating algorithms can reject updates if it seems there is not enough time for
a UT to meet its deadline. The throughput of UTs for ODKB is higher than
the throughput for OD. In Figure 4.6(b), it can be seen that ODKB produces
more valid committed UTs than OD. The reason is that albeit some updates are
rejected by ODKB, values of data items can anyway be valid when they are used

66 Data Freshness

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Arrival rate

#c
om

m
itt

ed
 tr

an
sa

ct
io

ns
Database size 45*105. Number of committed UTs

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

(a) Number of committed UTs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

(b) Number of valid committed UTs.

Figure 4.6: Experiment 1a: Consistency and throughput of UTs (confidence
intervals are presented in Figure D.1).

4.5. On-Demand Updating Algorithms in Value-Domain 67

5 10 20 30 40 50 60 70 80 90 100
0.2

0.9

Arrival rate

Database size 45*105. Ratio of valid and generated UT

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

0.5

0.6

0.7

0.8

0.4

(#
 v

al
id

 c
om

m
itt

ed
 U

Ts
)/(

ge

ne
ra

te
d

UT
s)

0.3

Figure 4.7: Experiment 1a: Ratio of valid committed UTs and total number of

and since more UTs commit under ODKB compared to OD, this keeps the total
number of valid data items higher.
A counterintuitive result can be seen in Figure 4.6(b). OD_V and ODKB_V

let fewer validUTs commit compared to corresponding time domain algorithms,
i.e., OD and ODKB. The reason is that when a read operation is issued by a
transaction using the _V version of the algorithms, it is checked whether the
data item is valid or not by investigating the validity of its ancestors. If the
ancestors are valid, the data item is not updated. However, the data item
might have been potentially affected by a change in an ancestor, and this goes
unnoticed by OD_V and ODKB_V. Since values that should have been updated
never were updated it affects the validity of the produced result. The time
domain algorithms update all values that are too old, and in the experiment
value changes match absolute validity intervals. Thus, a data item that needs to
be updated is probably too old implying that it gets updated.
ODDFT andODBFT are consistency-centric, as OD, and Figure 4.6(a) shows

that their number of valid committed UTs is less than for ODKB but a bit higher
than for OD. Figure 4.6(b) shows that ODDFT and ODBFT let an equal number
of valid UTs to commit. Both these algorithms take a pessimistic approach and
assume every data item having a pa timestamp greater than zero to be stale
(except for recently updated data items that still are considered to be fresh,
this is because of the usage of the error function on line 2 in AssignPrio). This
approach pays off, since the number of committed valid UTs is higher than for
any other algorithm.
Figure 4.8(a) shows the difference between an on-demand algorithm trig-

gering updates based on pa > 0 and ODDFT. As can be seen, ODDFT lets more
valid UTs commit compared to OD_with_pa. In Figure 4.8(b) it can be seen
that at arrival rates 0-40, ODDFT generates fewer updates than OD_with_pa
and OD. This experiment shows that the pa timestamp alone cannot increase

68 Data Freshness

the performance compared to OD. The ODDFT scheduling algorithm combines
the pa timestamp and the error function using the deadline of the transaction
as t. The usage of the error function enhances the performance.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

OD
OD with pa
ODDFT

(a) Number of valid committed UTs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

Arrival rate

ge

ne
ra

te
d

tra
ns

.

Database size 45*105 Number of generated transactions

OD
OD with pa
ODDFT

(b) Number of generated triggered updates.

Figure 4.8: Experiment 1a: Effects of measuring staleness of data items at
deadline of UT (confidence intervals are presented in Figure D.2).

Experiment 1d: Transient and Steady States

The objective of this experiment is to investigate how state changes in the
external environment affect the workload of updates scheduled by updating
algorithms.

4.5. On-Demand Updating Algorithms in Value-Domain 69

Table 4.3: Experiment 1d: Statistical data from transient and steady state
simulation.

Algorithm # committed UTs # valid committed UTs
OD 2035 1742
ODDFT 2445 2207
ODKB 2698 2138
ODKB_V 2748 2121

One interesting aspect of using data freshness in the value domain is that
the number of generated updates should be affected by the current state of the
system. If the system is in a steady state, i.e., the external environment does
not change much implying that the sensor values are not changing much, then
the number of updates should be less than in a transient state where sensor
values are changing rapidly. This subsection presents a simulation with the
state changes: from transient to steady, and then back to transient again.
The number of generated triggered updates during a simulation is counted.

The simulation is conducted as follows: the arrival rate is 30 UTs/second, the
size of the database is 45×105, and 100 s is simulated. Two parameters are intro-
duced: change_speed_of_sensors and change_speed_of_user_trans. Data
items change with the following speed: N(max_change/change_speed_of_X,
max_change/(4×change_speed_of_X), where X is substituted with sensors
or user_trans. For the first 15 s, change_speed_of_sensors is set
to 1.2, which gives rapid changes (transient state), from 15 s to 75 s
change_speed_of_sensors is set to 50 (steady state), and from 75 s the system
again enters a transient state where change_speed_of_sensors is set to 2.0.
During the simulation change_speed_of_user_trans is set to 2.0.
Figure 4.9 contains the simulation results. The horizontal lines represent the

average number of generated triggered updates during the indicated interval.
ODDFT clearly generates fewer triggered updates during the interval 15–75
s than OD, which is unaware of that base items live longer in this interval.
ODKB_V, which uses a value-aware triggering criterion, also has less generated
triggered updates in steady state. Hence, the load on the CPU is lower for
ODDFT during a steady state than OD, and the extra load for OD consists of
unnecessary triggered updates. Table 4.3 shows the number of committed UTs
and the number of valid committed UTs from the four simulations shown in
Figure 4.9. Comparing the consistency-centric algorithms, ODDFT gets better
results. The number of committed UTs is higher than for OD, and the number
of generated triggered updates could be reduced considerably during the steady
state. Comparing ODKB and ODKB_V, they let the same number of UTs
commit, but ODKB_V also can adapt the number of triggered updates to the
state of the system.

70 Data Freshness

0 1 2 3 4 5 6 7 8 9 10

x 104

0

5

10

15

20

25

30

35

40

45

50

Time (ms)

of

 g
en

er
at

ed
 tr

ig
ge

re
d

up
da

te
s

OD

(a) OD

0 1 2 3 4 5 6 7 8 9 10

x 104

0

5

10

15

20

25

30

35

40

45

50

Time (ms)

of

 g
en

er
at

ed
 tr

ig
ge

re
d

up
da

te
s

ODDFT

(b) ODDFT

0 1 2 3 4 5 6 7 8 9 10

x 104

0

5

10

15

20

25

30

35

40

45

50

Time (ms)

of

 g
en

er
at

ed
 tr

ig
ge

re
d

up
da

te
s

ODKB

(c) ODKB

0 1 2 3 4 5 6 7 8 9 10

x 104

0

5

10

15

20

25

30

35

40

45

50

Time (ms)

of

 g
en

er
at

ed
 tr

ig
ge

re
d

up
da

te
s

ODKB_V

(d) ODKB_V

Figure 4.9: Experiment 1d: Simulation of transient and steady states of a system.

4.5. On-Demand Updating Algorithms in Value-Domain 71

4.5.6 DIESIS in EECU

Often, an embedded and real-time system is installed in a dynamically changing
environment, where the system has to respond to these changes. Since tasks
use data that should be fresh, state changes in the environment also affect the
need to update data. One experiment is conducted using an engine simulator
and an EECU. The experiment is designed to test if the result from Experiment
1d can be achieved in a real-life setting, i.e., we want to investigate how state
changes in an external environment affect the workload of updates scheduled
by updating algorithms.

Simulator Setup

TheODTB updating algorithm is evaluated using DIESIS integrated in an EECU
software. The simulator setup is depicted in Figure 4.10. The EECU is connected
to an engine simulator. The engine simulator sends sensor values to the EECU
that functions as in a real-life situation calculating and sending actuator values
to the engine simulator. Values on statistical variables are collected by using a
vendor-specific CAN-based protocol and computer application called AppTool.
In the performance evaluations in this section, the engine simulator is used

to change the external environment and in particular adjust the engine speed.
The EECU reacts upon the sensor signals as if it controlled a real engine. Thus,
from the perspective of the EECU software, there is no distinction between an
engine and an engine simulator.
DIESIS is executing on top ofRubus, and the original software is executing by

being scheduled byRubus. Transactions for the data dependency graphdepicted
in Figure 2.6 are implemented. There is one UT that is requested periodically
by the original EECU software. The UT is deriving TOTALMULFAC. The
implementation is further described in the section Database System: DIESIS
(Section 4.1).

EECU

Engine Simulator

Sensors

Actuators

CAN

Figure 4.10: Overview of the EECU and engine simulator.

72 Data Freshness

Experiment 3: Transient and Steady States in EECU

This experiment considers steady and transient states and the number of
required updates in each state. The number of updates is contrasted between
ODTB and periodic updates.
Recalculations of TOTALMULFAC are needed when the engine speed

changes. Figure 4.11 shows how the requests for calculations are serviced
only when the system is in a transient state, i.e., when the engine speed is
changing. The plots in the bottom graph are cumulative numbers of requests.
The number of requests is increasing linearly since the requests are periodic
(remember that all time-based tasks are executed with fixed periodicity) and in
the original EECU software each such request is processed. However, with the
usage of ODTB only some of the requests need to be processed. The number
of serviced requests shows how many of the requests need to be processed. In
steady states, none of the requests need to be processed, and the stored value in
the database can be used immediately, e.g., the steady state in the time interval
2–7. Hence, during a steady state a considerable amount of requests can be
skipped. Notice also that the data validity intervals allow the database system
to accept a stored value if changes to the engine speed are small (in this case
±50 rpm). This can be seen in the time interval 17-22, where the small changes
in engine speed do not result in recalculations of the TOTALMULFAC variable.
The number of serviced requests does not increase in this interval.
This experiment clearly shows that using adatabase systemwithODTBas the

updating algorithm decreases the CPU load during a steady state significantly
compared to the original EECU software without database facilities.

4.6 Wrap-Up

In the introduction of this chapter, we stated that the objectives of introducing
functionality in a real-time database for keeping data items up-to-date are to
address requirements R1 (organize data) and R3 (protect data, avoid duplicate
storage, guarantee correct age of data and lowoverhead of datamaintenance). In
this chapter, we showed that maintaining data freshness on-line andmeasuring
data freshness in the value domain can use the CPU resource more efficient
compared to if data freshness is measured in the time domain. However,
the family of on-line updating algorithms presented in this chapter cannot
guarantee that data items are updated before a transaction starts in such a
way that the transaction can produce an acceptable result. The reason is that
the general problem of choosing updates and considering data relationships
is NP-hard in the strong sense (see Section 3.3.1) and the on-line algorithms
described in this chapter are simplified to reduce computational complexity in
such a way that they reject updates when the updates cannot be fitted within
the available time. Let us give an example of this behavior. Let us assume d9 in
Figure 2.6 is about to be read in a user transaction and d3 and d5 are marked
as potentially affected by changes in the external environment. ODDFT is used

4.6. Wrap-Up 73

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500
Engine speed

time 0.1 s

rp
m

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450
EECU and ODTB

time 0.1 s

Cu
m

ul
at

ive
 #

 re
qu

es
ts

Number of requests

Number of serviced requests

Figure 4.11: Experiment 3: Performance results of a database implementation in
an EECU. The performance metric is the number of cumulative recalculations.

74 Data Freshness

as the updating algorithm with the if-statement on line 3 in Figure B.1 enabled.
ODDFT traverses d7 and d3 followed by d8 and d5. Let us assume there is time
available for updating d7 but not d3 and for d8 but not d5. Thus, updates are
executed for d7 and d8 and they will read old values on d3 and d5 since they were
not updated. This issue is further discussed in Chapter 7.
Performance of on-demand updating measuring data freshness in the value

domain has been compared to on-demand updating in time domain in this
chapter. The findings are that measuring data freshness in value domain gives
better utilization of the CPU resource compared to using time domain. In
addition, in Chapter 6 we compare on-demand updating to updating using
dedicated tasks [134–136].

CHAPTER 5

Multiversion Concurrency
Control With Similarity

This chapter describes the issues of data consistency and snapshots. Note thatsome sections related to multiversion concurrency control with similarity
are presented in Appendix C in order to ease the reading of this chapter.
The objective of introducing algorithms providing snapshots are (i) to make
it possible to use consistent and up-to-date data that is correlated in time
(addresses requirement R3c in Chapter 3), (ii) concurrency control (addresses
requirement R3a), (iii) use resources more efficient (addresses requirement
R3d), and (iv) to ease development efforts (addresses requirement R1). We
show in this chapter that by combining an updating algorithmwith amechanism
to store several versions of data items and then choosing versions of different
data items such that they form a snapshot at the correct time, resources can
be used more efficient than using single versions of data items, which is the
normal way of implementing embedded systems. Furthermore, the snapshot
algorithm takes care of concurrency control. The development efforts can
be eased since the programmers do not need to handle snapshots explicitly,
because the snapshot functionality is part of the database.
The performance of snapshot algorithms is evaluated in Experiment 4 where

DIESIS is used on a PC to evaluate performance of different concurrency control
and snapshot algorithms. The updating algorithm is ODTB in all evaluations.
The outline of this chapter is as follows. Section 5.1 describes the outline

of the MVTO-S algorithm. Section 5.2 describes three implementations of the
algorithm: MVTO-SUV, MVTO-SUP, and MVTO-SCRC. Section 5.3 describes
an extension of the OCC concurrency control algorithm that uses similarity.
Section 5.4 gives implementation details of MVTO-S on Rubus and µC/OS-II.
Section 5.5 shows performance evaluations. Finally, Section 5.6 wraps up this

75

76 Multiversion Concurrency Control With Similarity

chapter.

5.1 Multiversion Concurrency Control With Simi-
larity

Therequirements stated inChapter3puta requirementon thedatamanagement
functionality of an embedded system to provide snapshots to transactions. In
this section are multiversion timestamp ordering concurrency control with
similarity algorithms (MVTO-S) proposed. Three implementations of MVTO-S
are presented namelyMVTO-SUV, MVTO-SUP, andMVTO-SCRC. The algorithms
combine updating algorithms using similarity with storing multiple versions
of data items. The performance results are presented in Section 5.5 and in
Appendix C.

5.1.1 MVTO with Similarity

Requirement R3c presented in Section 3.3, guaranteeing correct age on data
items, can be resolved by using several versions of data items. Versions should
be chosen such that they are valid at the same time and when the transaction
using values has started. From a performance perspective it is important to
have restart-free concurrency control algorithms as transactions being restarted
have produced results that are not useful due to conflicts in the execution, i.e.,
resources are not utilized efficiently which they should according to requirement
R3d. Furthermore, transactions have to produce consistent results, i.e., be view-
similar to a serial schedule, which is in agreement with requirement R3a.
The MVTO concurrency control algorithm, described in the section Multi-

version Concurrency Control (Section 2.6.2), transforms read operations of a
data item into reading the version of a data item that has the largest timestamp
less than the timestamp of the transaction. However, since data freshness is
defined in the value domain and the concurrency control algorithm should work
in conjunction with the updating algorithm some optimizations can be done to
MVTO. They are:

• Since the concurrency control algorithm should work together with a
bottom-up or a top-bottom updating algorithm, it must be possible to
check if a scheduled update is needed.

• A version should not be created if it is similar to an already existing
version.

Also the following requirement comes from an assumption (SA4 in Chapter
3) that the available memory is limited, and, thus, all versions should not be
kept in order to reduce memory consumption. Thus, occasionally versions need
to be purged when the memory pool becomes full.

5.1. Multiversion Concurrency Control With Similarity 77

We first discuss the outline of the MVTO-S algorithm in the context of one
UT. Assume one transaction, τ , is about to start, and its read operations should
perceive values as originating from the same system state. The read operations
must then read correct versions of data items, and these versions must be
up-to-date. Hence, there should be a way of mapping the readings by read
operations in τ to updated versions.
The mapping from transaction to versions is done via logical time. It is

sufficient to read versions that were valid when τ started, because τ then
perceives versions from the same state that also are sufficiently close in time
to the calculation the transaction performs. A proper version of a data item is
the version with latest timestamp less than or equal to ts(τ). If the updating
algorithm atomically generates a schedule of updates when τ starts, then
we know which updates are needed to make data items up-to-date. Due to
similarities some of the updates might be possible to skip. MVTO-S is divided
into two sub-algorithms: arriving transaction (AT) that creates a schedule, and
executing transaction (ET) that checks similarities and writes new versions.
The AT sub-algorithm executes when a transaction τ arrives. The steps are:

AT1: A global virtual timestamp gvts is assigned the timestamp of the oldest
active transaction, i.e., gvts = min∀i,τi∈activeT {ts(τi)}, where activeT is
the set of all active transactions.

AT2: If τ is a UT then a schedule of needed updates is constructed atomically,
i.e., uninterrupted by other transactions, by an updating algorithm, e.g.,
ODTB.

The steps of the ET sub-algorithm are:

ET1: When a transaction τ enters its BOT operation the following steps are
taken:

ET1.1: Calculate the write timestamp of version j of data item di that τ
derives:

wt(dj
i) = max

{
max{wt(dl

k)|∀dl
k ∈ V (dm)}|∀dm ∈ R(di)

}
(5.1)

ET1.2: Find a proper version at time wt(dj
i) and denote it dn

i . If wt(dj
i) =

wt(dn
i), then the update can be skipped since the version already

exists. Otherwise continue with ET1.3.

ET1.3: Check the relevance of executing transaction τ by using similarity.
The value of read set members of dj

i is compared to values of read set
members of dn

i . A read set member is denoted dm. The check is done
as follows using distance-based similarity:

∀dm ∈ R(di), |v
wt(dj

i)
dm

− v
wt(dn

i)
dm

| ≤ δdi,dm
, (5.2)

78 Multiversion Concurrency Control With Similarity

and as follows using interval-based similarity, ∀dm ∈ R(di):

fixedintdm

(
v

wt(dj
i)

dm

)
= fixedintdm

(
v

wt(dn
i)

dm

)
. (5.3)

If all checks in equations (5.2) or (5.3) evaluate to true this means
that τ can be skipped. Otherwise start executing τ .

ET2: Every read operation of τ reading a data item di reads a proper version n
of di.

ET3: Handling of write operations of τ .

ET3.1: If ts(τ) > gvts, then anoperationwritingdata item di creates anewversion
if enough space can be accommodated for such a version (otherwise go to
step ET3.2). If ts(τ) = gvts then no transaction is interrupted and might
need the old version, and, thus, τ overwrites the current version of the
data item. The timestamp of the new version is the maximum of the write
timestamp of read values, i.e., wt(dj

i) = max{wt(dn
k)|∀dn

k ∈ RS}. Also in
this step, all versions older than gvts are pruned from the memory pool to
free memory.

ET3.2: If there is not enough space for a new version, the transaction with
timestamp equal to gvts is restarted and gvts is recalculated. Versions
with a write timestamp less than the new gvts are purged to free memory.
In this way the oldest active transaction gets restarted, and this is also the
transaction with the lowest priority (note that transactions are executed
according to priority). Thus, MVTO-S is aware of transaction priorities
and restarts low priority transactions before high priority transactions.

Next an example is given on how the MVTO-S algorithm works.

Example 5.1. Consider that an arrivingUT, τ1, using data item d5 is assigned
timestamp 8. Step AT1 assigns 8 to gvts. Step AT2 creates a schedule of needed
updates, e.g., [τd1 , τd3 , τd2 , τd4], where d5 directly depends on d3 and d4 and
indirectly on d1 and d2. Assume two STs arrive updating base items d8 (that d1

reads) with timestamp 9 and d9 (that d2 reads) with timestamp 10. Step ET3.1
creates new versions of d8 and d9 since both STs had larger timestamps than
gvts.
Next arrives τ2 with timestamp 11 using data item d6. It has higher priority

than τ1 since it is not yet finished. Thus, gvts is 8, and step AT2 creates the
following schedule [τd2 , τd4]. The TUs τd2 and τd4 are executed with timestamp
11. In step ET1.1 of τd2 , the write timestamp of a possibly new version of d2

is calculated by looking at read set members of d2. In this case it is 10 since
a ST with timestamp 10 updated d9. Step ET1.2 finds a proper version of d2,
say with timestamp 5. In step ET1.3 a similarity check is done for each read
set member. Hence, a similarity check is done between a version of d9 with
timestamp 5 and the version with timestamp 10. If these two versions are

5.1. Multiversion Concurrency Control With Similarity 79

similar, then transaction τd2 can be skipped, and transaction τd4 would read
the version of d2 with timestamp 5.

Next we give theorems and proofs on the behavior of MVTO-S.

Lemma 5.1.1. Using MVTO-S, a proper version of a data item di at time
t = ts(τ) represents an up-to-date value.

Proof. Assume dn
i is a proper version but it is stale. Now assume step ET3.1 of a

TU installs a version since an update was scheduled in step AT2which schedules
all neededupdates. Denote the newversion dn+1

i . The timestamps are ordered as
follows wt(dn

i) < wt(dn+1
i) ≤ t since by step ET1.1 and ET2 the write timestamp

of dn+1
i is the maximum of all accessed read set members but limited by t, i.e.,

∀dm ∈ R(di), wt(dn+1
i) = max

{
max{wt(dj

k)|∀dj
k ∈ V (dm), wt(dj

k) ≤ t}
}
≤ t,

and wt(dn
i) < wt(dn+1

i) since dn
i was taken for a proper version and is stale.

Version dn+1
i is an up-to-date proper version, and it is valid at time t.

When versions are removed from the pool by step ET3.2, they are removed
according to earliest timestamp first. Thus, if version dn+1

i is removed, version
dn

i has been removed before dn+1
i and therefore a proper version dn+2

i of data
item di at time t is up-to-date.

Theorem 5.1.2. MVTO-S ensures that a transaction τ reads up-to-date
versions of read set members (step ET2) such that the start time of τ is in the
time interval I =

⋂
{V I(dj

i)|∀d
j
i ∈ R(di)}, where V I(dj

i) is the interval when
version j of di is valid.

Proof. We only consider transactions that commit. An interval I is built
iteratively for each read operation. We have that for any version j of data
item di, V I(dj

i) = [wt(dj
i), wt(dj+1

i)]. A proper version n has by definition
wt(dn

i) ≤ ts(τ). For every read version dn
i (ET2) it holds that wt(dn

i) ≤ ts(τ)
since by lemma 5.1.1 there cannot exist a not yet updated version in the interval
[wt(dn

i), ts(τ)].
We must show that ts(τ) < wt(dn+1

i) for all read versions dn
i , i.e., an up-to-

date proper version is alway chosen. Since a version to read is chosen such that
wt(dn

i) ≤ ts(τ) and wt(dn+1
i) > wt(dn

i) as step ET1.2 forces unique timestamps
on versions, then wt(dn+1

i) > ts(τ) otherwise dn+1
i would have been chosen

in step ET2. Thus, we have shown that read operations executed by τ choose
versions such that they are relative consistent (definition 2.2.2) and ts(τ) is
included in the interval where these versions are valid.

The effect of theorem 5.1.2 is that MVTO-S guarantees that transactions
read an up-to-date snapshot of the database that was valid when the transaction
started. This is an important property of the algorithm. Some transactions
need to read values of data items that are correlated in time, e.g., diagnosis
transactions. Next we describe three versions of MVTO-S that differ in the
amount of meta-data every version has.

80 Multiversion Concurrency Control With Similarity

5.2 Implementation of MVTO-S

Step ET1.3 needs information of values of data items in a read set. We now
present three different implementations that differ in the amount of meta-data
every version has and how ET1.3 can check similarity. The implementations are
denoted MVTO-SUV, MVTO-SUP, and MVTO-SCRC.

5.2.1 MVTO-SUV

One solution to determine similar versions (step ET1.3) is to store the value of
read data items together with the version. Similarity is then only a matter of
comparing every read value of an existing version to the corresponding read
value of the new version. The concurrency control algorithm is denoted MVTO-
SUV, UV is an abbreviation for Use Versions. The similarity check is performed
using one of either definition 4.2.1 or definition 4.2.2. An example is depicted
in Figure 5.1. In this example, the old version is not similar to the new version
since immediate parent d27 has changed toomuch between the derivation of the
two versions.

d9 12 18

100 17 523 99

b6 b12 d1 d27

24

90 17 550 154

b6 b12 d1 d27

f(,)→t f(,)→t f(,)→t f(,)→f

Figure 5.1: Determine if two versions are similar by using function f on every
pair of immediate parents.

5.2.2 MVTO-SUP

This section describes an implementation of MVTO-S denoted MVTO-SUP,
where UP is an abbreviation for Use memory-Pool.
The overhead of storing all used values in the versionsmight be too heavy for

some memory-constrained systems. Since the versions are purged only when
the memory pool is full, the versions needed for checking similarity can be
found in the memory pool storing versions and, thus, no additional memory is
needed for storing values of immediate parents inside the versions. An example

5.2. Implementation of MVTO-S 81

of this idea is depicted in Figure 5.2. UT τ derives d36, and data item d4, d7,
and d23 are immediate parents of d36. The dashed area of data item d36 is the
potentially new version that τ would write. UT τ needs to execute if values used
to derive the existing version are not similar to values τ would read. In this
example only immediate parent d4 has changed since the version was derived.
If the two versions of d4 are similar, then τ can be skipped.

d4

d7

d23

d36

τ

Figure 5.2: UT τ derives d36. Algorithm CheckSimilarity investigates if the
existing version of d36 is similar to the one τ derives.

The algorithmic steps for doing the similarity check are as in Figure 5.3. The
parameters are UT τ and data item dUT . Line 1 derives the timestamp that the
new version would have if being written to the database in the algorithmic step
ET3.1 ofMVTO-S. If a versionwith the timestamp already exists, thismeans that
τ was preempted by another UT updating dUT , CheckSimilarity can return true
indicating that there already exists a similar version. This is implemented with
the if-statement on line 2. Similarity is checked against the most recent version
relative the UT, denote the version z. Thus, we need to find the timestamp of
z (line 5). If z is unavailable then the new version of d must be installed and
CheckSimilarity returns false to indicate that the new version is not similar to
any existing version. If z exists then values read by τ need to be checked against
values used deriving z. If the versions are similar, then the new version of d is
similar to z and UT τ can be skipped. This is implemented in the for-loop on
line 6, and the if-statement on line 10.
In MVTO-SUP, when a transaction would derive a similar version, because

the values of the immediate parents are similar to the values of an already
installed version, the new version is installed. The CheckSimilarity algorithm
would always work if all versions were always available. However, they are
not, and this is because of practical reasons. There are not unlimited memory
available in real-time embedded systems.
The possibility to determine if two versions are similar is dependent on

finding values on read set members. Since versions can be purged from the
memory pool a similarity check can fail because versions of immediate parents
have been removed from thememory pool. Storing the read values in the version

82 Multiversion Concurrency Control With Similarity

CheckSimilarity(τ ,dUT)
1: Derive timestamp version of d: ts(d) = max{ts(x)|∀x ∈ RS}, where RS

contains proper versions of data items in R(dUT).
2: if version with the timestamp already exists then
3: return true
4: end if
5: Find version of d with timestamp less than ts(d). Denote this version z and

ts(z) = max{∀v ∈ V (d)|ts(v) < ts(d)}. Return false if such a version
cannot be found.

6: for all x ∈ R(d) do
7: Let value(xτ) be the value stored in the version of immediate parent x

read by τ .
8: Let value(xz) be the value stored in the version of immediate parent x

read by τz.
9: Break algorithm if a version cannot be found.
10: if f(value(xτ), value(xz)) 6= true then
11: return false
12: end if
13: end for
14: return true

Figure 5.3: CheckSimilarity algorithm.

as inMVTO-SUV has the benefit that values on immediate parents always can be
found. The disadvantage is that every version has a high memory overhead. In
MVTO-SUP, this memory overhead is removed, and replaced with searching in
the memory-pool. Thus, every version becomes smaller than in MVTO-SUV, but
there is a possibility that similar versions are interpreted as not being similar
because values of immediate parents could not be found.

5.2.3 MVTO-SCRC

This section describes an implementation of MVTO-S that is denoted MVTO-
SCRC. One way to reduce the memory overhead of MVTO-SUV is to assign an
indicator to each version that uniquely identifies which values on immediate
parents that have been used. If the indicator takes less memory to store than the
read values of immediate parents as in MVTO-SUV, then the memory overhead
is reduced. Checksums/CRCs (see section Checksums and Cyclic Redundancy
Checks (Section 2.7)) and interval-based similarity (see section Data Freshness
(Section 4.2)) are convenient to use to calculate such an indicator. An example
using MVTO-SUV is depicted in Figure 5.4(a), and a version using an indicator
is depicted in Figure 5.4(b).
A value can be uniquely identified by one interval using an interval-based

similarity. If not more than 256 validity intervals are needed on each data
item, then each interval using interval-based similarity can be represented by

5.2. Implementation of MVTO-S 83

Version

3 104 36

d1 d6 d78Parents
Read values

Value 515

(a) Size of a version for MVTO-SUV.

Version

709
CRC/

Checksum

Value 515

(b) Size of a version for MVTO-SUP.

Figure 5.4: Sizes of versions for MVTO-SUV and MVTO-SUP.

an 8-bit integer. Hence, the value of a data item can be accurately represented
by the 8-bit Fletcher’s checksum or a CRC of the interval number (using an
interval-based similarity) of the read values. Hence, when a transaction is
deriving a new version and it is installed, then the checksum, or the CRC of
the used values, is calculated and stored together with the version. A similarity
check is then only a matter of comparing the checksums or CRC.
The robustness of checksums for the application of similarity checks has

been tested by calculating checksums for a fixed small number of octets and all
combinations of a distribution of a change among the octets. The distribution
of a change works as follows

(i) Tuples consisting of 6 elements are constructed. The elements are octets
that can take the values 0–255.

(ii) A change to a tuple is applied. The change represents howmany unit steps
in positive direction from a base tuple that can be taken among arbitrary
axis in the 6 dimensional space. For instance, the change 2 to the tuple
(100, 100, 100) results in the following possible tuples:

(102, 100, 100) (100, 102, 100) (100, 100, 102)
(101, 101, 100) (101, 100, 101) (100, 101, 101)

(iii) A Fletcher’s 8-bit checksum and a CRC-32 are calculated for all tu-
ples resulting from the changes 1, 2, 3, 4, 5, and 6 to a base tuple
(100, 100, 100, 100, 100, 100) or a base tuple with random elements.

84 Multiversion Concurrency Control With Similarity

Table 5.1 shows statistical data on how the Fletcher’s checksum algorithm
behaves on this small set of data. Out of the 738 possible tuples 712 of them
produce a checksum that is equal to the checksum from at least one other tuple.

Table 5.1: Investigation of the robustness of Fletcher’s checksum algorithm.

of octets Range of changes Random # of equal checksums
6 1–6 No 712 out of 738
6 1–6 Yes 712 out of 738

The results in Table 5.1 are disappointing, but they are also to some extent
documented in [120]. The reason of this behavior is the small changes in the
octets. In the Fletcher’s checksum algorithm every octet is multiplied with a
coefficient which is equal to the order the octets are used in the checksum
algorithm. For instance, if octet number 2 is increased with 2, the checksum is
increased with 4. If at the same time octet number 4 is decreased with 1, the
checksum is decreased with 4. As can be seen, these two small changes in close
octets cancel, and the calculated checksum is unaltered.
The CRC-32 algorithm is run on the same set of octets and the results can

be found in Table 5.2, where 0 of the 738 possible combinations of octets are
duplicates. The divisor polynomial is: x32 + x26 + x23 + x22 + x16 + x12 + x11 +
x10 +x8 +x7 +x5 +x4 +x2 +x+1. CRC-32 can be efficiently implemented using
a table consuming 256 bytes (an implementation is described in [3]). Hence,
even though a CRC-32 might take a bit longer to calculate than using Fletcher’s
checksum algorithm, the tests suggest using CRC-32 anyway due to its better
performance in producing unique indicators for the kind of octets that are used
in the application of similarity checks.

Table 5.2: Investigation of the robustness of CRC-32.

of octets Range of changes Random # of equal checksums
6 1–6 No 0 out of 738
6 1–6 Yes 0 out of 738

The concurrency control algorithm using a checksum or a CRC-32 to check
similarities is denoted MVTO-SCRC.

5.3 Single-version Concurrency Control With Sim-
ilarity

Single-version concurrency control algorithms, i.e., those that only use one
version of each data item, can also be extended to use similarity in order to

5.3. Single-version Concurrency Control With Similarity 85

reduce number of conflicts. Lam and Yau added similarity to HP2PL [86]. In
this thesis, the OCC algorithm is enhanced with a similarity-aware validation
phase. The algorithm is denoted OCC-S. The optimistic concurrency control
algorithm described in section Optimistic (Section 2.6.2) has a validation phase
looking as follows [80]:
1: Begin critical section
2: valid = true
3: for all other active transactions τj other than τi do
4: if ws(τi) ∩ rs(τj) 6= ∅ then
5: valid = false
6: end if
7: end for
8: if valid then
9: write phase
10: end if
11: End critical section
12: if valid then
13: cleanup
14: else
15: restart
16: end if
The if-statement on line 4 checks if the committing transaction can be

serializedwith respect to other active transactions. If the committing transaction
tries to make a change permanent to a data item that is currently used by other
transactions, these transactions would not be serialized. Line 8 checks if any
conflicts have been found, and if not, the transaction copies changes to data
items from local storage to the database (line 9). If the transaction cannot write
changes to the database the database system decides if the transaction should
be restarted (line 15).
If conflicting operations involve similar values, then there is no conflict since

the written value is similar to the value already read by another transaction.
Hence, the number of restarts can be reduced if some conflicts can be relaxed to
non-conflicts by a similarity relation. Line 4–6 is instead as in Figure 5.5. Line 1
checks if all read-write conflicts involves similar values according to similarity
relation f . If that is the case, then the committing transaction can proceed to its
write phase.

1: if (ws(τi) ∩ rs(τj) 6= ∅) ∧ (∀d(d ∈ ws(τi) ∧ d ∈
ts(τj)), f(read(d), written(d)) 6= t) then

2: valid = false
3: end if

Figure 5.5: OCC-S validation phase.

86 Multiversion Concurrency Control With Similarity

r_lock: if write-locked then wait for transaction to rollback
w_lock: mark item as write-locked and mark readers for restart

(a) HP2PL

r_lock: add event to transaction log
w_lock: add event to transaction log
verify: check if a transaction has accessed the data item the verifying transaction
writes, if so, mark that event as a clash. If the verifying transaction has any
clashes in its log, then restart the transaction.

(b) OCC

r_lock: add event to transaction log
w_lock: add event to transaction log
verify: check if an active transaction has accessed the data item the verifying
transaction writes and the accessed value is not similar to the value that is about
to be written, if so, mark that event as a clash. If the verifying transaction has
any clashes in its log, then restart the transaction.

(c) OCC-S

Figure 5.6: Implementation details of concurrency control algorithms.

5.4 Implementation Details of Concurrency Con-
trol

Rubus has no support for (i) dynamic priorities, (ii) dynamic creation of
tasks, (iii) restart of tasks, i.e., longjmp in a UNIX environment, and (iv) no
knowledge of deadlines. µC/OS-II has support for (i) and (ii), but since the
database implementation should be able to execute on top of both operating
systems, Rubus sets the limits. No restart of tasks means that transactions need
to execute until CommitTransaction has executed before they can be restarted,
i.e., all computation work done by the transaction from the point it is marked
for being restarted until it reaches CommitTransaction is unnecessary. There is
no straight-forward way to resolve this in Rubus. A longjmp could be simulated
by polling the restart flag1 in the calculation part in a simulation.
HP2PL, OCC, and OCC-S are described in Figure 5.6. Every concurrent task

has a unique priority which means that a conflict always results in a restart
for HP2PL. This indicates that HP2PL and OCC should have almost the same
performance since all conflicts except write-read conflicts result in restarts in
OCC.
Due to the inability to change the priority of a task in Rubus, HP2PL suffers

from priority inversion in a write-read conflict. When the read-lock is requested
the lower prioritized transaction, τ1, holding the write-lock rollbacks and is
marked for restart. The read-locker, τ2, has to wait for the write-locker to
rollback and the rollback is done with the priority of τ1, i.e., a transaction τ3

1The restart flag is set to true whenever the transaction is involved in a conflict and it needs to
restart.

5.5. Performance Results of Snapshot Algorithms 87

with priority prio(τ1) < prio(τ3) < prio(τ2) can preempt and execute before τ1

continues to rollback.
In systems withmany conflicts it should be a clear difference in performance

between HP2PL and OCC compared to MVTO-S algorithms and using no
concurrency control since the latter two are restart free and do not suffer from
unnecessary computation of restarted transactions.

5.5 Performance Results of Snapshot Algorithms

This section contains performance results of DIESIS configured for a range
of snapshot and concurrency control algorithms. Different aspects of the
performance of these algorithms are evaluated. The updating algorithm isODTB
in all experiments. In this section, experiment 4a is presented. Experiments
4b–4f are presented in Appendix C. The simulator setup is also described
in Appendix C. The RCR versions of OCC and OCC-S, that are used in the
evaluations, are restarting transactions until they are able to read a snapshot of
the database.

5.5.1 Experiment 4a: Committed User Transactions

The objective with this experiment is to investigate the throughput of single-
version and multiversion concurrency control algorithms. The performance
metric is successfully committed UTs, i.e., UTs that commit within its deadline.
The concurrency control algorithms that are evaluated are HP2PL, OCC,

MVTO (Section 2.6.2), MVTO-SUV, MVTO-SUP, and MVTO-SCRC. As a baseline
we also use the no concurrency control (NOCC) scheme. Figure 5.7(a) shows
the number of user transactions committing before their deadlines for single-
version algorithms without the restart facility. HP2PL and OCC perform
the same. The OCC-S algorithm performs significantly better than similarity
unaware single-version concurrency control algorithms.
In Figure 5.7(b), the MVTO algorithm is performing bad, much worse

compared to single-version concurrency control algorithms and the enhanced
multiversion algorithms. The reason MVTO performs worse than MVTO-SUV,
MVTO-SUP, and MVTO-SCRC is the less number of transactions that can be
skipped. MVTO cannot do the same accurate tests since similarity is not used
as in the enhanced algorithms, and therefore more transactions are executed
resulting in worse performance. The number of skips is plotted in Figure 5.8.
Comparing Figures 5.7(a) and 5.7(b), the enhanced multiversion algorithms,
MVTO-SUV, MVTO-SUP, andMVTO-SCRC, performbetter thanHP2PL andOCC.
The multiversion concurrency control algorithms can also guarantee relative
consistency.
RCR-OCC andRCR-OCC-S are compared toMVTOandMVTO-SUV in Figure

5.9. The single-version algorithms with restarts are penalized by more restarts.
Every restart is due to that values have changed, which increase the probability

88 Multiversion Concurrency Control With Similarity

15 20 25 30 35 40 45 50 55 60
2000

2500

3000

3500

4000

4500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

HP2PL
NOCC
OCC
OCC−S

(a) Number of committed UTs for single-version concurrency
control algorithms (confidence intervals are presented in Figure
D.7(a)).

15 20 25 30 35 40 45 50 55 60
2000

2500

3000

3500

4000

4500

5000

5500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO
MVTO−S
MVTO−S
MVTO−S
NOCC

CRC
UP

UV

(b) Number of committed UTs for multiversion concurrency con-
trol algorithms (confidence intervals are presented in Figure
D.7(b)).

Figure 5.7: Experiment 4a: Number of UTs committing before their deadlines
using single- and multiversion concurrency control algorithms.

5.5. Performance Results of Snapshot Algorithms 89

15 20 25 30 35 40 45 50 55 60
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Arrival rate

sk

ip
pe

d
tra

ns
ac

tio
ns

Database size 45*105. Number of skipped transactions.

MVTO
MVTO–S
MVTO–S
MVTO–S
NOCC

CRC
UP

UV

Figure 5.8: Experiment 4a: Number of transactions that can be skipped using
ODTB in conjunction with the concurrency control algorithms.

that TUs scheduled by the restarted UT cannot be skipped. Figure 5.10 shows
that the number of restarts is higher for the restart algorithms. The difference
in number of restarts between RCR-OCC and RCR-OCC-S is the number of
restarts that can be saved by the similarity relation used in the verify phase.
Figure 5.9 shows that the MVTO-SUV and MVTO-SUP let considerably more

UTs to commit compared to RCR-NOCC, RCR-OCC, and RCR-OCC-S.
MVTO-SCRC is not up to par with MVTO-SUV and MVTO-SUP in Figure

5.7(b). The reason is that MVTO-SCRC must use interval-based similarity and
that values are monotonically increasing. Using a distance-based similarity,
every new version created is an origin of a distance where all values less than
400 are similar to the new version. However, using an interval-based similarity
the value of a new version lies somewhere in an interval and the distance to
the next interval tend to be shorter than 400. In effect, fewer transactions can
be skipped using interval-based similarity since values are more often assigned
to different intervals. Figure 5.11(a) shows how the MVTO algorithms are
behaving when interval-based similarity is used. The pool size is 300. In this
setting, it is not possible to tell the difference fromMVTO-SCRC, MVTO-SUV, and
MVTO-SUP. How pool sizes affect the performance is discussed in Experiment
4b, but here we only conclude from Figure 5.11(b) that MVTO-SCRC performs
as good as MVTO-SUV. Even though the overhead of storing the values of
elements in the read set is reduced to a 32-bit CRC in MVTO-SCRC. Table 5.3
shows how many times MVTO-SCRC makes the wrong decision in skipping a
transaction, and there are no misses at all. As can be seen, using the CRC-32 is
very robust. Hence, if interval-based similarity is a reasonable design decision,
then MVTO-SCRC is a better choice than MVTO-SUV since a smaller pool size
can be used.

90 Multiversion Concurrency Control With Similarity

15 20 25 30 35 40 45 50 55 60
2000

2500

3000

3500

4000

4500

5000

5500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO
MVTO–S
MVTO–S
MVTO–S
RCR–NOCC
RCR–OCC
RCR–OCC–S

CRC
UP

UV

Figure 5.9: Experiment 4a: A comparison of single-version concurrency control
algorithms enforcing relative consistency andmultiversion concurrency control
algorithms (confidence intervals are presented in Figure D.8).

15 20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

3000

Arrival rate

re

st
ar

ts

Database size 45*105. Number of restarted transactions.

HP2PL
MVTO
MVTO–S
MVTO–S
MVTO–S
NOCC
OCC
OCC–S
RCR–NOCC
RCR–OCC
RCR–OCC–S

CRC
UP

UV

Figure 5.10: Experiment 4a: Number of restarts of transactions for the concur-
rency control algorithms.

5.5. Performance Results of Snapshot Algorithms 91

15 20 25 30 35 40 45 50 55 60
2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO
MVTO–S
MVTO–S
MVTO–S

CRC
UP

UV

(a) Number of committed user transactions.

20 30 40 50 60 70 80
1000

1500

2000

2500

3000

3500

4000

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO–S 170
MVTO–S 300
MVTO–S 170
MVTO–S 300
MVTO–S 170
MVTO–S 300

CRC

CRC
UP
UP
UV
UV

(b) Pool sizes.

Figure 5.11: Experiment 4a: The similarity-aware multiversion concurrency
control algorithms using fixed validity intervals.

92 Multiversion Concurrency Control With Similarity

Table 5.3: Experiment 4a: The number of times the checksum check misses to
detect similar values compared to using values in MVTO-SUV.

Arrival rate Missed similarities
15 0
20 0
25 0
30 0
35 0
40 0
45 0
50 0
60 0

5.6 Wrap-Up

This chapter describes a snapshot algorithm and three different implemen-
tations of it that provides transactions with up-to-date values of data items.
The values are up-to-date at the start of the transaction. Performance evalua-
tions show that, besides providing snapshots, the algorithm can also provide
enhanced throughput of transactions since updates of historical versions can
be skipped if they are already present. This is not possible if single-version
concurrency control algorithms are used.

CHAPTER 6

Analysis of CPU Utilization of
On-Demand Updating

We have seen in previous chapters that many applications, but not limited
to real-time systems, need up-to-date data items. We have seen that it

is possible to construct algorithms that can schedule data items to be updated
on-demand at a given point in time. These algorithms have been empirically
evaluated and discussed in the previous chapters and it is found that the
proposed on-demand algorithms give better performance compared to existing
algorithms. However, the proposed algorithms introduce a new problem,
namely, how to off-line or on-line determine the total workload of the system1.
This chapter aims at constructing analytical methods to calculate off-line or on-
line the total workload of a system that uses on-demand updates. Calculating
workload addresses requirement R5, determining if the system is in a transient
overload.
The outline of this chapter is as follows. Section 6.1 describes the task

model used in this chapter. Section 6.2 gives related work and theoretical
results important for deriving the analytical formulae. Section 6.3 presents the
analytical formulae. Section 6.4 presents evaluation results and Section 6.5
wraps up the chapter.

6.1 Specialized Task Model

This chapter is devoted to highlighting the performance differences of (i) on-
demand updatingwithin tasks and (ii) dedicated tasks update data items. In this

1With total workload we mean the workload that includes the work of keeping data items
up-to-date.

93

94 Analysis of CPU Utilization of On-Demand Updating

if currentTime - lastUpdate > avi
Update data item
lastUpdate = currentTime
local data item = data item

end if
Execute task

Figure 6.1: A τ time-task measuring data freshness in the time domain.

if abs(local sensor value - new sensor value) > delta
Update data item
local sensor value = new sensor value
local value = updated value

end if
Execute task

Figure 6.2: A τvalue-task measuring data freshness in the value domain.

chapter, simplifications are made to the transaction and data model in Section
3.2. There are two reasons for this. First, research on dedicated tasks [134–136]
does not handle derived data items where a derived data item depends on
another derived data item. Hence, in order to get comparable results with the
body of research in the area of dedicated tasks, the data dependency graph G
must only consist of two levels. One level with base items and one level with
derived data items that are derived from base items only. The second reason is
that using a data dependency graph with two levels is a simpler problem than
using a graph with arbitrary number of levels. Thus, it may be possible to find
analytical formulae for estimating updating workload using a simpler graph,
which can then be a guidance in finding formulae for data dependency graphs
with arbitrary number of levels.
The on-demand updating algorithms, e.g., ODDFT and ODTB, create a

schedule of data items needing to be updated and the order the updates should
be executed. The scheduling is separated from the tasks in that it is performed by
the database, e.g., DIESIS. However, we can reason about on-demand updates
as being part of a task. In doing so, the tasks become conditioned. In this
chapter using the specialized task model, tasks using on-demand updating
measuring data freshness in the time domain are described as in Figure 6.1.
Tasks measuring data freshness in the value domain are described as in Figure
6.2. We refer to these tasks as τ time- and τvalue-tasks, respectively.
The data items being used in the system consists thus of two sets. The

set B contains base items b1, . . . , bm, i.e., sensor values reflecting the state of
physical entities. The set D contains derived items, d1, . . . , dn, that are derived
by functions having only b ∈ B as inputs, e.g., f(vt

b2
, vt

b3
) = vt

b2
+ vt

b3
.

6.2. Preliminaries 95

6.2 Preliminaries

This section gives background in the area of updates of data items and gives
some theoretical results that are used later in the chapter.
In the area of real-time systems, keeping data values up-to-date has previ-

ously been studied. As discussed in the previous chapters, there are two ways to
determine when to update a data item: either by a dedicated task (DT) executed
often enough, or on-demand (OD). Also, two ways to measure data freshness
have been devised, namely (i) time domain (TD), e.g., AVIs, and (ii) value
domain (VD), e.g., similarity. Thus, there are four ways to configure a system
with respect to updating data items: DT+TD, DT+VD, OD+TD, and OD+VD.
We now describe previous research in the different configurations.
In the area of AVI and dedicated tasks (DT+TD), techniques have been

derived that decrease CPU utilization needed by the dedicated tasks, but yet
allowing for sufficient schedulability tests [134–136]. Half-Half (HH) and
Deferrable Scheduling (DS) are two examples of these techniques and DS
is, to this date, the technique reducing workload imposed by updates the
most [134, 135]. As the techniques increase in complexity in order to reduce
the CPU workload further, the analysis of schedulability and CPU workload
also become more complicated. For instance, CPU workload using DS can only
be estimated using the algorithm in Figure 6.3 [135]. The estimate’s accuracy
has not been stated, but in [135] the measured workload and the estimated
workload are very close.

Deadline dt(τ time
0) = 1

period(τ time
0) =period time

for all di do
U =utilization of updates of data items with index less than i
dt(τ time

i) = 1
1−U

period(τ time
i) =period time−dt(τ time

i)
end for
U =

∑m
i=0

wcet(τtime
i)

period(τtime
i)

Figure 6.3: Workload estimation of DS [135]. Note that tasks are sorted in
increasing order based on period time

In the area of AVI and on-demand updating (OD+TD), Ahmed and Vrbsky
constructed algorithms for soft real-time systems [9]. Arbitrary data relation-
ships are supported, i.e., derived items can depend on values of other derived
items. Data relationships are normally described in terms of base items rep-
resenting entities of the environment and derived items that only depend on
base items. Examples of work considering such data models are [73, 135]. No
schedulability analysis is given in [9] nor any estimates of how often updates
execute, i.e., the system is not analyzable.
Kuo and Mok formalized the notion of similarity (similarity was introduced

96 Analysis of CPU Utilization of On-Demand Updating

in Section 2.2.2). In the area of similarity and dedicated tasks (DT+VD), data
validity bounds have been used to determine how long period times of tasks
can be enlarged in order to reduce workload imposed by updates [68]. Thus,
changes of values are translated into how long time a value can be considered
up-to-date, which resembles AVIs, which is then used to enlarge the period
times. Analyzability can be achieved by using RM or EDF and a CPU utilization
test since tasks are periodic.
Chapter 4 was devoted to the OD+VD approach, and it was shown using

simulations and real-life proof-of-concepts that OD+VD uses the CPU resource
more efficient than periodic tasks using AVI, i.e., HH, and Ahmed and Vrbsky’s
work. However, since on-demand updating and arbitrary graphs are used it is
hard to analyze the system since it is cannot be determined to know at which
time a given data item will be updated because it depends on how other data
items have changed. Thus, only estimates of workload of updates can be given.
Therefore in this chapter we limit the data model to contain base items and
derived items that are derived only from base items (the data model in Section
3.2 uses a data dependency graph of arbitrary depth). This is done in order
to investigate whether there are any estimation techniques for this simpler
model that then can be further extended. Chapter 8 shows a way to relax the
assumption that G has only two levels in the case of OD+VD.
The remainder of this section gives a theoremonhow themean time between

invocations of a set of periodic events can be calculated.Lemma 6.2.1 gives a
formula for two events and theorem 6.2.2 generalizes the lemma to the case
with n events.

Lemma 6.2.1. Let two events e1 and e2 have the period times period(e1) and
period(e2). The mean time between invocations of e1 and e2 is

1
1

period(e1)
+ 1

period(e2)

. (6.1)

Proof. We can derive the mean time between invocations by drawing a timeline
of the occurrences of e1, and on top of that draw the occurrences of e2. Then we
take the mean time between occurrences by taking the distance between every
two consecutive occurrences and form the mean. The timeline repeats after
period(e1)period(e2)/ gcd(period(e1), period(e2)) time units. During this time
event e2 occurs

period(e1)
gcd(period(e1),period(e2))

times.2 By also considering event e1 an

additional period(e2)
gcd(period(e1),period(e2))

occurrences need to be considered. The mean
time between invocations is now

period(e1)period(e2)
gcd(period(e1),period(e2))

period(e1)
gcd(period(e1),period(e2))

+ period(e2)
gcd(period(e1),period(e2))

,

2Because period(e2) × x =
period(e1)period(e2)

gcd(period(e1),period(e2))
, where x denotes the number of times e2

occurs in the time interval period(e1)period(e2)
gcd(period(e1),period(e2))

.

6.2. Preliminaries 97

which can be written as
1

1
period(e1)

+ 1
period(e2)

. (6.2)

Lemma 6.2.1 is now generalized in the following theorem.

Theorem 6.2.2. Let a set of n periodic events denoted ei, 1 ≤ i ≤ n, have the
period times period(ei). The mean time between invocations of the events is

1
1

period(e1)
+ · · ·+ 1

period(en)

. (6.3)

Proof. We use lemma 6.2.1 on three events and then generalize the result to
n events. Denote the mean time between invocations of the events e1 and
e2 as MTBI(e1, e2) = 1/(1

period(e1)
+ 1

period(e2)
). Now use lemma 6.2.1 on

MTBI(e1, e2) and period(e3):

1
1

MTBI(e1,e2)
+ 1

period(e3)

. (6.4)

SubstitutingMTBI(e1, e2) in Equation (6.4) gives the following

1
1

period(e1)
+ 1

period(e2)
+ 1

period(e3)

. (6.5)

It is easy to see that the substitution MTBI(e4, e5) of events e4 and e5 can be
done in Equation (6.5). Hence, such substitutions can be done for all n events.
The resulting formula for the mean time between invocations of n periodic
events is thus

1
1

period(e1)
+ · · ·+ 1

period(en)

. (6.6)

We refer to the equation in Theorem 6.2.2 as

MTBI(P) =
1∑

∀τi∈P period(τi)−1
, (6.7)

i.e., the equation states the expected mean time between arrivals of a set, P,
of periodic tasks. MTBI(P) is applied to both time- and value-domain tasks
therefore the superscript is left out in Equation (6.7).
The next section discusses workload of updates and CPU utilization based

schedulability tests.

98 Analysis of CPU Utilization of On-Demand Updating

6.2.1 Workload and Schedulability Tests

For scheduling of periodic tasks, there exist scheduling algorithms that have
schedulability tests, e.g., RM and EDF [24]. The CPU utilization based schedu-
lability test works by calculating the CPU utilization of each individual task and
then comparing the sum of utilizations to a bound that is scheduling algorithm
specific (see also Chapter 2). Thus,

n∑
i=1

wcet(τ time
i)

period(τ time
i)

≤ Bound, (6.8)

where Bound depends on the scheduling algorithm being used, and n is
the number of tasks in the system. The test in Equation (6.8) works if the
deadline equals the period time and that each task is independent, i.e., no
synchronization mechanism is used. When using on-demand updating we note
that a part of wcet(τ time

i) constitutes the on-demand updating. Thus, Equation
(6.8) can be rewritten as follows:

n∑
i=1

wceti(b1)wcet(update_b1) + · · ·+ wceti(bm)wcet(update_bm) + CWODi

period(τ time
i)

=

wcet(update_b1)
n∑

i=1

wceti(b1)
period(τ time

i)
+ · · ·+

n∑
i=1

CWODi

period(τ time
i)

≤ Bound,

(6.9)
where m is the number of base items in the system, and wcet(update_b1)

is the worst-case execution time of on-demand updating of b1, wceti(b1) = 1 if
task i has an on-demand update of b1, otherwise wceti(b1) = 0, and CWODi is
the execution time without on-demand updating of task i. Hence, CWODi is
the worst-case execution time that is used when dedicated tasks are used.
Denoting themean interarrival timeofon-demandupdatesof bi asMTBI(bi),

we have that

wcet(update_b1)
n∑

i=1

wceti(b1)
period(τ time

i)
+ · · ·+

n∑
i=1

CWODi

period(τ time
i)

=

wcet(update_bi)
MTBI(b1)

+ · · ·+ wcet(update_bm)
MTBI(bm)

+
n∑

i=1

CWODi

period(τ time
i)

≤ Bound.

(6.10)
Equation (6.10) relates to Equation (6.8) in that the left hand side part

of Equation (6.8) is equal to the left hand side of Equation (6.10), which is
shown using equations (6.3) and (6.9). Equation (6.10) means that the mean
interarrival times of on-demand updates contribute to the schedulability of the
system. However, Equation (6.10) assumes the worst-case scenario where all
on-demand updates are always executed. In the following sections we outline
a formula that estimates the mean interarrival time of on-demand updates.

6.3. Estimation of Mean Interarrival Times of On-Demand Updates 99

The formula can be used for task sets whose distances between tasks’ arrivals
can be described with probability density functions. We have found a result
that describes such probability density functions of periodic events. This result
makes it possible to use our formula for real-time systems with periodic tasks
using time domain to measure data freshness.

6.3 Estimation of Mean Interarrival Times of On-
Demand Updates

This section presents an analytical formula that answers the important question:
‘What is the imposed workload of the updates?’ of a system adhering to the task
model in Section 6.1.

6.3.1 Time Domain using AVI

Equation (6.10) describes the CPU utilization under the assumption that every
on-demand update needs to be executed. However, the if-statements in Figure
6.1 guard the on-demand updates so we know that an update is not needed
during the following avi(di) time units from the time the update wrote the data
value. Thus, we want to calculate the mean interarrival time of an on-demand
update when we know its AVI and the interarrival times of the tasks that use
the on-demand update. We have devised a formula that derives the mean
interarrival times of the execution of on-demand updates. The formula uses
a probability density function (pdf) describing the distribution of distances
between task arrival times of the tasks that use the on-demand update, because
it is assumed the on-demand updates are at the start of the tasks:

MTBI(y,P) =
M ×MTBI(P)−M ×Q(y,P)

∫ y

0
q(x,P)xdx

M −M ×Q(y,P)
, (6.11)

where M will cancel but it denotes the number of distances used to derive
the pdf under study and P is the set of tasks having a particular on-demand
update and thus are used to construct the pdf q(x,P).MTBI(P) is the expected
value of the pdf given input P and MTBI(P) can be calculated by Equation
(6.7). Thus,M ×MTBI(P) gives the total sum of the distances. Q(y,P) is the
cumulative density function and states the fraction of distances being less than
y. Further, M × Q(y,P) is the number of distances less than y. The product
M ×Q(y,P)

∫ y

0
q(x,P)xdx is the sum of distances less than y. The denominator

calculates the number of distances remaining if those less than y are removed.
The number of distancesM in Equation (6.11) cancels. Hence, Equation (6.11)
calculates the mean of distances greater than y, which is an estimation of the
expected mean interarrival time between executions of the on-demand update
with AVI equal to y.

100 Analysis of CPU Utilization of On-Demand Updating

In order to use Equation (6.11) to remove pessimism in the schedulability
test described byEquation (6.10), wemust find a pdf that describes the distances
between arrivals of periodic tasks. Cox and Smith have developed such a pdf.
Thus, in Equation (6.11) the following substitutions can be done:

q(y,P) =
∑

∀τtime
i ∈P

qi(y)
period(τ time

i)
/

∑
∀τtime

i ∈P

period(τ time
i)−1,

qi(y,P) =
∑

∀τtime
j ∈P,j 6=i

period(τ time
i)−1

∏
∀τtime

k ∈P,k 6=i,j

period(τ time
k)− y

period(τ time
k)

,

Q(y,P) =
∫ y

0

q(x,P)dx,

where τ time
i refers to one of the periodic tasks in P using the on-demand

update that we want to know the mean interarrival time. The substitution
yieldsMTBI(avi(bi),P) (Equation (6.11)) to produce an estimate of the mean
interarrival time of the execution of the on-demand update. MTBI(avi(bi),P)
can now substitute MTBI(bi) in Equation (6.10) to remove the pessimism of
assuming every on-demand update always execute.
Cox and Smith also showed that the pdf q(y,P) tends to go toward e−y as

the number of periodic tasks increases [35]. They showed that the following
equation is a good approximation of the substitutions given above:

r(z,P) = e−z

[
1− (1 + C2)(z2 − 4z + 2))

2m

]
, (6.12)

where z = y
∑

∀τtime
i ∈P period(τ time

i)−1, µ =
∑

∀τtime
i ∈P period(τ time

i)−1/m,

µ′2 =
∑

(period(τ time
i)−1)2/m, and C2 = µ′2/µ2 − 1.

In order to calculate Equation (6.11), values of integrals must be estimated.
This can efficiently be achieved using Simpson’s rule where a segment of the
integral can be estimated using

∫ b

a
f(x)dx ≈ b−a

6 (f(a) + 4f((a + b)/2) + f(b)).
Thus, the computational complexity of Equation (6.11) is linear in the size of the
value of y since the interval [0, y] (or the interval [0, z] if Equation (6.12) is used)
is divided into a linear number of segments. To give an idea of the execution
times of Equation (6.11) using q(y,P) and r(z,P), and the algorithm in Figure
6.4, which constructs a timeline of task arrivals and estimates MTBI(y,P)
from the timeline, the following performance evaluations have been performed.
A task set of 5 periodic tasks with on-demand updates has been used. The
max in the algorithm in Figure 6.4 is set to 100000. Equation (6.11) and the
algorithmFigure 6.4 are executed 1000 times for 78 simulations and the average
execution time is derived. Simpson’s rule is used and the interval is divided
into 10 segments. The computer is a Mac mini 1.25GHz PowerPC with 512MB
memory and the Java runtime system is Apple’s Java 1.5 implementation. The
average execution time of Equation (6.11) using q(y,P) is 0.72± 0.02ms, using
r(z,P) is 0.016 ± 0.0002 ms, and the algorithm in Figure 6.4 is 1.15 ± 0.04 ms.

6.3. Estimation of Mean Interarrival Times of On-Demand Updates 101

1: Let earliestArrival =earliest arrival time of a task
2: Let earliest task be τ time

e

3: previous = num = dist = 0
4: while earliestArrival < max do
5: if earliestArrival − previous > avi then
6: dist = dist + earliestArrival − previous
7: previous = earliestArrival
8: num = num + 1
9: end if
10: Ae = Ae + Pe, where Ae is arrival time of task τ time

e

11: Let earliestArrival =earliest arrival time of a task
12: Let earliest task be τ time

e

13: end while
14: return dist/num

Figure 6.4: Timeline approach to estimation of mean interarrival time of an
on-demand update using AVI.

Hence, this indicates that Equation (6.11) is 71.9 times faster than the timeline
approach. Depending on the CPU being used, the execution time of Equation
(6.11) using q(y,P) or r(z) may be low enough to be usable in on-line CPU
utilization tests.
The running time of the algorithm in Figure 6.4 is pseudo-polynomial if

a correct mean interarrival time is to be achieved since max must be set to
the hyper-period of tasks’ period times [24]. However, the algorithm can have
a polynomial computational complexity if max is set to a fixed value. The
while-loop on line 4 iterates

∑
∀τtime

i ∈P max/period(τ time
i) times. The running

time of lines 5–12 is constant. Thus the computational complexity is O(max).
Moreover, if the value is set to a value much larger than the period times of the
tasks the algorithm will produce a result that is close to the one that would be
achieved using the hyper-period.
To summarize this section, we have proposed a formula that estimates

the mean interarrival time of executions of on-demand updates. The formula
uses probability density functions that describe distances between arrivals of
tasks. In this chapter we use a pdf proposed by Cox and Smith that describes
interarrival times of periodic events. The formula can be used in a schedulability
test in the following way:

n∑
i=1

CWODi

period(τ time
i)

+
m∑

j=1

wcet(update_bj)
MTBI(avi(bj),P)

≤ Bound. (6.13)

102 Analysis of CPU Utilization of On-Demand Updating

6.3.2 Value Domain

Kuo and Mok formalized the notion of similarity, which says that two values of
a data item can be considered similar if and only if they differ not more than
a predefined amount [81, 82] (see Section 2.2.2 and Section 4.2). A task using
similarity can be seen as containing the following on-demand condition:

if abs(localDi - di) > deltaDi ||
abs(localDj - dj) > deltaDj

Update dk
localDi = di
localDj = dj

execute task

Here we see that dk is derived by reading di and dj , and dk is recalculated if
any of the data items it depends on has changed such that they are dissimilar,
i.e., Equation (4.1) does not hold for at least one of the data items dk depends
on.
Equation (4.1) is generalized in this chapter to constitute a probability that di

(and dj) has changed such that it is dissimilar to the value it had last time it was
used, i.e., Pupdate(di) is the probability that di is dissimilar. This generalization
enables the, soon to be derived (Equation (6.14)), mean interarrival time of
updates to be applicable to other events than updates of data. The analytical
formula is verified using non-linear regression. Thus, there must be data
available to conduct the regression analysis. The simulator setup to get data is
described next.

6.3.3 Estimation Formula Using Similarity

The simulator is set up to use RM scheduling, because it is a well-established
and often used scheduling algorithm [25]. In the simulator there is one data
item di that depends on a set of base items, bj , and it is used by a set of
periodic tasks using on-demand updating using similarity. The execution of an
on-demand update is performed under disabled interrupts meaning that the
execution cannot be preempted. Each data validity bound δ(bj) is randomly
selected by drawing a number from U(0, 1). Each base item is updated by a
dedicated periodic task that runs with period time equal to the shortest possible
period time of the tasks using di, which is 20 time units in this simulator setup.
Each update task assigns a new value to its corresponding base item from
U(0, 1), which means that the data validity bound δ(bj) is equal to Pupdate(bj),
i.e., it denotes the probability that bj affects the value of di.
The estimation of the mean workload of the update of di is the following

non-linear regression:

MTBI = (1 + (Pupdate(A))MTBI(P) (6.14)

6.3. Estimation of Mean Interarrival Times of On-Demand Updates 103

where A is the event that all base items are similar, i.e., Pupdate(A) =∏
∀bj

Pupdate(bj), and MTBI(P) is derived by using Equation (6.7). It is
shown below in this section that this estimation has an R2-value in the interval
[0.43,0.95]. An R2-value is always in the interval [0,1] and a value close to 1
indicates the non-linear regression gives values close to simulated values, i.e.,
closer to 1 the better is the estimation [132].
Figure 6.5 shows the ratio ‘measuredMTBI ’ overMTBI, where measured

MTBI is derived from simulation data for different configurations shown in
Table 6.1. The minimum ratio is 0.93 meaning that the mean interarrival time
of an update is at maximum 1/0.93=1.07 too large. Hence, a worst scenario is
that the CPU utilization of the workload of one update is underestimated by 7%.

Figure 6.5: Ratio of estimated MTBI of on-demand updates using similarity.

The reason for the spikes in Figure 6.5 is that the estimate uses mean
values to estimate the mean interarrival time. Configuration 1 has the following
parameters in its largest spike: δ(b0) = 0.98, δ(b1) = 0.96, period(τvalue

0) = 96
and period(τvalue

1) = 849. The estimate given byMTBI(P) is 166.0 but the true
mean interarrival time is 1649.0 because the large values of δ(b0) and δ(b1)make
most of the invocations of the task with period time 96 not trigger the update.
Thus, the mean interarrival time depends instead on the task with period time
849. This behavior cannot be captured in the estimate.
Configuration 1 has the most spikes (see Figure 6.5) and an evaluation of

Equation (6.14) using non-linear regression in SPSS [118] yields an R2-value of
0.59 without the greatest spike and 0.43 with the greatest spike. This indicates
that the estimate is not very accurate for this configuration. However, the spikes
give underestimates of the mean interarrival time and, thus, an overestimate of
the workload. The R2-value of configuration 12 is 0.95. Hence, the goodness
of the estimate increases with the number of tasks using a data value. This fact
can also be seen in Figure 6.5 as the spikes become less frequent and lower as
the configuration number increases.

104 Analysis of CPU Utilization of On-Demand Updating

Table 6.1: Configurations of simulations of on-demand updates using similarity.

Configuration
1 2 base items 2 derived items
2 2 base items 3 derived items
3 2 base items 4 derived items
4 2 base items 5 derived items
5 2 base items 6 derived items
6 3 base items 2 derived items
7 3 base items 3 derived items
8 3 base items 4 derived items
9 3 base items 5 derived items
10 3 base items 6 derived items
11 4 base items 2 derived items
12 4 base items 3 derived items
13 4 base items 4 derived items
14 4 base items 5 derived items
15 4 base items 6 derived items

6.4 Evaluations using AVI

This section evaluates the performance of using on-demand updates or dedi-
cated tasks as well as accuracy of the formula MTBI(avi(bi),P) presented in
Section 6.3.1.
The evaluations show that:

• In a setting where systems are overloaded according to the baseline, which
is Equation (6.9), i.e., it is assumed every on-demand update is always
executed, we note that as the AVI increases the fraction of systems being
unschedulable decreases. This is an expected behavior since the number
of times on-demand updates need to execute decreases with increasing
AVI since the stored data value lives a longer time.

• Over a varied number of tasks and varied AVI of a data item the workload
imposed by updates of on-demand updating is always less than that of DS.

The remainder of this section is outlined as follows. Section 6.4.1 presents
the simulator setup, Section 6.4.2 presents evaluations of workload of updates,
and Section 6.4.3 gives a test of the accuracy of estimations in a practical setting.

6.4.1 Simulator Setup

The simulations are performed in a discrete-event simulator written in Java.
The simulated system consists of a set of base items and a set of tasks that

6.4. Evaluations using AVI 105

calculate derived items. Each base item is used by a specified number of tasks.
The period times of the tasks are randomly chosen from a uniform distribution.
The execution times of the tasks consist of two parts (i) on-demand updates
and (ii) the computation. The execution time of an on-demand update is 1 time
unit if it executes, otherwise it is 0. The computation always executes and its
execution time is randomly chosen at simulation start-up time.

6.4.2 Performance Evaluations of Workload

In the first setting, the system has one base item and the number of tasks and
the AVI of the base item is varied. The AVI is determined by taking a fraction of
the lowest period time in the system. The period times are integers and chosen
randomly from U(50, 1000) and the execution times of the computations are set
to 1. The scheduling algorithm used is RM. We are now interested in measuring
the workload imposed by on-demand updates which is done by taking the
worst-case execution time of the update divided by the mean interarrival time
of its execution. The workload of the on-demand update is compared to the
workload imposed if DS were used. In the case of one data item, DS sets a
dedicated updating task’s period time to the data item’s AVI minus one (see
Figure 6.3 for the pseudo-code of DS). Figure 6.6 shows the ratio (workload
imposed by DS)/(workload imposed by OD), i.e., the z-axis shows how many
times bigger the workload imposed of updates by DS is compared to OD. We
make the following observations:

• The number of tasks influences the ratio in that it decreases as the number
of tasks increases. The reason is that the higher the number of tasks the
more likely it is that a task starts to execute at avi(bi) time units since biwas
last updated, which gives an imposed workload close to wcet(bi)/avi(bi).

• The ratio is high, above 2, for small number of tasks. This is expected as
described above. If the number of tasks is low it is very likely that the time
between updates is larger than avi(bi) since there is no task starting close
to avi(bi) time units since the last update. With this reasoning OD can be
arbitrarily better than DS. If the system consists of one task and one data
item and AVI is 10, then DS sets the period time of a dedicated updating
task to 9. Thus, the workload of the update is WCET/9. However, using
OD, assuming the period time of the task is 1000, the workload of the
update is WCET/1000.

• As the AVI increases the likelihood that a task starts to execute after avi(bi)
time units increases even for a small number of tasks. Thus, the ratio
decreases as the AVI increases even for a small number of tasks. This can
be seen in Figure 6.6.

Figure 6.8 shows the workload when each task has 10 on-demand updates,
i.e., there are 10 base items in the system in this setting. The same parameters
are used as above. If a deadline is missed, then that system’s parameters are

106 Analysis of CPU Utilization of On-Demand Updating

5
17

29

41

53

65

77

89

0
.0

5

0
.2

5

0
.4

5

0
.6

5

0
.8

5

0

2

4

6

8

10

12

(Workload
DS)/(Workload

OD)

tasks

Fraction AVI

Figure 6.6: Comparison of imposed workload of updates of OD and DS.

chosen again and the system is re-simulated. Aswe can see, the general behavior
is as observed in Figure 6.6. However, for some simulated systems—the AVI is
set to a low fraction of the shortest period time in the system and low number
of tasks—the ratio is low but always above 1. The reason is that the phasing
of the execution of the on-demand updates is such that few of them can be
skipped. We observed this behavior only on 12% of the systems where AVI is set
to 0.05 of the shortest period time in the system. This constitutes 0.6% of all
the simulated systems.
Figure 6.7 shows the minimal observed ratios for each AVI in Figure 6.6. We

see that the ratio is always above 1 which suggests that the workload imposed
by updating is lower for on-demand updating compared to DS.
In summary, we observe that OD imposes less workload than DS. Further,

there exists settings when many on-demand updates are used in tasks that give
unexpected high workload of updates. However, the workload is lower than DS,
because the period times assigned by DS are lower than the AVIs (see line 6 in
Figure 6.3 where the period time is reduced; the period time is the AVI of the
data item being updated by the dedicated task whose settings are determined by
the algorithm) but using on-demand updating the time between updates cannot
be lower than the AVI. Thus, the workload algorithm for DS (Figure 6.3) could

6.4. Evaluations using AVI 107

0

0.5

1

1.5

2

2.5

3

0.0
5

0.1
0.1

5
0.2

0.2
5

0.3
0.3

5
0.4

0.4
5

0.5
0.5

5
0.6

0.6
5

0.7
0.7

5
0.8

0.8
5

0.9
0.9

5

Fraction AVI

m
in

((
W

o
rk

lo
a
d

 D
S

)/
(W

o
rk

lo
a
d

 O
D

))

Figure 6.7: The minimal z-axis value for each AVI.

be used to describe an upper bound on the workload for OD. In the next section
we evaluate the accuracy of the analytical formula and focus on tasks using one
on-demand update.

6.4.3 Performance Evaluations of Estimations

In this experiment, we evaluate the accuracy of Equation (6.11) as used in the
schedulability test described in Equation (6.13).
Simulations of systems that are overloaded according to Equation (6.9) are

executed. These systems constitute our baseline since there exists no other
known, to our best knowledge, schedulability test for on-demand updating than
to assume every update always executes. The number of tasks are varied. Five
tasks read each base item. The AVI of each base item is set to a fraction of
the shortest period time in the simulation. The period times are integers and
derived from U(20, 2000). The execution time of each update is 1 time unit and
the execution time of each tasks’ computation is an integer and randomly chosen
from U(1, 15). Each setting of number of tasks and AVI is run 100 times with
new period times and execution times each run. Each simulation run is started
once the random values give a total utilization, according to Equation (6.9), that
lies between 1 and 1.04, i.e., the system is lightly overloaded according to the
baseline and the scheduling algorithm being used is EDF. The simulator runs
for 500000 time units and checks if there were deadline misses.
Figure 6.9 shows the number of systems that the baseline correctly classifies

as overloaded. Note that if the baseline were correct 100 systems would always

108 Analysis of CPU Utilization of On-Demand Updating

5
17

29

41

53

65

77

89

0
.0

5

0
.2

5

0
.4

5

0
.6

5

0
.8

5

0

5

10

15

20

25

30

(Workload
DS)/(Workload

OD)

tasks

Fraction AVI

Figure 6.8: Ten base items in the system and each task has on-demand updates
for each base item.

6.4. Evaluations using AVI 109

10

30

50

70

90

0.1
0.2

0.3
0.4

0.5
0.6

0.7

0

10

20

30

40

50

60

70

80

90

100

Schedulable

tasks

Fraction AVI

Figure 6.9: Number of systems that misses deadlines.

be unschedulable. We note the following:

• The pessimism in the baseline increases as the AVI increases. This is
expected since the longer the AVI the less often on-demand updates need
to execute.

• The pessimism also increases as the number of tasks increases. This is also
an expected behavior since as the number of tasks increases the number
of times on-demand updates is accounted for in the schedulability test
increases.

Figure 6.10 shows the minimal number of correct classifications of systems
as overloaded or underloaded. All AVI fractions for each number of tasks
are considered. ‘MTBI’ is using Equation (6.11) with q(y,P), ‘Timeline’ is an
estimation based on drawing a timeline of task arrivals as described by the
algorithm in Figure 6.4, and ‘Fast MTBI’ is using Equation (6.11) with r(z,P).
We see that in the worst observed cases, ‘MTBI’ gives an accuracy of 91%,
‘Baseline’ of only 14%, ‘Timeline’ of 89%, and ‘Fast MTBI’ of 60%. Figure
6.11 shows the mean number of correctly classified systems and it is 95% or
above for ‘MTBI’. ‘Fast MTBI’ has a mean accuracy above 80%, which could
be acceptable for some systems. However, the running time of ‘Fast MTBI’ is
considerable shorter than ‘MTBI’ and ‘Timeline’ as shown in Section 6.3. The
mean classification accuracy of the baseline is 57%.
In the evaluations presented in this chapter, all execution times and period

times are integers and on-demand updates execute for one time unit if the

110 Analysis of CPU Utilization of On-Demand Updating

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Tasks

M
in

 #
 C

o
rr

e
ct

 c
la

ss
if

ic
a
ti

o
n

s

Baseline
MTBI
Timeline
Fast MTBI

Figure 6.10: Minimum number of systems in Figure 6.9 that misses deadlines.
All AVI fractions are considered for each number of tasks.

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Tasks

#
 C

o
rr

e
ct

ly
 c

la
ss

if
ie

d
 s

y
st

e
m

s

Baseline
MTBI
Timeline
Fast MTBI

Figure 6.11: Mean number of correctly classified systems.

6.5. Wrap-Up 111

condition is fulfilled, otherwise they execute for zero time units. Thus, on-
demand updates are never preempted. Preemptions of the updates can happen
in real-life applications and could be resolvedwith, e.g., Priority Ceiling Protocol
or turning off interrupts. If execution times of updates are short, which they
usually are in real-time embedded systems, it is likely that an update is
never preempted. Thus, Equation (6.13) resembles, to a high degree, real-life
situations.

6.5 Wrap-Up

It has been recognized that data itemsneed to beup-to-datewhendata values are
used in applications [108], e.g., control of an external environment or decision
making. In real-time systems it is particularly important to perform timely
updates of data items, because the data values must be used before a deadline.
The workload of updating data items should be as low as possible, because then
the system can use as many data items as possible. It is known that updating
data items on-demand may utilize the CPU better compared to updating data
items periodically [7, 55, 56]. Also, to the best of our knowledge, there are
no analytical formulae to express an exact or estimated workload imposed by
on-demand updates. In this chapter we presented analytical formulae that
estimates the mean interarrival time of on-demand updates both when data
freshness is measured in the time domain and in the value domain. In addition
to this our results are:

• Performance evaluations in this chapter show that on-demand updating
imposes significantly less workload compared to DS, which is the, to date,
algorithm reducing workload imposed by dedicated updating tasks the
most [134, 135]. This finding suggests that on-demand updating of data
items is a strategy suitable for resource constrained embedded systems,
which has also been noticed in Chapter 4. However, using dedicated tasks
it is possible to exactly analyze the workload imposed by updates. This is
important in hard real-time systems. Using on-demand updates, we have
shown in this chapter that it is possible to construct an analytical formula
that can estimate the workload. The properties of the formula is given
below.

• The estimates’ properties are:

– Fast to execute. It takes 0.016 ms to estimate mean interarrival time
for each data item (1.15 ms using the timeline approach, the speed
increase is 71.9 times). This estimate’s accuracy is 60% in its worst
observed case and above 80% in the mean case, which may be usable
for some systems. Using a probability density function that is more
accurate, but takes longer time to create gives an accuracy of 91% in
the worst-case and above 95% in the mean case. The running time is
0.72 ms.

112 Analysis of CPU Utilization of On-Demand Updating

– Good accuracy in the case of one on-demand update in each task. As
summarized above, the accuracy is above 91%, which means that at
least 91 systems (overloaded according to the baselinewhich assumes
all on-demand updates always execute) are correctly classified as
normal load or overloaded. The baseline’s mean performance is 57%.

– Good accuracy in the case of several on-demand updates in each
task, but there can be situations were the phasing of tasks make
fewer on-demand update skips possible than our proposed formula
proposes. We observed 0.6% of all simulated systems to be of this
kind. However, the algorithm that calculates workload imposed by
updates when using DS can be used as an upper bound of workload
imposed by on-demand updates. This algorithm introduces less
pessimism than the baseline.

– The analytical estimate in the case of measuring data freshness in the
value domain underestimates the workload by 7% in the worst found
case.

CHAPTER 7

Overload Control

Chapter 4 was devoted to data freshness and data consistency functionalityin a database aimed at being used in embedded real-time systems. In
Chapter 6, the performance results in Chapter 4 were confirmed in a specialized
setting that simplified comparisons of on-demand updating to well-established
algorithms for updating using dedicated tasks. However, in Chapter 3, we
noted that the problem of optimally choosing which data items to update in
order to achieve up-to-date values is NP-hard in the strong sense. Also, the
algorithms in Chapter 4 are greedy, meaning that to reduce running time and
space requirements they traverse the data relationships, i.e., G, once trying to
obtain a schedule fulfilling:

• data freshness,

• time constraints, and

• data relationships.

In addition to this, the algorithms described in Chapter 4 are, as discussed,
either consistency- or throughput-centric. At a transient overload, the algo-
rithms in Chapter 4 either miss the time constraints, i.e., deadlines, or cannot
guarantee up-to-date data items. In this chapter, we study systems where data
items can be divided into, with respect to calculations, required data items that
constitute the most important data items required to be up-to-date in order
to calculate a usable result, and not required data items that are less impor-
tant (they are allowed to be stale). An algorithm is developed that can meet
deadlines and schedule updates such that data freshness, time constraints, and
data relationships are fulfilled. This developed algorithm addresses require-
ment R4, degrade performance in the case of a transient overload. Degraded

113

114 Overload Control

performance means, in the context of data items needed to be up-to-date, that
the ‘up-to-dateness’ of the data items is lowered.
The outline of this chapter is as follows. Section 7.1 gives an introduction

to overload control and the problem of guaranteeing data items are up-to-
date. Section 7.2 introduces an extension to the data model in Section 3.2.
Section 7.3 describes the on-demand updating algorithm Admission Control
Updating Algorithm (ACUA). Section 7.4 describes how admission control
can be achieved using Admission Control Updating Algorithm. Section 7.5
introduces an algorithm that can estimate the total CPU utilization of a system.
Section 7.6 contains our performance evaluations of ACUA. Finally, Section 7.7
concludes this chapter.

7.1 Introduction

The common way to check whether a system is overloaded or may become
overloaded when admitting new jobs of tasks is to perform a feasibility test
(see Section 2.1). Such an approach is used in the algorithms presented in
Chapter 4, e.g., ODDFT that checks (line 3 in Figure B.1) whether an update
can be accommodated within the deadline. The feasibility test compares CPU
utilization of executing tasks, plus the ones that are in question of being
admitted, to a bound, and if the test fails the system may be overloaded. The
worst-case execution time (WCET) of the jobs is used to calculate their CPU
utilization. The WCET may be pessimistic meaning that the real execution
time of a job is less than its WCET. In order to calculate the CPU utilization
the interarrival time of jobs is also used. The interarrival time can also be
pessimistic—as is observed in Chapter 6—because the jobs may be conditioned,
i.e., a job is invoked but not executed because a condition is false. Hence, in
order to get an accurate CPU utilization of a system, interdependencies among
tasks and values on data must be considered.
In addition, the workload of a system can also change on-line while the

system is running. Two examples of such occurrences in the used engine control
software are:

• When a set of tasks in engine control are triggered based on the speed of
the engine. Hence, when the speed of the engine changes it affects the
workload.

• When tasks have conditioned execution. Hence, the workload can change
for systems where all tasks are periodic, because the tasks have if-
statements checking values of data items. For instance, the actual
frequency of when sensor values change depends on the external en-
vironment. The temperature of the cooling water in an engine increases
fast when the engine is turned on and heated up, but then the en-
gine reaches its working temperature and the temperature is fluctuating

7.2. Extended Data and Transaction Model 115

around the working temperature. This means that the frequency of up-
dates of temperature decreases with time until the working temperature
is reached.

From the two examples above, we see that the workload of the engine control
changes dynamically. When the driver presses the gas pedal, the workload of
the system increases because the speed of the engine increases, but at the same
time the workload might decrease because the engine temperature is reaching
its working temperature. The total effect of these two events must be taken
into consideration to determine whether the system is in a transient state and
precautions must be taken.
In summary, we have two related problems with respect to transient over-

loads in a system. They are:

1. Accurately determining the system workload and decide whether the
system is in a transient overload. Our initial work in this area has been
reported in Chapter 6.

2. Reacting to an overload and produce (acceptable) results of the workload
that can be used to control the system such that no damage to the system
occurs.

The first problem is further investigated and addressed in this chapter
by introducing the MTBIOfflineAnalysis algorithm that off-line estimates the
workload of a system. This algorithmbuilds upon results presented inChapter 6.
Coarser estimates can be given by another algorithm denoted MTBIAlgorithm,
where the running time of MTBIAlgorithm is considerably shorter compared to
MTBIOfflineAnalysis. Hence,MTBIAlgorithmmight be used on-line to estimate
whether the system suffers a transient overload given workload changes. This
algorithm is presented and evaluated in Chapter 8. The second problem
is addressed in this chapter by the introduction of the Admission Control
Updating Algorithm (ACUA), which adopts the notion of required data items
and not required data items.

7.2 Extended Data and Transaction Model

Aswe concluded in Chapter 3many embedded systemsmay become overloaded,
and the software must be designed to cope with it, e.g., at high revolutions per
minute of an engine the engine control software cannot perform all calculations.
We have noticed that (in Chapter 2), for some calculations, only a subset of the
data items used in a calculation are compulsory to derive a usable result (we
denote such data items as required and other data items as not required). For
instance, in the engine control software, the calculation of fuel amount to inject
into a cylinder consists of several variables, e.g., temperature compensation
factor, and a sufficiently good result can be achieved only by calculating a result

116 Overload Control

based on a few of these compensation factors. Thus, at high revolutions per
minute, only a few of the compensation factors are calculated.
Hence, the read set of a data item R(di) can be divided into required

data items, denoted RR(di) ⊆ R(di), and not required data items, denoted
NRR(di) ⊆ R(di), RR(di) ∩ NRR(di) = ∅. A data item that is required with
respect to another data item can be distinguished by marking the relationship
in the data structure describing G, e.g., with number 2 in the adjacency matrix
of G. We assume the value of di is correct if at least all data items in RR(di) are
up-to-date when deriving di. We furthermore assume that values of data items
inRR(di) can be based on only up-to-date required data items. This means that
the system still has a correct behavior if all transactions only use up-to-date
values on required data items.

7.2.1 Update Functions

To calculate the CPU utilization of a system whose calculations and their
relationships are described in the data dependency graph G and where an
updating algorithmwith a relevance check is used is difficult because we need to
know at which times the updating algorithm must execute scheduled updates.
This matter has been discussed in Chapter 6. In this chapter and the following,
we use a data dependency graph with arbitrary number of levels instead of
the special case discussed in Chapter 6 where the graphs only have two levels.
A system is equivalent to a database system with on-demand updates if the
following holds.

• Each node in G represents an update function which conceptually looks
as in Figure 7.1, which is an extension of Figure 6.2 since the if-statement
in code(update_di) may check the values of several derived data items.
We see that the part denoted code(update_di) is executed whenever a
scheduled triggered update needs to be executed.

• Periodic tasks call update functions of the leaf nodes.

• Periodic tasks call update functions of base item. This corresponds to step
1 of AUS.

In Figure 7.1, code(update_di) is the main functionality of the function and
control(update_di) calls other update functions to ensure data items are up-
to-date and also a control checking whether the main functionality should be
performed. There is a probability associated with update_di changing the value
of di that we denote Pupdate(di). We are interested in finding a way to determine,
exactly or as an estimate, the times code(update_di) are used. We see that, for
a data item di, the invocation times of code(update_di) depend on how often
leaf nodes, which are descendants of di, are called and how often values of data
items in di’s read set change.
Figure 7.2 shows a system with update functions that call each other. Figure

7.3 shows fractions of timelines containing occurrences of code(update_d),

7.2. Extended Data and Transaction Model 117

code(update_di)

control(update_di)

P
er

io
d

 t
im

e
P

i

M
T

B
I(

co
d

e(
u

p
d

a
te

_
d

i)
)

control(update_di)

void update_di(void)
{
 while(1) {
 static int old_j = 0, old_k = 0;
 update_j();
 update_k();
 if (abs(v_j - old_j) > 10 || abs(v_k - old_k) > 5) {
 /* execute code */
 v_i = ...;
 old_j = v_j;
 old_k = v_k;
 }
 sleep(3);
 }
}

Figure 7.1: The function update_di that derives data item di if data items dj and
dk have changed more than 10 or 5, respectively.

d ∈ {b1, b2, dk, di, dm, dn, do, dp, dq}. Timeline 1 (the timeline to the left of the
encircled 1) shows the timepoints where sensors are updated. We assume every
time any of the sensors is updated, data item dk is affected by the change.
Timeline 3 shows the time instances where update_dk is called. Timeline 2
shows which calls of update_dk that result in code(update_dk) being executed.
In Figure 7.2, themean interarrival time of calls of update_dk and update_dj

is 70.3 ms (calculated using Equation (6.3) and setting P to {100, 500, 450})
because the same periodic calls make the requests of update_dk and update_dj .
The mean time between invocations of the main functionality of update_dk is
93.8 ms and 150 ms for update_dj when taking the frequency of value changes
of b1, b2, b3, and b4 into consideration (using algorithm MTBIOfflineAnalysis,
Figure 7.7), which is considerably larger than 70.3 ms. This example shows it
is important to consider also the frequency of value changes in on-line CPU
utilization calculations otherwise pessimistic results are obtained.
Over the course of the system and given fixed interarrival times on tasks1 the

time durations between calls of a function can be estimated by the mean time
between the invocations of the function. The estimated total CPU utilization
can then be described as

∑
∀di

(
wcet(control(update_di))

MTBI(control(update_di))
+

wcet(code(update_di))
MTBI(code(update_di))

)
, (7.1)

where MTBI is the mean time between invocations of control(update_di)
and code(update_di), respectively. MTBI(control(update_di)) can be cal-
culated by using Equation (6.3) and setting P to the period times of
all leaf nodes being descendants of di. However, in this thesis, we as-
sume wcet(control(update_di))

MTBI(control(update_di))
in Equation (7.1) is negligible compared to the

other term, because wcet(control(update_di)) is probably much smaller than
wcet(code(update_di)) since control(update_di) constitutes one if-statement
1Tasks executing leaf nodes and tasks executing periodic base item updates.

118 Overload Control

di

dm

dk dj

dn

do dp dq

b1 b2 b3 b4

P: 100ms P: 150ms P: 150ms P: 300ms

P: 100ms P: 500ms P: 450ms

update(dq)update(dp)update(do)

update(dm) update(dn)

update(di)

update(dk) update(dj)

update(b1) update(b2)

update(b3)

update(b4)

Periodic updating of external environment

Periodic updating of tasks

In
te

rm
ed

ia
te

 n
od

es

Figure 7.2: Data dependencies.

di

dm

dk

dn

do dp dq

b1 b2

P: 100ms P: 150ms

P: 100ms P: 500ms P: 450ms

1

2

3

Figure 7.3: An example of invocation times of updates.

7.3. Admission Control Updating Algorithm 119

whereas code(update_di) constitute more code, and can thus be removed from
Equation (7.1). Further, we assume wcet(code(update_di)) is given. Hence, we
must find away to calculateMTBI(code(update_di)). In this thesis, we describe
two methods to calculate the mean time between invocations. One method is
presented in Section 7.5 and the other in Section 8.1.3.

7.3 Admission Control Updating Algorithm

In this section we describe theAdmissionControlUpdatingAlgorithm (ACUA)
algorithm that decides which data items need to be updated when a transaction
starts. The decision is based on markings by the AUS scheme and data
relationships. ACUA is a top-bottom algorithm that knows about required and
not required data items.
Before describing ACUAwe contrast the differences between feasibility tests

using admitted jobs and using total CPU utilization.

• Using admitted jobs and the job that is in question of being admitted, an
overload is detected when it is about to happen. However, the possibility
to react to it is limited. There are four cases.

1. Do not admit the new job and leave the admitted jobs as they are.

2. Admit the new job but its execution time is reduced in order to reduce
the effects of the overload. The admitted jobs are left intact.

3. Admit the new job and change it and other admitted jobs such that
there is no overload.

4. Admit the new job without changing it and change other admitted
jobs such that there is no overload.

The first bullet above is easy to implement. The second, third, and
fourth bullets are more difficult to implement because data freshness
and data relationships must be taken into account. In this chapter we
concentrate on the scenario described in the second bullet since it is more
straightforward to change jobs that have not yet been admitted compared
to changing admitted jobs that may have already been started.

• Computing total CPU utilization also detects an overload. With total
CPU utilization we mean the CPU utilization imposed by all tasks and
all updates including those that are currently not active. An overload
in a CPU utilization based feasibility test represents an arrival pattern
of invocations of updates yielding a deadline miss. This arrival pattern
happens sometime in the future. Thus, by calculating the total CPU
utilization, given interarrival times of tasks and sensor updates, we have
a prediction of the behavior of the system and can react to it immediately.
Thus, using total CPU utilization there may be a longer time to react
before the overload occurs compared to using feasibility testing at each

120 Overload Control

task invocation. Chapter 8 presents an algorithm that can be used to
estimate mean time between invocations of updates in a system with a
data dependency graphwithmore than two levels. Using exactly two levels
in G was studied in Chapter 6.

ACUA is implemented by traversing G top-bottom in a breadth-first ap-
proach. Data structures are used to keep information necessary to put updates
in a schedule containing possibly stale data items. By using a top-bottom
traversal with a data structure, ACUA can be extended with different function-
ality, e.g., in addition to schedule stale data items it is possible to calculate
probabilities that updates get executed, i.e., in one traversal of G a schedule
of updates and the probabilities that they get executed can be generated using
ACUA.
ACUA is described in Figure 7.4. The parameter d is the data item a user

transaction requests, ancestors is the set of all ancestors sorted by increasing
level (see definition 3.2.1), and allMode is true if all data items should be
considered for being updated and false if only required data items should be
considered.
The set ancestors is generated off-line by depth-first traversal ofG from the

node representing d, after the depth-first traversal the visited nodes are sorted
according to increasing level. Line 7 of ACUA checks whether an immediate
child of an ancestor should be considered for being updated. A data item that
is required with respect to another data item can be distinguished by marking
the edge in G, e.g., with number 2, in the adjacency matrix describing G. The
function status(x) (see Figure 7.5) calculates the marking of x based on the
inherited markings from ancestors of x (line 8). The inherited markings are
traversed down G with the help of function inheritstatus(c,x) (see Figure 7.6).
Further, ACUA can consider probabilities. We assume the probability that a
scheduled update needs to execute is independent of the probability that other
scheduled updates need to execute. The probability that a particular update
needs to execute can then be written as follows:

(1−
∏

∀x∈PAR(di)

(1− Pupdate(x)))× Pupdate(di), (7.2)

where PAR(di) is the set of potentially affected read set of di (see Section 3.3.1),
and Pupdate(x) is the probability that an update of x changes the value of x so
much that an update of another data item must execute. We are interested in
the probability that any of the members of PAR(di) changes since this is the
probability that the if-statement in control(di) is true. Equation (7.2) uses the
complementary event: “none of the scheduled updates changes” by taking∏

∀x∈PAR(di)

(1− Pupdate(x)). (7.3)

The complement of “none of the scheduled updates changes” is “any of the

7.3. Admission Control Updating Algorithm 121

ACUA(d, ancestors, allMode)
1: for all x in ancestors do
2: status(x)
3: if x.marked == true then
4: put an update for x into schedule
5: end if
6: for all immediate children c of x do
7: if (c is required and allMode is false) or (allMode is true) then
8: inheritstatus(c, x)
9: end if
10: end for
11: end for

Figure 7.4: The ACUA algorithm.

scheduled updates changes”, which is calculated by

1−
∏

∀x∈PAR(di)

(1− Pupdate(x)). (7.4)

In Figure 7.5, line 9 calculates Equation (7.3) and line 18 calculates the
complement, i.e., Equation (7.4).
In summary, a marking by AUS is traversed down the graph and updates

are scheduled as they are found to be needed (line 4 in Figure 7.4). When ACUA
has constructed a schedule of updates as a response to an arrival of a user
transaction, DIESIS starts to execute the updates before the UT commences
(see Section 4.1.1). The updating scheme AUS is active whenever a data item is
written to the database. This means that a data item might be in the schedule
but it never becomes marked because an update in an immediate parent never
resulted in a stale data item. Thus, only updates for the data items that are
marked by AUS are started by DIESIS. In this way the workload is automatically
adapted to how much data items change in the external environment. The
experimental results presented in Section 7.6 confirm this.

Computational complexity

Computational complexity of ACUA is polynomial in the number of ancestors
of a data item, i.e., O(|N |2), where N is the set of nodes of G, because ACUA
loops through all ancestors of a data item and for each ancestor the algorithm
loops through all its immediate children. In the worst-case, all nodes but one
(the node itself) are ancestors. The number of immediate children is also in the
worst-case in the order of number of nodes in the data dependency graph. Thus,
the computational complexity is O(|N |2). However, in real-life situations, the
number of ancestors and number of immediate children may be less than |N |
and the running time lower than O(|N |2).

122 Overload Control

status(x)
1: if x is marked then
2: x.marked = true
3: else
4: x.marked = false
5: end if
6: prob = 1
7: for all p in x.parents do
8: x.marked = x.marked ∨ p.marked
9: prob = prob ∗ (1− p.prob)
10: end for
11: if |x.parents| = 0 then
12: if x.marked = true then
13: x.prob = probability that x gets updates
14: else
15: x.prob = 0
16: end if
17: else
18: x.prob = 1− prob
19: end if

Figure 7.5: The status help function.

inheritstatus(c,x)
1: c.parents[c.parentnum].marked = x.marked
2: c.parents[c.parentnum].prob = x.prob
3: c.parentnum + +

Figure 7.6: The inheritstatus help function.

7.4. Admission Control using ACUA 123

7.4 Admission Control using ACUA

The load represented by the admitted updates can be expressed as U =∑
∀τi∈ActiveUT

wcet(τi)
period(τi)

, where ActiveUT is the set of active user transactions,
wcet(τi) is the sum of execution times of updates scheduled to need an update
and the execution time includes the execution time of UT τi. period(τi) is the
period time of UT τi. In order to successfully execute all UTs, U always needs to
be below a specific bound. In the work on ACUA we choose to use RBound [87]
since it gives a bound tighter than RMA. RBound says that if∑

τi∈ActiveUT

wcet(τi)
period(τi)

≤ (m− 1)(r1/(m−1) − 1) +
2
r
− 1, (7.5)

wherem is the number of active UTs and r is the ratio

period(smallest)log2b
period(smallest)
period(highest) c/period(highest),

where period(smallest) is the smallest period time of active UTs and
period(highest) is the highest [87]. As with the well-known Liu and Layland
bound [91], RBound is sufficient but not necessary.
Admission control of updates in DIESIS using RBound is done as follows.

When a UT arrives to DIESIS, ACUA using allMode set to true is used. This
means that a schedule is generated where all data items are considered for being
updated. Now, if Equation (7.5) is false, i.e., the systemmay be overloaded, then
a new schedule usingACUAwith allMode set to false is generated. The execution
time of a UT is estimated to the sum of execution times in the schedule.
In practice only one execution of ACUA is needed, because the not required

data items can be marked, and removed from the schedule if Equation (7.5)
is false. Using ACUA to schedule updates and the feasibility test RBound is
denoted ACUA-RBound.

7.5 Analyzing CPU Utilization

This section describes an algorithm denoted MTBIOfflineAnalysis, described in
Figure 7.7, which can be used to analyze the workload of a system using the
data model described in Section 7.2. MTBIOfflineAnalysis is used in the section
Performance Evaluations (Section 7.6) to analyze the workload of the transient
and steady states of the system that is being used. In Chapter 8 we describe an
extension of MTBIOfflineAnalysis that can be used on-line to estimate the CPU
utilization of the system when the workload changes.
We now give a detailed example to illustrate the complexity of esti-

mating the total CPU utilization of a system allowing arbitrary number of
levels of the data dependency graph. Let us concentrate on the func-
tion calls presented in Figure 7.2 where every node, e.g., dp represents
both a data item and a function, update_dp, that is updating the value of

124 Overload Control

dp. When update_dp is called it results in calling the functions in the set
fp = {update_dk, update_dj , update_di, update_dm} in order tomaintain fresh-
ness of data items (the calls are made in control(update_dp), see Figure 7.1).
The main functionality of one of these functions is executed if some conditions
are true as illustrated in Figure 7.1. We say a function gets executed if its main
functionality is executed. Assume a task calling update_dp has an interarrival
time of 500 ms and assume update_dj ∈ fp is executed every second time
update_dp is called due to value changes since the if-statement in update_dj

checks values of b3 and b4. The interarrival time of update_dj is then 1000
ms. However, the functions in set fp are also called when update_dm is called.
Hence, the interarrival time of update_dj now depends on the interarrival times
of update_dp and update_dm and with the frequencies sensors b3 and b4 are
updated and how much they change every time they get updated.
SinceDIESIS executes only theupdates of data items that need tobeupdated,

there is a need to off-line determine the mean time between invocations of
updates of data items since this time can be used to calculate the CPU utilization
by taking wcet(di)

MTBI(di)
. Herewcet(di) is the worst-case execution time of the update

of di andMTBI(di) is the mean time between invocations of the update of di.
From Chapter 6 we know that an accurate estimate of the mean interarrival
time of executions of on-demand updates is to draw a timeline of release times
of tasks that may execute an update on-demand and then forming the MTBI of
the tasks that is most probable to execute the update. MTBIOfflineAnalysis is
an extension of the algorithm presented in Figure 6.4.
As mentioned in Section 7.2.1, there are two things that determine the mean

time between invocations of an update of di: (i) the period times of UTs, and (ii)
the probability that a recalculation of a member of the read setR(di) results in a
change in the value of di. See Figure 7.3 for an example. In this chapter, timelines
have a length of 400000 time units which give accurate values on mean time
between invocations. In order to get an accuratemean timebetween invocations,
the length of the timelines needs to be equal to the hyperperiod2 of period times
of the read set and tasks. To shorten the execution time ofMTBIOfflineAnalysis,
the length of timelines can be fixed, but the length must be order of magnitudes
longer than the period times of elements in the read set and of tasks in order to
capture the arrival pattern of execution of updates. Line 10 determines whether
an occurrence of an update of a read set member will make the value of di stale.
The CPU utilization can easily be determined by calculating timeline T3 for each
data item and then derive the mean time between invocations on that timeline
followed by calculating wcet(di)/MTBI(di). The total CPU utilization is the
sum of wcet(di)/MTBI(di) for each data item di. If the CPU utilization is below
a threshold given by the schedulability test given with the deployed scheduling
algorithm, then there should be no deadline misses.

2The hyperperiod of a set of period times ism such thatm = n0period(τ0) = n1period(τ1) · · · ,
all ni are integers.

7.5. Analyzing CPU Utilization 125

1: Use depth-first traversal of G bottom-up and assign to each derived data
item the period times of descendant leaf nodes.

2: Draw a timeline T3 for each base item with each occurrence of an update of
it

3: for all levels of G starting with level 2 do
4: for all data items di in the level do
5: Merge all T3 timelines of x ∈ R(di) and call the timeline T1
6: Create T2 with possible updates of di, i.e., when derivatives of di are

called.
7: p = 0
8: for all Occurrences ot2i in T2 do
9: for all Occurrences ot1i in T1 in the interval]ot2i, ot2i+1] do
10: if r ∈ U(0, 1) ≤ p then
11: put ot2i+1 into a timeline T3
12: p = 0
13: break
14: else
15: increase pwith probability that an update of a read setmember

affects the value of di.
16: end if
17: end for
18: end for
19: end for
20: end for

Figure 7.7: MTBIOfflineAnalysis algorithm.

126 Overload Control

Computational Complexity

The computational complexity of line 1 of MTBIOfflineAnalysis is O(|N |+ |E|).
Line 2 has complexity O(L) since there are L/period number of task starts on
timeline of lengthL. The number of times the for-loop on line 3 is called is in the
worst case O(|N |), and the for-loop on line 4 is called O(|N |) number of times.
Lines 5 and 6 have complexity O(L) as described above. The complexity of the
for-loop on line 8 is O(L) and the complexity of line 9 is O(period) because
the number of occurrences in the given interval depends on the period times of
tasks. Thus the computational complexity is O(|N | × |N | × L× period).

7.6 Performance Evaluations

This section contains a short description of the other algorithms that are used
in the evaluations (Section 7.6.1), a description of the simulator setup (Section
7.6.2), and experiments with results (Section 7.6.3).

7.6.1 Evaluated Algorithms

In the evaluations the deadline miss ratio is used as a performance metric. We
compare AUS, ACUA using all-mode (denoted ACUA-All), and ACUA-RBound
to OD (see Section 4.4) in three different settings: OD-All, OD-(m, k), and
OD-Skipover ((m, k)-firm scheduling and Skip-over scheduling were described
in Section 2.1.1). When a UT arrives to the system, OD traverses G bottom-up
from the data items written by the UT and visited data items are updated if they
are stale according to AVIs (definition 2.2.1). Thus, using OD, data freshness is
measured in the time domain.
The algorithm OD-(m, k) executes updates of data items according to OD

and the priorities of UTs are set according to the (m, k) algorithm wherem = 1
and k = 3, thus, four distances are possible (see Section 2.1.1 for details). The
dynamic priorities of (m, k) are implemented in µC/OS-II by priority switches.
Five priorities are set aside for each distance. When a UT starts its distance is
calculated and its priority is switched to the first free priority within the set for
that distance. OD-All uses OD from Section 4.4 and the UTs’ priorities are fixed.
OD-Skipover uses OD to update data items and the skip-over algorithm is red
tasks only where, in the experiments in this section, every third instance of UTs
are skipped. ACUA-RBound is the algorithm described in Section 7.4.
The evaluations presented in the remainder of this chapter show that using

ACUA-RBound a transient overload is suppressed immediately. OD-(m, k) and
OD-Skipover cannot reduce the overload to the same extent as ACUA-RBound.
Thus, constructing the contents of transactions dynamically taking workload,
data freshness, and data relationships into consideration is a good approach to
overload handling.

7.6. Performance Evaluations 127

7.6.2 Simulator Setup

The simulations are executed using DIESIS on µC/OS-II [84]. We choose to use
DIESIS with ACUA on µC/OS-II since that enables us to execute simulations
on a real-life system. The setup of the system should adhere to real-life systems
and we choose to extend the simulator setup that was used in Chapter 5 with
the notion of required and not required data items. The simulator setup is as
follows in this chapter (the simulator setup used in Chapter 5 is described in
Section C.1.1).

• 45 base items and 105 derived items were used.

• Tasks have specialized functionality so data items tend to seldombe shared
between tasks, thus, the data dependency graph G is broad (in contrast
to deep). The graph is constructed by setting the following parameters:
cardinality of the read set, |R(di)|, ratio of R(di) being base items, and
ratio being derived items with immediate parents consisting of only base
items. The cardinality of R(di) is set randomly for each di in the interval
1–8, and 30% of these are base items, 60% are derived items with a read
set consisting of only base items, and the remaining 10% are other derived
items. These figures are rounded to nearest integer. The required data
items are chosen by iteratively going through every member of R(di) and
set themember to be required with the probability 1/|R(di)|. The iteration
continues as long as |RR(di)| = 0. The number of derived items with only
base item parents is set to 30% of the total number of derived items.

• To model changing data items, every write operation is taking a value
from the distribution U(0,350) and divides it with a variable, sensorspeed,
and then adds the value to the previous most recent version. To get a
load of the system at an arrival rate of 20 UTs per second that shows the
differences of the algorithms the following parameters are set as follows:

– the data validity intervals are set to 900 for all data items, i.e.,
δdi

= 900,

– the absolute validity intervals are set to 500 because with a mean
change of 175 and a period time of 100 ms on base items a base
item’s value is, on average, valid for at least 500 ms.

The probability that an update must execute is 175/900=0.2 where 175 is
the mean value change. Table 7.1 shows the CPU utilization, calculated
using MTBIOfflineAnalysis in Section 7.5, where sensorspeed is 1 and
10. We see that the system should be overloaded when ACUA-All is
used in a transient state (sensorspeed = 1, i.e., sensors change much)
and not overloaded when required-mode is used. In a steady state, i.e.,
sensorspeed = 10, the system is not overloaded.

The concurrency control algorithm that is used is High-Priority Two-Phase
Locking (HP2PL).

128 Overload Control

Table 7.1: CPU utilizations.
Mode sensorspeed p base p derived U
all-mode 1 0.20 0.20 1.38
all-mode 10 0.02 0.20 0.72
required-mode 1 0.20 0.20 0.28

Table 7.2: Max mean deadline miss ratio (MMDMR) for transient and steady
states.

Algorithm MMDMR transient; steady
OD-All 0.146;0.146
OD-(m, k) 0.178;0.146
OD-Skipover 0.090;0.080
ACUA-All 0.109;0.02
ACUA-RBound 0.029;0.002

7.6.3 Experiments

Figure 7.8(b) shows the performance of the algorithms where sampling periods
are 500 ms. We show the mean deadline miss ratio for the intervals where
sensorspeed is set to the same value, which is periods of 5 s, i.e., 10 sampling
periods. The max mean deadline miss ratio is shown in Table 7.2. The sensors
change as showed in Figure 7.8(a). The deadline miss ratio of OD-All, OD-
(m, k), and OD-Skipover is unaffected of the sensor changes which is expected
because using AVIs for data freshness makes updating unaware of values of
data items. The miss ratio drops using ACUA-All when the number of sensor
changes per time unit is small as in the interval 15–40 sampling periods and
70–80 sampling periods. This is also expected since the entry sensorspeed = 10
in Table 7.1 says the system should be not overloaded.
The data consistency achieved by skip-over scheduling is worse than the

consistency achieved by ACUA-All, ACUA-RBound, OD-All, and OD-(m, k),
because using skip-over scheduling every third instance of a task never updates
any data items. ForACUA-All andACUA-RBounddata items are always updated
such that transactions use up-to-date values on required data items. OD-All
and OD-(m, k) also use up-to-date values on data items.
Using skip-over scheduling improves the performance compared to OD-All.

However, ACUA-All has similar performance as OD-Skipover. Thus, ACUA-
All has similar deadline miss ratio compared to OD-Skipover and the data
consistency is higher. OD-(m, k) does not perform, overall, better than OD-All
and that is because the task having the highest priority according to RM gets a
dynamic priority that might be lower than other running tasks with the same
distance. Thus, the task with shortest period time misses more deadlines but
other tasks meet more deadlines, and this is for instance showed in Figure 7.9
where the deadline miss ratio for tasks with second highest priority is lower

7.6. Performance Evaluations 129

0 20 40 60 80 100 120 140 160
5

10

15

20

25

30

35

40

Sampling Period

Se
ns

or
 c

ha
ng

es

(a) Sensor changes per time unit

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Sampling Period

De
ad

lin
e

M
iss

 R
at

io

ACUA−All
OD−All
OD−Skipover
OD−(m,k)
ACUA−RBound

(b) On-demand updating algorithms

Figure 7.8: Performance of overload handling algorithms.

130 Overload Control

0 5 10 15 20 25 30 35 40 45
0.1

0.15

0.2

0.25

Sampling period

De
ad

lin
e

M
iss

 R
at

io

OD−(m,k)
OD−All

Figure 7.9: Deadline miss ratio for task with second highest priority.

for OD-(m, k) compared to OD-All. However, the performance of OD-(m, k)
cannot be better than OD-Skipover because task instances are skipped using
OD-Skipover, which they are not in OD-(m, k).
Skip-over gave the best effects ondeadlinemiss ratio using theODalgorithm.

Figure 7.10 shows the performance of ACUA-All using skip-over to skip every
third task instance. The deadline miss ratio drops by introducing skip-over,
but it is not affected much by the skips. Hence, to reduce workload in an
overloaded system other means must be used than skipping invocations of
tasks. The ACUA algorithm can generate schedules containing data items that
might need to be updated, which can be seen in Figure 7.8(b). To improve
the performance of ACUA-All, the schedules’ lengths must be varied depending
on the workload. However, data relationships must still be considered. One
way to shorten the length of a schedule is to use the required-mode of ACUA.
Switching to required-mode when the RBound feasibility test fails gives the
performance denoted ACUA-RBound in Figure 7.8(b). As can be seen ACUA-
RBounddecreases thedeadlinemiss ratio better thananyof the other algorithms
and suppresses the deadline miss ratio when the system goes from a steady to
a transient state, e.g., sampling period number 80, where number of sensor
changes from low to high. The mean deadline miss ratio is at maximum 0.029
in the interval 100 to 110 where sensors change much, i.e., the system is in a
transient state, compared to OD-Skipover that has its maximum mean at 0.09.
Using ACUA-RBound, the deadline miss ratio can be above zero because if
the utilization bound in Equation (7.5) (Section 7.4) is false, required-mode of
ACUA is used, but Equation (7.5) can still be false due to admitted UTs that
have used all-mode. One way to resolve this is to reschedule updates of active
UTs.

7.7. Wrap-Up 131

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

Sampling Period

De
ad

lin
e

M
iss

 R
at

io

ACUA−All
ACUA−All with Skipover

Figure 7.10: ACUA-All using skip-over.

7.7 Wrap-Up

This chapter has described an approach to handle overload situations when
using on-demand updating. It has been recognized that for embedded systems
it is possible to divide data items used in a calculation as either required to
be up-to-date or not required to be up-to-date. The main idea is to focus
CPU resources on important data items first. Performance results show that
this approach yields better overload handling compared to existing approaches
(Skipover and (m, k) scheduling).
Further, the MTBIOfflineAnalysis algorithm to estimate CPU utilization in a

system where G can have arbitrary data relationships (in contrast to Chapter 6
where derived data items only are derived frombase items) has been introduced.
However, in the calculation of theCPUutilizationbyMTBIOfflineAnalysis, there
are uncertainties that might affect the accuracy of the CPU estimation. They
are:

• MTBIOfflineAnalysis considers mean time between invocations of up-
dates. This delineates the typical behavior of the system. However,
worst-case arrival patterns are not covered by the typical behavior, which
means that themaximumCPU utilization of the system can be higher than
indicated by the calculation performed by MTBIOfflineAnalysis.

• Also, the accuracy of MTBIOfflineAnalysis might be affected by the fact
that it uses the release times of tasks and not the true start times.
However, evaluations in Chapter 6 (Section 6.4.3) show that using release
times yields accurate results.

• The probability used on line 10 in Figure 7.7 might not trigger the worst-
case mean time between invocations.

• The running time of MTBIOfflineAnalysis is pseudo-polynomial in the
period times or polynomial with a large constant if the length of timelines

132 Overload Control

is fixed. This indicates that MTBIOfflineAnalysis is unsuitable for on-
line execution. This is resolved in the next chapter by using multiple
regression.

MTBIOfflineAnalysis can give accurate estimates, and if its estimate predicts
a system to be schedulable but it is, at run-time, unschedulable then the ACUA
algorithm presented in this chapter can reduce the workload during overload.
Thus, MTBIOfflineAnalysis reduces pessimism in the calculated CPU utilization
by accurately determining how often on-demand updates are used, and in
situations where MTBIOfflineAnalysis gives a wrong prediction ACUA avoids
the overload.

CHAPTER 8

On-line Estimation of CPU
Utilization

As we saw in chapters 6 and 7, it is possible to estimate the total CPUutilization of a system using on-demand updating. However, as was also
discussed in Chapter 7, the workload can change dynamically and by calculating
the total CPU utilization given, e.g., a new interarrival time of a task, the
question whether the system eventually will become overloaded is immediately
answered. In addition, it probably takes a while before the phasings of the tasks
causing the overload to occur, so there may be time to act early on the indicated
overload. In this way, an overload could be avoided. However, for some systems
it is impossible to exactly determine the total CPU utilization, and, thus, there
are inherent inaccuracies in the schedulability test. We investigate the accuracy
in this chapter.
In this chapter we construct a new algorithm, MTBIAlgorithm, that uses a

linear model of tasks’ interarrival times, change frequency of values, and the
mean interarrival time of code(update_di). The mean time between invocations
of functions is used to calculate the total CPU utilization. Calculating total CPU
utilization addresses requirement R5, determining whether the system is in a
transient overload.
The outline of this chapter is as follows. Section 8.1 presents themodel being

used in this chapter to estimate total CPU utilization and it gives an equation
that calculates mean time between invocations of a set of periodic tasks. Section
8.2 presents the MTBIAlgorithm algorithm. Finally, Section 8.3 shows the
performance results and Section 8.4 wraps-up the chapter.

133

134 On-line Estimation of CPU Utilization

8.1 MTBI in a System with Arbitrary Number of
Levels in G

In this chapter, an efficient algorithm denoted MTBIAlgorithm is constructed
that estimates the mean interarrival time of updates at any node in the data
dependency graph G. The data model described in Section 7.2 is used also in
this chapter since themodel allows for arbitrary data dependency graphs (which
is in contrast to the data model used in Chapter 6). This section describes the
linear model that is used in MTBIAlgorithm to estimate mean interarrival time
of updates. This section also contains a discussion on properties of systems
reflected in G. Finally, generation of simulation data used in the multiple
regression is discussed.

8.1.1 Model

In this section we describe how the mean time between invocations of the body
of, e.g., update_dk, can be estimated given mean time between invocations on
dk’s read set and interarrival times of tasks. We use regression analysis. The
model is

Y = β0 + β1 × x1 + β2 × x2 + ε, (8.1)

where Y is MTBI(code(update_di)), x1 is MTBI(R(dk)), and x2 is
MTBI(tasks(dk)). β0, β1, and β2 are the parameters of the model.
MTBI(R(dk)) can be calculated by using Equation 6.3 and setting
P to the estimated mean interarrival time for each immediate par-
ent of dk. MTBI(tasks(dk)) can be calculated by using Equation
6.3 and setting P to the period times associated with leaf nodes be-
ing descendants of dk. Figure 7.3 shows a data dependency graph.
MTBI(R(dk)) isMTBI({period(b1), period(b2)}) = 60, andMTBI(tasks(dk))
isMTBI({period(do), period(dp), period(dq)}) = 70.3.
By using least square fit of collected data (see Section 8.1.3) we get estimates

of β0, β1, and β2 that give a prediction Ŷ of Y .
The values of the estimates b0, b1, and b2 depend on the number of elements

in R(dk), the number of elements in tasks(dk), and whether MTBI(R(dk)) <
MTBI(tasks(dk)) as is shown in Figure 8.1. The term ε is the error of the
estimation of MTBI(code(update_dk)). If the error fulfills the Gauss-Markov
conditions then least square fit is the best method to determine the values of b0,
b1, and b2 [113].

8.1.2 Analysis of Data Dependency Graphs

This section describes how data dependency graphs are constructed for the
experiments in this chapter. This section also discusses the properties of data
dependency graphs; that information is used to discuss, later in this chapter,
why the results of MTBIAlgorithm look as they do. Data dependency graphs

8.1. MTBI in a System with Arbitrary Number of Levels in G 135

R
(d

k)
le

a
f(

d
k)

...
...

MTBI(di)

MTBI(dj)

MTBI(dm)

MTBI(dn)

#base

#leaf

x2

x3

<

x1

MTBI(R(dk))

MTBI(leaf(dk))

Figure 8.1: The model of estimatingMTBI(code(update_dk)). The right of the
figure constitutes the input, which is number of base items, number of leaf
nodes, mean interarrival time updates of base items, andmean interarrival time
of executed updates of leaf nodes. These inputs are used to find the estimates
b0, b1, and b2 of β0, β1, and β2, respectively.

are constructed by setting the following parameters: cardinality of the read set,
|R(di)|, ratio of R(di) being base items, and ratio being derived items with only
base itemparents. The cardinality ofR(di) is set randomly for each di and a ratio
of these are base items, a ratio are derived items with only base item parents,
and the remaining parents are other derived items. These figures are rounded
to nearest integer. The number of derived items with only base item parents is
set to a ratio of the total number of derived items. We use a graph consisting of
150 data items. We believe such a graph represents the storage requirements of
a hotspot of an embedded system, e.g., in an engine control software 128 data
items are used to represent the external environment and actuator signals.
We expect the number of tasks making requests of a data item to be small,

because functionality tends to be specialized and partitioned into tasks, e.g., in
an engine control software the task deriving fuel amount to inject into a cylinder
to a large extent uses other data items than the task diagnosing the lambda
sensor.
The level of a node in G is defined in definition 3.2.1. The lower the level,

the higher we expect the number of tasks calling a data item di to be, because
a node with a low level tends to have more descendants than a node having a
higher level, i.e., more descendants may result in more tasks. Figure 8.2 shows
the number of derived items having a specified number of tasks requesting the
data item. The data dependency graph is generated using the parameters in
Table 8.1. We see that a majority of the derived data items in G is requested
by one task. Hence, the algorithm for generating data dependency graphs gives
graphs that reflect data dependencies in real-life embedded systems.

136 On-line Estimation of CPU Utilization

Table 8.1: Parameters of data dependency graph.

Parameter Value
Cardinality of read set U(1,8)
Ratio of R(d) being base items 0.30
Ratio ofR(d) being derived itemwith only
base item parents

0.60

Ratio of R(d) being other derived items 0.10

Sheet1

Page 1

1 2 3 4 5 6 7 8 9 10 11 12

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

tasks making requests

#
u
p

d
a
te

fu
n

c
ti
o
n

s
b
e

in
g

re
q
u
e

s
te

d

Figure 8.2: The number of tasks making requests of derived data items.

8.1. MTBI in a System with Arbitrary Number of Levels in G 137

8.1.3 Multiple Regression

In order to determine the values of the parameters β0, β1, and β2 in the
model represented by Equation (8.1) we use the well-established technique of
multiple regression using least square fit [113]. In order to get values on the
response variable MTBI(code(update_dk)) and on the explanatory variables
MTBI(R(dk)) and MTBI(tasks(dk)), we use a program, denoted MTBIOff-
lineAnalysis and presented in Figure 7.7, which constructs a timeline with
invocations of each base item update, as well as a timeline for each task
invocation that may update the data item. A third timeline is constructed by
taking the first distinct task invocation after a base item invocation. Taking
the first task invocation after a base item invocation represents the outer
if-statement in Figure 7.1 where we expect a base item update to make the
if-statement true, i.e., on-demand updating is simulated. Thus, task invocations
occurring before a new base invocation are skipped. This approach models that
the code portion of updates is only executed when something has happened. In
Figure 7.3, timelines 1, 2, and 3 are generated by MTBIOfflineAnalysis.
MTBIOfflineAnalysis runs with the parameters presented in Table 8.2. The

arrival rates of base items and derived items are chosen such that they resemble
an engine control software. When using MTBIOfflineAnalysis there is an equal
chance that a task has any of the 5 possible period times. The 15 runs with
same periods use random start times of each task, i.e., the start time of the first
invocation of τi is derived from the following uniform distribution U(0, Pi). The
median of these 15 runs is derived and used asMTBI(code(update_dk)).
The multiple regression is done on two cases. One case is when

MTBI(R(dk)) < MTBI(tasks(dk)) and the other when MTBI(R(dk) >
MTBI(tasks(dk)). The reason we have chosen to divide into these two cases is
because if the base items change more often than tasks making requests, then
the occurrences of the tasks are the bottleneck of the MTBI. Hence, if base
items change more seldom than tasks make requests, then the occurrences of
the base items are the bottleneck.
We also do regression for each setting of number of base items andnumber of

derived items. For a systemneeding atmaximum5 base items, and atmaximum
9 derived items, 5× 9× 2 = 90 regressions are needed. However, it is possible
to automate the process of getting the correct data from MTBIOfflineAnalysis,
and run the least square fit on the data. The 90 regressions are then stored in
a table in the software. The values of b0, b1, and b2 are derived by using the
regress command in Matlab.
In tables 8.3 and 8.4, many of the regressions fail the Kolmogorov-Smirnov

test, i.e., the distribution of the error might not be a normal distribution. This
indicates that condition (2.9) of the Gauss-Markov conditions might not be
fulfilled, i.e., we do not know if the variance of the error is constant, and
therefore we do not know if least square fit is the best method to do the fitting of
variables b0, b1, and b2. However, in Section 8.3 we see that the CPU utilization
estimation using the regression in Equation (8.1) is always overestimated and
close to the simulated CPU utilization, therefore we chose to use the values we

138 On-line Estimation of CPU Utilization

Table 8.2: Parameters for MTBIOfflineAnalysis to feed into the least square fit
to determine values on b0, b1, and b2.

Name Quantity

Base items 1–5

Tasks 1–9

Setup 1

Base item periods U(30,500)

Arrival rate U(10,40)

Period time 1 32
arrivalRate × 60× U(1, 5)

Period time 2 32
arrivalRate × 120× U(1, 5)

Period time 3 32
arrivalRate × 250× U(1, 5)

Period time 4 32
arrivalRate × 500× U(1, 5)

Period time 5 32
arrivalRate × 1000× U(1, 5)

Runs 200

Runs with same periods 15

Setup 2

Base item periods U(30,2000)

Arrival rate U(10,40)

Period time 1 32
arrivalRate × 60× U(1, 5)

Period time 2 32
arrivalRate × 120× U(1, 5)

Period time 3 32
arrivalRate × 250× U(1, 5)

Period time 4 32
arrivalRate × 500× U(1, 5)

Period time 5 32
arrivalRate × 1000× U(1, 5)

Runs 200

Runs with same periods 15

8.1. MTBI in a System with Arbitrary Number of Levels in G 139

Table 8.3:MTBI(base) < MTBI(leaf).
#base #leaf K-S Skewness #base #leaf K-S Skewness
1 1 F 3.01 3 1 F 3.38
1 2 0.53 3 2 F -0.16
1 3 T -0.233 3 3 F -0.35
1 4 T -0.62 3 4 F -0.12
1 5 T -1.13 3 5 T -0.53
1 6 T 1.16 3 6 T -0.26
1 7 T 0.25 3 7 T -0.54
1 8 T 0.30 3 8 T -0.35
1 9 T 0.35 3 9 T -0.017
1 10 T 1.14 4 1 3.01
1 11 T 0.56 4 2 F 0.53
1 12 T 4 3 F 0.55
1 13 T 0.57 4 4 F 0.34
2 1 F 2.88 4 5 F -0.51
2 2 F 0.52 4 6 T -0.12
2 3 F -1.53 4 7 T -1.21
2 4 F 0.36 4 8 T -0.45
2 5 T 0.21 4 9 T -0.53
2 6 F -0.95 5 1 F 4.21
2 7 T -0.18 5 2 F 0.17
2 8 T 0.60 5 3 F -0.40
2 9 -0.67 5 4 F 0.17
2 10 T -0.47 5 5 F -0.47
2 11 T 0.21 5 6 F -0.25
2 12 T 0.85 5 7 F -0.40
2 13 0.45 5 8 T -1.41

5 9 T

140 On-line Estimation of CPU Utilization

Table 8.4:MTBI(base) > MTBI(leaf).
#base #leaf K-S Skewness #base #leaf K-S Skewness
1 1 T 0.86 3 1 T 0.30
1 2 F 2.79 3 2 T -0.36
1 3 1.66 3 3 T -0.036
1 4 1.76 3 4 T -0.075
1 5 F 2.13 3 5 F -0.60
1 6 F 4.80 3 6 F -0.92
1 7 F 2.46 3 7 F -0.27
1 8 F 3.55 3 8 F -0.21
1 9 F 4.15 3 9 F -0.55
1 10 F 3.45 4 1 T -0.44
1 11 T 1.86 4 2 T 0.34
1 12 T 3.41 4 3 T 0.44
1 13 F 2.60 4 4 T -0.54
2 1 T -0.50 4 5 T -0.47
2 2 T -0.26 4 6 T -1.12
2 3 F -0.10 4 7 T -0.13
2 4 F 0.013 4 8 F -0.75
2 5 -1.78 4 9 F -0.31
2 6 F -0.20 5 1 T -0.91
2 7 0.44 5 2 T -0.29
2 8 F -0.30 5 3 T -0.024
2 9 F -0.54 5 4 T -0.17
2 10 T -0.070 5 5 T -1.11
2 11 T -0.095 5 6 -0.40
2 12 T 0.12 5 7 T -0.11
2 13 T 0.50 5 8 T -0.98

5 9 T

8.2. CPU Estimation Algorithm 141

get from the regression, even though they might not be optimal.

8.2 CPU Estimation Algorithm

The algorithm MTBIAlgorithm is introduced in this chapter. The algorithm
calculatesMTBI for each data item in increasing level in the data dependency
graph. MTBIAlgorithm is presented in Figure 8.3.
The rational for the algorithm is described next. In order to get a CPU

utilization estimation of an embedded system, the regression in Equation (8.1)
is used on each function update_di in the system. However, for Equation
(8.1) to work, MTBI(R(dk)) and MTBI(tasks(dk)) should be computable.
MTBI(tasks(dk)) is always possible to calculate by doing a bottom-up traversal
from each node, n, with zero out-degree in the data dependency graph G.
Every data item the traversal passes is annotated with the interarrival time of
the corresponding task of node n. Duplicates are removed1. This step can be
made off-line if the graph is not changing during run-time. MTBI(R(dk)) can
be calculated if MTBI(code(update_di)),∀di ∈ R(dk) are available. Thus, the
order Equation (8.1) must be applied on data items is the same as a top-bottom
order of G, because in a top-bottom order of G all data items in a read set have
already been calculated by applying Equation (8.1), and MTBI(R(dk)) can be
calculated.
The pseudo-code presented in Figure 8.3 describes how, for each level of

G, Equation (8.1) is used on each data item in the level. The values on b0, b1,
and b2 are fetched from one of two tables. Which table is used is determined by
checking the conditionMTBI(R(d)) < MTBI(tasks(d)).
The computational complexity of MTBIAlgorithm is linear in the number of

levels in the graph that, in turn, is linear in the size of the graph; calculations
of Equation (8.1) takes O(1) time, i.e., the computational complexity of MTBI-
Algorithm is O(|N |).

8.3 Performance Results

This section shows the performance of the CPU estimation using the algorithm
described above. The baseline to calculate CPU utilization of functions in the
system is to assume functions get executed every time they are called.2

Figures 8.4, 8.5, 8.6, 8.7, and 8.8 show the ratio (Uest − U)/U where
Uest is the estimated CPU utilization using MTBIAlgorithm (Figure 8.3) for
determining mean time between invocations, and U is the estimated CPU
utilization using program MTBIOfflineAnalysis. The arrival rate is fixed at
20 tasks per second, and the period time of base items and derived items
are multiplied with an integer from the distribution U(1,5). The number of

1A duplicate can arise if there are several paths from n to a data item inG.
2The baseline is the same in Chapter 6.

142 On-line Estimation of CPU Utilization

for all levels level from 1 tomax∀d∈G(level(d)) do
for all data items d with level level do
if MTBI(R(d)) < MTBI(tasks(d)) then

b0 = coeffb0_base_less[#R(d)][#tasks(d)]
b1 = coeffb1_base_less[#R(d)][#tasks(d)]
b2 = coeffb2_base_less[#R(d)][#tasks(d)]
MTBI(code(update(d))) =
= b1 ×MTBI(R(d)) + b2 ×MTBI(tasks(d)) + b0

else
b0 = coeffb0_base_greater[#R(d)][#tasks(d)]
b1 = coeffb1_base_greater[#R(d)][#tasks(d)]
b2 = coeffb2_base_greater[#R(d)][#tasks(d)]
MTBI(code(update(d))) =
= b1 ×MTBI(R(d)) + b2 ×MTBI(tasks(d)) + b0

end if
end for

end for

Figure 8.3: Pseudo-code for MTBIAlgorithm which calculates
MTBI(code(update(d))) for each data item d in the graph G. #R(d) means
the number of data items in the set R(d). Similarly, #tasks(d) means the
number of items in the set tasks(d). The value oldMTBI(R(d)) is the value
MTBI(code(update(d)))hadwhenMTBI(code(update(d)))was last calculated.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.4: CPU utilization estimate of graph 1 using regression and using
Equation (6.3).

8.3. Performance Results 143

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.5: CPU utilization estimate of graph 2 using regression and using
Equation (6.3).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.6: CPU utilization estimate of graph 3 using regression and using
Equation (6.3).

144 On-line Estimation of CPU Utilization

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.7: CPU utilization estimate of graph 4 using regression and using
Equation (6.3).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.8: CPU utilization estimate of graph 5 using regression and using
Equation (6.3).

8.3. Performance Results 145

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.9: CPU utilization estimate of graph 1 using regression and using
Equation (6.3).

simulations is 100, and the graphs are constructed using the parameters in
Table 8.1. We see that the CPU estimate using MTBIAlgorithm is closer to the
utilization compared to using Equation (6.3) to estimate mean time between
invocations of update(dk). Also, the estimate is always larger than 0 which
means that the estimate tends to be an overestimate.
Figures 8.9–8.13 show the ratio (Uest − U)/U for the same five graphs

as above, but the period times are multiplied with a number taken from the
distribution U(1, 5), i.e., integers are not used. We see that we get the same
results as above. MTBIAlgorithm gives a tighter estimate than the baseline. In
this setting, MTBIAlgorithm gives a negative ratio two times for graph 4 (Figure
8.12). The negative ratios are -0.005 and -0.01. Thus, of 500 simulations, only
two give small negative ratios, all other simulations give tight overestimations.
The overestimate in Figures 8.4–8.8 and Figures 8.9–8.13 is due to that

the skewness of the error is toward overestimating the CPU utilization, i.e., the
mean time between invocations of requests of update(di) is underestimated.
Tables 8.3 and 8.4 list the skewness of error. The skewness is the largest, and
positive, when there is one requesting leaf node. As we discussed in Section
8.1.2, a majority of the data items is requested by only one leaf node. Hence, for
a majority of the data items, the CPU estimation based on the estimation on the
mean time between requests of a data item tends to be overestimated. Figure
8.14 shows (Uest − U)/U for each derived data item for a graph constructed
from the parameters given in Table 8.1. Two things can be established from

146 On-line Estimation of CPU Utilization

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.10: CPU utilization estimate of graph 2 using regression and using
Equation (6.3).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.11: CPU utilization estimate of graph 3 using regression and using
Equation (6.3).

8.3. Performance Results 147

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.12: CPU utilization estimate of graph 4 using regression and using
Equation (6.3).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulations

(U
es

t−
U)

/U

MTBIAlgorithm
Baseline: wcet/MTBI(tasks)

Figure 8.13: CPU utilization estimate of graph 5 using regression and using
Equation (6.3).

148 On-line Estimation of CPU Utilization

Table 8.5:

Period times multiplied with integers
Level (Uest− U)/U
2 0.0810
3 0.08272
4 0.0426
5 -0.000844
6 0.00436
7 0.00918
Period times multiplied with floats
Level (Uest− U)/U
2 0.0287
3 0.0257
4 0.0235
5 0.00254
6 -0.0136
7 0.0244

Figure 8.14 (i) the relative error is larger the lower the level is, and (ii) the
relative error tends to be greater than 0. Thus, the CPU utilization estimation
on individual data items can be inexact, but, as Figure 8.14 shows, for derived
data items with a high level, the CPU utilization estimation is close to the value
found byMTBIOfflineAnalysis. Table 8.5 reports the CPU utilization estimation
using MTBIAlgorithm for each level in the graph used in Figures 8.9 and 8.4.
Since all the estimations in Figures 8.4–8.13 are overestimated and the

overestimates are considerably smaller than the baseline and tight (5% over-
estimate for some systems, e.g., Figures 8.9–8.13), we believe multiple linear
regression can be a usable method to estimate CPU utilization for a system also
with many levels in data dependency graph G. However, before the system is
deployed using MTBIAlgorithm the system should first be simulated to check
that MTBIAlgorithm gives good enough accuracy.

8.4 Wrap-Up

In this chapter we have shown that it is possible to linearize relationships
existing in embedded systems by using monitored data of the relationship
and fitting the data to a linear model using least square fit. We linearize the
relationship between a set of periodic requests and periodic changes to data
values and the MTBI of a conditioned calculation. Since the relationships are
linearized the computational complexity of MTBIAlgorithm is polynomial in
the size of G, which means that the total CPU utilization of a system may be

8.4. Wrap-Up 149

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Derived data item

(U
es

t−
U)

/U

Figure 8.14: The relative error for each derived data item for a graph with 105
derived data items. The items 0–30 are in level 2, items 31–68 are in level 3,
items 69–89 in level 4, items 90–98 in level 5, items 99–101 in level 6, and
items 102–104 in level 7.

150 On-line Estimation of CPU Utilization

recalculated every time the interarrival time of a task changes. There are a
number of factors that influence the accuracy of the linear model, namely:

• MTBIAlgorithm uses a model built upon linear multiple regression. Thus,
the linear model gives errors in the estimates.

• The data fed to the linear regression is using MTBIOfflineAnalysis that
gives estimates of mean interarrival times of updates. Thus, the model is
built on estimated data.

• The inputs to the model in MTBIAlgorithm are outputs of the algorithm
itself, i.e., the inputs are estimates.

The evaluations in this chapter show that the estimates can be accurate even
though the model uses approximate data.

CHAPTER 9

Related Work

The main focus of the research in this project has been on similarity andapplying similarity to real-time embedded systems. Similarity was first
used in concurrency control algorithms [81], but has later on also been used
when optimizing task period times [68], updating of data [131], and data
dissemination on the web [41,95, 109]. Similarity, as adopted in this thesis, can
be divided into updating algorithms and concurrency control algorithms. The
following sections relate the work achieved in this thesis to previous work done
on data freshness (Section 9.1), concurrency control algorithms (Section 9.2),
and admission control (Section 9.3).

9.1 Updating Algorithms and Data Freshness

Wehave previously discussed that in order to utilize the CPU resource efficiently
unnecessary updates must be avoided. It is important for many applications
that data items are up-to-date. The freshness of the value of a data item
can be measured either in the time domain or in the value domain. Measuring
freshness in the time domain has been used to set period times and/or deadlines
of tasks [7, 9, 75, 76, 108, 135–137]. By predetermining the arrival pattern, e.g.,
fixing the period times of tasks [68, 76, 88, 136], avoidance of unnecessary
updates cannot be achieved. Hamdaoui and Ramanathan introduced (m, k)-
firm deadlines, where m deadlines out of k consecutive invocations of a task
have to be met [63]. Hence, an invocation of a task can be skipped and it can
be used to balancing the load during an overload of the system and, thus, it
increases the possibility of tasks to meet at least m deadlines. However, the
(m, k)-firm deadlines are unaware, as we saw in Chapter 7, of data freshness in
the value domain, and updates of data items are invoked even though values
are unchanged. Thus, although skips of tasks are possible using (m, k)-firm

151

152 Related Work

deadlines, resources are not efficiently used at steady states as they are using
similarity-aware updating algorithms, e.g., ACUA-All.
Kuo and Mok have introduced a similarity bound saying that two writes

to a data item are similar if the time between them is less than the similarity
bound [81,82]. Hence, data freshness is in practice defined in the time domain.
Wedde et al. define data freshness as |old − new| ≤ bound, i.e., data freshness
is defined in the value domain of data items [131]. The updating of data items
works as follows [131]. The system is distributed and tasks are executing at
designated nodes. Tasks are non-preemptable and do not migrate to other
nodes. Further, tasks are using either local or remote data and are executed
until completion but are seen as failed if they miss their deadlines. Every node
has an object manager and if an object has changed outside a given similarity
bound, then the object manager notifies the object mangers at the other nodes
where tasks use this object. Tasks reading the object are marked and only
marked tasks need to execute. A transaction instance starts to execute when the
object manager marks any of its tasks as changed. A transaction instance can
be seen as a schedule of updates as generated by ODDFT. ODDFT_C and ODTB
are also updating algorithms that can skip transactions, but they are designed
for a single-CPU system. ODDFT_C and ODTB differ in two ways from the
updating algorithm of Wedde et al.: (i) ODDFT_C and ODTB can dynamically
create the updating schedule, and (ii) they generate and execute a schedule once
for every UT. In contrast the algorithm presented by Wedde et al. re-executes
the transaction instance as soon as a task is marked for execution, i.e., updates
in the pregenerated schedule are re-executed. Thus, ODDFT_C and ODTB are
aimed for being used on-demand.
For a single-CPU system, ODTB together with the RCR concurrency con-

trol algorithms have almost the same functionality as the updating algorithm
presented by Wedde et al. The difference is that ODTB together with the RCR
algorithms are used on-demand, but in the system presented by Wedde et al.,
data items need to be recalculated as soon as they might be changed (such an
updating approach is denoted updates-first). Adelberg et al. investigated the
difference in performance between on-demand and updates-first and found that
on-demand updating of data performs better than updates-first [7]. The evalu-
ations of similarity-aware multiversion concurrency control in Chapter 5 show
that ODTB with multiversion concurrency control supports more UTs commit
within deadlines compared to using ODTB with single-version concurrency
control with RCR as used by Wedde et al. in [131].
Tomic and Vrbsky introduced a new measure of data freshness that is used

for derived data items [127]. They also discuss data freshness in the case of
approximate queries, but we postpone that discussion until Section 9.3. Tomic
and Vrbsky propose to define temporal consistency of data as follows. The read
set being used deriving a data item dmust contain versions of data items whose
valid times overlap. This means that the values of the data items in the read
set of a derived data item are up-to-date at the same time. In this thesis we
implement this behavior by using definition 2.2.2. This definition is also used

9.1. Updating Algorithms and Data Freshness 153

in the construction of the MVTO-S snapshot algorithm in Chapter 5 in order to
guarantee that the values of data items used to derive a value are from the same
system state.
Kao et al. introduce definitions of data freshness for discrete data objects

in [74] that are based on the time domain. A hybrid updating scheme is
proposed that updates data items immediately during idle time and on-demand
when a transaction arrives. The hybrid updating scheme is shown to maintain
data freshness better than on-demand. However, the hybrid updating scheme
cannot skip unnecessary updates and adapt the number of updates to the state
of the system due to the adoption of time domain for data freshness. Adelberg
et al. [8] investigated how recomputations of derived data affect transaction
and data timeliness. They found that a forced delay can be used for delaying
recomputations and thereby allowing more updates of data items to arrive
before a recomputation is started. The data validity intervals introduced in this
thesis work like a forced delay since several small changes are skipped andwhen
the change is large enough, i.e., outside the allowed data validity interval, an
update is triggered.
A view can be either a virtual relation derived each time it is requested or

a materialized relation, i.e., stored in a database. Data objects (a data object
is a relation of data values) are stale when there exists at least one unapplied
update which the data object depends on [83]. This resembles the pa timestamp
in ODDFT and ODKB_V where data items are assumed to be changed when
at least one ancestor has changed. In ODTB, on the other hand, a data item
with pa > 0 is stale. Using ODTB, there is no need to mark data items as
potentially affected. Thus, the number of marked data items decreases and it
is therefore easier to make correct decisions on which data items that need to
be updated. Data freshness in [83] is used for defining quality of data and to
schedule updates to relations and views. In comparison, in our work data items
have scalar values and therefore it is possible to decide if a change in a value of
a data item affects the values of other data items. This is done by introducing
validity intervals.
Blakely et al. have shown how it is possible to decide which updates to base

and derived data objects affect the views, i.e., derived data objects [20]. It is
assumed that a data object is a relation, i.e., contains several columns of data.
Modifications to data values might not affect a view and the test is complex
and all changes to data values are considered for determining staleness of a
view [20]. In our approach, however, a data item is a scalar value and the
freshness of a data item can easily be tested using inequality tests for each
read set member. By doing a top-bottom traversal of a graph it is possible to
determine stale data items.
For hard real-time systems static period times for updates and calculations

are derived to guarantee freshness and timeliness of produced results [68, 76,
88, 134–136]. If unnecessary updates should be avoided, static period times
are not feasible because an update is executed in every period, but the input
to the update might not have changed since the previous period implying that

154 Related Work

updates are unnecessarily executed. In this research project and thesis, we
have considered a soft real-time system and the objective is to achieve a highly
efficient utilization of the CPU. Hence, static period times are unnecessarily
restrictive to achieve an effective utilization of the CPU. One possible way to
resolve this is to use multi mode operation of the system [111] where, for
instance, specific updating frequencies for each mode could be assigned to the
data items. In this context, for each mode the data items have specific updating
frequencies and switching between modes, e.g., because of a knocking engine,
means that the updating frequencies change on the data items. An example of
a mode change is start enrichment compensation factors in the EECU software.
These compensation factors change significantly when the engine is started,
then the values gradually stabilize, and finally these compensation factors are
not used any more. Our proposed updating schemas for freshness maintenance
of data do not need mode changes since changes of updating frequencies are
covered by the data validity intervals, because updating of data is done when
needed.
Datta and Viguier describe transaction processing for rapidly changing

systems, where base itemupdates are committed even though theupdates donot
affect other data items, i.e., unnecessary updates are executed [39]. Moreover,
in their work calculations only depend on base items, i.e., intermediate results
are not considered, whereas in this thesis arbitrary dependencies among data
items are allowed.
Data-deadline and forced wait [137] are designed to achieve freshness at the

deadline of a user transaction as in our work indicated by time t in the function
error used in function AssignPrio. However, Xiong et al. only consider base
data that is updated periodically. In contrast to our proposed algorithms, the
data-deadline and forced wait cannot deal with derived data [137].
Ahmed and Vrbsky proposed three schemes for a database—based on the

on-demand idea—that make data items up-to-date-before they are used [9].
One of the schemes corresponds to τ time-tasks and the other two schemes
extend the if-statement to check for available slack time and response times of
tasks.
To summarize this sectionwe conclude that there have been no comparisons,

to the best of our knowledge, between results from the most recent research in
periodic updating (More-Less [136] and DS [135]) and on-demand updating.
Furthermore, there has been no work on estimating the interarrival times
between on-demand updates. Such an estimate could be used to estimating the
workload imposed by updates. In this thesis, we look into these issues.

9.2 Concurrency Control

Concurrency control for computer systems in general has been studied for a
long time and is a well-explored area. We observe that evaluations are primarily
performed using simulators. Unfortunately, the lack of benchmarks for real-life

9.2. Concurrency Control 155

settings can make it hard to decide which concurrency control algorithm is best
suited for an application. The performance evaluations reported in Chapter
5 are done using a real-time operating system and well-known concurrency
control algorithms implemented to execute on the operating system. The
results improve our understanding on how concurrency control algorithms
affect the performance in a real-life system.
Two-phase locking and optimistic concurrency control have been evaluated

for real-time systems [29,65,70]. In some of these experiments, it is found that
optimistic concurrency control algorithms give better performance than two-
phase locking algorithms, but in the experiments high parallelism—achieved by
simulating, e.g, 20 CPUs and disks—is used in order to stress the concurrency
control algorithms. Such a setting is not plausible for most real-time embedded
systems. We have found that HP2PL and OCC give similar performance when
they are executed and evaluated in a more realistic setting. This is due to
that transactions are executing with fixed priorities and limitations given by
the real-time operating system; it is impossible to restart a currently executing
transaction, and dynamic priorities are not supported. To the best of our
knowledge, no evaluation of the performance of HP2PL and OCC on such a
system has been documented elsewhere.
Lam et al. have shown evaluations of concurrency control algorithms for

mixed soft real-time transactions and non-real-time transactions [85]. They
found that an integrated TO scheduler using OCC for soft real-time transactions
and 2PL for non-real-time transactions performs best. However, for systems
where relative consistency is important for the transactions, our evaluation of
the RCR algorithms shows that single-version algorithms perform poorly, and,
thus, indicates that the integrated TO scheduler is not suited for such systems.
Multiversion concurrency control algorithms have also been evaluated [116,

117, 121]. It has been found that 2PL performs better than MVTO and the
single-version timestamp ordering concurrency control algorithm [121]. Song
and Liu evaluate the 2PL and OCC multiversion algorithms in a hard real-time
system [117]. In their work, a set of data items is said to be temporally consistent
when they are absolute and relative consistent. The evaluation results show that
temporal consistency is highly affected by the transaction conflict patterns and
also, OCC is poor in maintaining temporal consistency in systems consisting
of periodic activities. Our evaluations show that MVTO-based algorithms are
free of restarts (except for when the memory pool becomes full) and, thus, the
conflict pattern does not affect MVTO-based algorithms.
We extend the OCC algorithm to being similarity-aware in the verification

phase. Similarity has been added to other single-version concurrency control
algorithms: HP2PL by Lam et al. [86] and O2PL by Wedde et al. [131]. The
proposedmultiversion concurrency control algorithms,MVTO-SUV,MVTO-SUP,
andMVTO-SCRC use similarity. To the best of our knowledge, usingmultiversion
concurrency control and similarity is a novel approach. The main reason to use
multiversion concurrency control is to be able to guarantee relative consistency.
This can also be guaranteed by using a snapshot technique using wait-free

156 Related Work

locks [123]. The multiversion concurrency control algorithms are also lock-free.
The size of thememory pool can only be analyzed in an off-line step if worst-case
period times are assumed on sporadic tasks, as in the approach of Sundell and
Tsigas [122, 123]. However, this can result in waste of resources when using
similarity in a soft real-time system, because similarity can reduce the need to
store versions, e.g., when the external environment is stable. Hence, in some
systems it can be feasible to limit the needed memory and pay the prize by
restarting transactions when the memory pool becomes full. We have taken this
approach in our database since when the external environment starts changing
rapidly the system becomes overloaded by necessary updates. Low priority
transactions will miss their deadlines and they can therefore be restarted to
free memory. Our performance evaluations indicate that it pays off in terms of
performance to use similarity in updating algorithms as well as in concurrency
control.
Relative consistency can be important and there are different ways to

achieve relative consistency among data items. Wedde et al. use similarity in
updating algorithms and concurrency control, and they use a single-version
concurrency control. In their approach, to guarantee relative consistency
transactions are restarted until they use fresh values [131]. These restarts
are the same as the RCR algorithms. The performance evaluations show
that using a multiversion concurrency control algorithm aware of similarity
significantly increases performance compared towell-established single-version
concurrency control algorithms. The evaluations also show that multiversion
concurrency control using a limited memory pool can be constructed to better
obey priority on transactions than HP2PL and OCC. When the memory pool
becomes full MVTO, MVTO-SUV, MVTO-SUP, and MVTO-SCRC start restarting
active transactions with lowest priority until there are enough memory for the
current operation.
Epsilon-serializability also uses a form of similarity [107]. Epsilon-

serializability is used in concurrency control to relax the serializability criterion
(see Section 2.6) and transactions are allowed to import inconsistencies or
export inconsistencies as long as they are bounded. The degree of error in read
values or written values is measured by an upper bound on how much a value
possibly can change when concurrent transactions are using it.

9.3 Admission Control

The research on admission control in real-time systems has been extensive
[24,38,63,66,72, 77]. However, the work that has been done primarily focuses
on admission control of independent tasks, whereas we in this thesis focus on
admission control where data has relationships.
Work on maintaining data freshness can be classified into (i) off-line al-

gorithms determining period times on tasks [88, 136, 137], and (ii) on-line
algorithms [9, 41, 55, 56, 72, 95]. In Section 3.3.1, we showed that the general

9.3. Admission Control 157

problem of choosing updates and considering data relationships is NP-hard in
the strong sense and previous on-line algorithms are simplified (see Section 7.1)
to reduce computational complexity in such a way that they reject updates when
the updates cannot be fitted within the available time. We have investigated the
case where data items can be divided into required data items and not required
data items and devise an algorithm that updates data items and guarantees they
get up-to-date at the same time as deadlines are met.
Tasks in the imprecise computation model can be described with one of the

following approaches [92].

• Milestone approach: The result of a task is refined as its execution
progresses. A task can be divided into a mandatory and an optional part,
where the result after executing the mandatory part is acceptable, and the
result after also executing the optional part is perfect, i.e., the error of the
calculation is zero.

• Sieve approach: A task consists of operations where not all of them are
compulsory [16]. A typical example is when a data item’s value can be
updated or used as is, i.e., the update is skipped.

• Primary/alternative approach: The task can be divided into a primary
task containing functionality to produce a perfect result. The alternative
task takes less time to execute and the result is acceptable. One of the
primary and the alternative task is executed.

ACUA, described in Chapter 7, is consistent with the imprecise computation
model because ACUA can construct a schedule that gives an imprecise but
acceptable result. Other work that also fits in the imprecise computation model
is [97, 103, 128–130]. The values of data items when using ACUA is acceptable
because required data items are always updated. The approach of dividing data
items into required and not required data items has industrial applications (see
Section 7.1), e.g., a subset of fuel compensation factors must be updated in
order to get an acceptable result. In this thesis, we have focused on on-line
constructing the content of user transactions by considering workload, data
freshness, and data relationships to get acceptable accuracy of produced results.
To the best of our knowledge this is the first time such an approach is evaluated.
Kang et al. have described a flexible data freshness scheme that can reduce

the workload by increasing the period times on updates of data items [72]. A
feedback approach is used where a monitoring of changes in deadline miss ratio
results in changing period times of updates within given bounds. The work
in [72] does not consider data relationships nor data freshness measured in
the value domain. Moreover, using a feedback approach introduces a settling
time, i.e., it takes a time before the system stabilizes after a workload change.
Some systems need fast reactions, and our evaluations show that using ACUA
with a feasibility test lets the system react immediately on a workload change.
Other work using the feedback control approach to perform admission control
in the case of transient overloads, in the real-time area, are [12–14,26,94]. Lu

158 Related Work

et al. describe a model of a real-time database and give equations to design a
stable feedback control admission controller using the root locus method [94].
Amirijoo et al. extend the milestone approach in a real-time database setting
and use feedback control for decisions of admission of tasks [12–14]. Cervin et
al. use feedback and feedforward control of control tasks [26].
Ramamritham et al. have investigated data dissemination on the Internet,

where the problem of clients reading dynamic data from a server is discussed
[41, 78, 95, 109, 115]. Dynamic data is characterized by rapid changes and
the unpredictability of the changes, which makes it hard to use prediction
techniques to fetch/send data at predetermined times. The data should have
temporal coherency between the value at the server and the value at the
client. In this context, temporal coherency is defined as the maximum deviation
between the client value and the server value of a data item. Ramamritham et
al. note that the deviation could be measured over a time interval and temporal
coherency is then the same as absolute consistency as defined in definition
2.2.1 [41,95,109]. However, the deviation can be measured in units in the value
of a data item. This is then the same as that used by Wedde et al. [131].
Data can be fed to clients in two ways. Either by the server pushing values

when conditions are fulfilled, e.g., the new value of a data item has changed
more than a given bound from the last sent value of the data item to the
client, or by the client pulling values from the server. In order to achieve good
temporal coherency, algorithms that combine push and pull techniques have
been proposed by Ramamritham et al. [41, 109]. A feedback control-theoretic
approach is investigated in [95].
Feasibility tests are important for admission control and a wide range of

feasibility tests have been proposed for different task models [10, 11, 18,43,87].
The task models consider different levels of granularity of the tasks. Themodels
with high granularity model tasks as consisting of subtasks with precedence
constraints, and branches [18]. Other models consider tasks as one unit of
work [10, 11, 43, 87]. However, no model takes data values into consideration,
which means that the CPU utilization, U , can be higher than the actual CPU
utilization, because the feasibility test must assume, e.g., an if-statement is
true which it might not be. Symbolic WCET analysis expresses the WCET of
a task as a formula with parameters, e.g., maximum number of iterations of
a loop [30]. The source code is divided into scopes that are associated with
execution time and frequency. In order to get an accurate WCET of a source
code, the frequencies of the scopes must be accurate. In this thesis, we have
investigated a way to derive the frequency—that can change on-line—of a scope.
The results of chapters 6 and8 canbe applied in admission control of updates

since the mathematical models of workload described in these chapters give a
way to estimate workload imposed by updates. To the best of our knowledge, it
is a novel approach to construct mathematical models estimating the workload
of the system.

CHAPTER 10

Conclusions and Future Work

This chapter concludes the research results presented in this thesis and itends with a discussion of possible future directions of our research.

10.1 Conclusions

The goal of this thesis has been to provide efficient data management for real-
time embedded systems. Efficient datamanagement canbe provided in different
ways. Our hypothesis has been, since databases have been used successfully for
data management for many different problem domains during several decades,
that a real-time database is a goodmeans tomanage data in real-time embedded
systems. We argued in Chapter 3 that we could assume the hypothesis to be
true if the real-time database has certain functionality. Thus, we focus our work
on which functionality the real-time database should have in order to manage
the data efficiently. With efficient data management we mean the following.

• Compared to the development methods being used in the industry, the
development and maintenance of the software become more efficient
when using a real-time database.

• Compared to how existing systems perform, they could perform more
efficiently if they used a real-time database to manage the data.

Based on the experience of industrial partners developing a specific embed-
ded system overmany years, we have chosen to focus onupdating data items
within the database and fast CPU workload analysis methods. The
motivations for these choices are elaborated below.

• Updating data items within the real-time database because:

159

160 Conclusions and Future Work

– It is important that data items have up-to-date values because the
control of the external environment is made based on the values of
these data items as they represent the current observed state.

– It becomes easier to develop and maintain the software because the
programmers do not have to implement functionality to maintain
freshness of data items because it is managed by the real-time
database.

– The CPU utilization of updating data items constitutes a major part
of the workload and if the database can reduce the CPU utilization of
updating data it gives an immediate effect on the whole system. The
fact is that calculations involving similar data values give similar
results because calculations are deterministic and time-invariant.
So, if this fact is exploited the CPU utilization of updating data can
in reality be significantly reduced, which is shown in the thesis.

• Analysis of workload of the system when the real-time database is used
is required because embedded systems can have dynamically changing
workloads and can also be overloaded. Thus, during execution of the
system the system can enter a transient overload. Analysis of the system
helps the development and maintenance of the software in the following
ways.

– It is possible to both off-line andon-line predictwhether the software
may become overloaded.

– It is possible to adjust the workload on-line such that a potential
overload is avoided.

Our research has resulted in the real-time database, DIESIS, with the
following novel functionality:

• Updating algorithms that use similarity to measure data freshness and
that take data relationships into consideration, which are expressed in
a directed acyclic graph of arbitrary depth. The devised algorithms
ODDFT, ODBFT, ODDFT_C, ODBFT_C, ODKB_V, ODKB_C, and ODTB,
are compared to the well-established updating algorithms OD, ODO, and
ODKB [9].

• Concurrency control algorithms—OCC-S, MVTO-SUV, MVTO-SUP, and
MVTO-SCRC—that alsouse similarity. MVTO-SUV,MVTO-SUP, andMVTO-
SCRC use the updating algorithm ODTB to provide a transaction with data
that are up-to-date with respect to the start time of the transaction.

• An updating algorithm, ACUA, that takes transient overloades into con-
sideration. Data items are split into data items that must be up-to-date
in order for calculations to produce acceptable results (these data items

10.2. Discussions 161

are denoted required) and data items that may be stale (these data items
are denoted not required). The updating algorithm detects transient
overloads and switches between considering all or required data items.

Besides these functionalities of the database, the thesis presents mathemat-
ical models of mean time between updates in a system using periodic tasks that
each issues updates on-demand. The mathematical models are shown to reduce
pessimism in schedulability tests compared to other known models.
In Chapter 3 five requirements were stated that a data management of

an embedded system should meet. These requirements were based on the
experience of our industrial partners that develop embedded systems. We have
seen that the results in chapters 4, 5, 6, 7, and 8 address requirements R3, R4,
and R5. Requirement R2, monitoring data and reacting on events, was deemed
too time-consuming to implement in DIESIS and also addressing R3–R5.1

Requirement R1, organize and maintain data efficiently, is indirectly ad-
dressed by using the concept of a real-time database, as we have stated already
in Chapter 3. We have not conducted anymeasurementswhether the use of, e.g.,
DIESIS, gives any benefits in terms of development andmaintenance efficiency.
However, since databases have successfully been used during several decades to
handle large amounts of data we believe databases can address requirement R1
also for embedded systems. Thus, our conclusions are that a real-time database
can be used to manage data such that the development andmaintenance efforts
of software are reduced. The database should contain specific functionality
related to the application domain and for embedded systems this functionality
is: updating of data, snapshots of data and overload handling.
Since the requirements R1–R5 have been addressed, also the goals G1–G3

have been met.

10.2 Discussions

The basis in reality of the performance evaluations in chapters 4–8 depend on
the data and transaction model being used. We have had access to an engine
control software that is the basis for the data and transaction model used. Thus,
we believe that the results presented in this thesis are valid and representative
with respect to a control unit in a vehicle. However, as we have discussed in
Chapter 1, embedded systems are usually controlling systems that control the
environment they are installed in and control units in vehicles belong to this
family of systems. Thus, we believe our results are generalizable to a larger set
of systems where similarity can be applied on a subset of the data items in the

1In collaboration with Aleksandra Tešanović and Master Thesis student Ying Du, requirement
R2 has been addressed in papers [59, 124]. The COMET database was used, which was part
of Tešanović’s PhD work, instead of DIESIS. The reason for this decision was mainly that the
papers [59, 124] address both active behavior in a database and implementing it using aspect-
oriented programming. COMET was better suited for this. Due to that another database was used
and that these papers were co-authored they are not included in the thesis.

162 Conclusions and Future Work

system. In addition to this, mathematical models presented in Chapter 6 model
both the use of absolute validity intervals and similarity so these models enlarge
the set of systems covered in the thesis further.
Also, it is worth noting that the performance evaluations have been executed

in the following systems: (i) RADEx++, (ii) engine control system, (iii) DIESIS,
(iv) real-time system simulator implemented in Python, and (v) real-time
system simulator implemented in Java. In addition, different instantiations of
the data and transaction model have been used in these five systems. The found
performance results have been consistent throughout the five systems, which
indicate that they are correct.
In retrospect, is a database the best approach for efficient data management

in an embedded system? The list of commercial alternatives given in Section
1.2 is short and does not really contain any viable alternatives for resource
constrained embedded systems with (soft) real-time constraints. This fact
works against the choice of using a database approach since commercial actors
seem to have ruled it out. However, on the other hand embedded systems
are becoming more and more software intensive, which increases the need
for data management tools. Thus, the fact that there is a small number of
commercial databases for embedded systems might depend on a small need,
but the need would probably increase over time as the systems become more
software intensive. This thesis suggests which functionality future databases for
embedded systems should have and how they could be implemented.

10.3 FutureWork

The CPU overhead of the algorithms have not been thoroughly measured. One
problem is that the collection of statistical data is consuming CPU resources,
i.e., the probe effect, and, thus, gives a negative effect on the performance
of the algorithms. Hence, it is difficult to measure the true overhead of the
algorithms in DIESIS. Furthermore, it is not clear to what the overhead costs
should be compared. The original EECU software, for instance, stores data
using registers and using no concurrency control and no transactions. The CPU
overhead of DIESIS is probably noticeably higher than for the simpler system
in the original software. The effect of overhead is only noted when the system is
overloaded, and the system becomes overloaded at a lower incoming load when
the overhead increases. However, our algorithms can skip calculations which
compensates for the added overhead. More measurements need to be made to
clearly establish the amount of CPU time saved.
Related to overhead is also the question whether all data items in DIESIS

should be subject to the updating scheme and the updating algorithm that
are compiled into DIESIS. The data items could be divided into two sets: one
containing the data items that the system can efficiently update using similarity
and the other set containing those data items that are updated most efficiently
by time-triggered tasks. DIESIS should be able to move data items between the

10.3. Future Work 163

two sets at run-time.
The admission control algorithm ACUA-RBound has been tested with the

concurrency control algorithm HP2PL. For applications where both admission
control and snapshots of data are important, MVTO-S must be able to function
with ACUA-RBound. We must investigate how snapshots are affected by
dividing data items into mandatory and optional data items.
The similarity-awaremultiversion concurrency control algorithms proposed

in this thesis store a new version when the write timestamp is larger than the
timestamp of the oldest active transaction. Further optimizations can be made
if many versions are not needed by the transactions. Other policies of storing
versions can reduce the number of restarts, because restarts are due only to a
full memory pool. Reducing the number of restarts gives better performance
since resources are not wasted.
Real-time embedded systems can be nodes in a network. One example is

the different ECUs in a car that are connected by a CAN network. Common
data items could then be shared among the nodes using a distributed database.
Hence, DIESIS would be extended to handle distributed data and the updating
and concurrency control algorithms need to be distributed. We have found
that multiversion concurrency control algorithms using similarity can greatly
enhance the performance on a single-CPU system. It would be interesting to
investigate if this holds for a distributed system.

BIBLIOGRAPHY

[1] Arcticus AB homepage. http://www.arcticus.se.

[2] Autosar light version v1.5f. http://www.autosar.org/download/
AUTOSAR_Light%20Version_V1_5_f.pdf.

[3] CRC16. http://www.ptb.de/en/org/1/11/112/infos/crc16.htm. Url-
date: 2004-10-22.

[4] The mathworks homepage. http://www.mathworks.com.

[5] Nist/sematech e-handbook of statistical methods: Kolmogorov-smirnov
goodness-of-fit test. http://www.itl.nist.gov/div898/handbook/
eda/section3/eda35g.htm.

[6] R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions:
a performance evaluation. ACM Transactions on Database Systems
(TODS), 17(3):513–560, 1992.

[7] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying update streams
in a soft real-time database system. In Proceedings of the 1995 ACM
SIGMOD, pages 245–256, 1995.

[8] B. Adelberg, B. Kao, and H. Garcia-Molina. Database support for effi-
ciently maintaining derived data. In Extending Database Technology,
pages 223–240, 1996.

[9] Q.N.AhmedandS.V.Vbrsky. Triggeredupdates for temporal consistency
in real-time databases. Real-Time Systems, 19:209–243, 2000.

[10] K. Albers and F. Slomka. An event stream driven approximation for
the analysis of real-time systems. In Proceedings of the 16th Euromicro

164

BIBLIOGRAPHY 165

Conference on Real-Time Systems (ECRTS04), pages 187–195. IEEE
Computer Society Press, 2004.

[11] K.Albers andF. Slomka. Efficient feasibility analysis for real-time systems
with edf scheduling. In DATE ’05: Proceedings of the conference on
Design, Automation and Test in Europe, pages 492–497, Washington,
DC, USA, 2005. IEEE Computer Society.

[12] M. Amirijoo, J. Hansson, and S. H. Son. Algorithms for managing QoS
for real-time data services using imprecise computation. In Proceedings
of the Conference on Real-Time and Embedded Computing Systems and
Applications (RTCSA), 2003.

[13] M. Amirijoo, J. Hansson, and S. H. Son. Error-driven QoS management
in imprecise real-time databases. In Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS), 2003.

[14] M.Amirijoo, J.Hansson, and S.H. Son. Specification andmanagement of
QoS in imprecise real-timedatabases. InProceedingsof the International
Database Engineering and Applications Symposium (IDEAS), 2003.

[15] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database Systems
Concepts, Languages and Architectures. The McGraw-Hill Companies,
1999.

[16] N. C. Audsley, A. Burns,M. F. Richardson, andA. J.Wellings. Incorporat-
ing unbounded algorithms into predictable real-time systems. Technical
report, Real-Time Systems Research Group, Department of Computer
Science, University of York, 1993.

[17] E. Barry, S. Slaughter, and C. F. Kemerer. An empirical analysis of
software evolution profiles and outcomes. In ICIS ’99: Proceeding of the
20th international conference on Information Systems, pages 453–458,
Atlanta, GA, USA, 1999. Association for Information Systems.

[18] S. K. Baruah. Dynamic- and static-priority scheduling of recurring real-
time tasks. Real-Time Systems, (24):93–128, 2003.

[19] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency con-
trol and recovery in database systems. Addison-Wesley Publishing
Company, 1987.

[20] J. A. Blakeley, N. Coburn, and P.-Å. Larson. Updating derived rela-
tions: Detecting irrelevant and autonomously computable updates. ACM
Transactions on Database Systems, 14(3):369–400, 1989.

[21] G. Blom. Sannolikhetsteori och statistikteori med tillämpningar. Bok C.
Studentlitteratur, 1989.

166 BIBLIOGRAPHY

[22] M. Broy. Challenges in automotive software engineering: From de-
mands to solutions. http://www.softwareresearch.net/site/other/
EmSys03/docs/12.Broy.pdf.

[23] M. Broy. Automotive software engineering. In ICSE ’03: Proceedings
of the 25th International Conference on Software Engineering, pages
719–720, Washington, DC, USA, 2003. IEEE Computer Society.

[24] G. C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic
Publishers, 1997.

[25] G. C. Buttazzo. Rate monotonic vs. edf: Judgment day. Real-Time
Systems, 29(1):5–26, 2005.

[26] A. Cervin and J. Eker. Control-scheduling codesign of real-time sys-
tems: The control server approach. Journal of Embedded Computing,
1(2):209–224, 2005.

[27] H. Chetto andM. Chetto. Some results of the earliest deadline scheduling
algorithm. IEEE Transactions on Software Engineering, 15(10):1261–
1269, Oct. 1989.

[28] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time
tasks under precedence constraints. Journal of Real-Time Systems, (2),
1990.

[29] A. Chiu, B. Kao, and K.-Y. Lam. Comparing two-phase locking and
optimistic concurrency control protocols in multiprocessor real-time
databases. In Proceedings of the Joint Workshop on Parallel and
Distributed Real-Time Systems, 1997.

[30] A. Colin and G. Bernat. Scope-tree: A program representation for
symbolic worst-case execution time analysis. In ECRTS ’02: Proceedings
of the 14th Euromicro Conference on Real-Time Systems, page 50,
Washington, DC, USA, 2002. IEEE Computer Society.

[31] V. Consultants. Quality crisis hits the embedded software industry.
http://www.electronicstalk.com/news/vru/vru102.html.

[32] J. E. Cooling. Software Engineering for Real-Time Systems. Addison-
Wesley Publishing Company, 2003.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. The MIT Press, 2 edition, 2001.

[34] E. Coskun and M. Grabowski. Complexity in embedded intelligent
real time systems. In ICIS ’99: Proceeding of the 20th international
conference on Information Systems, pages 434–439, Atlanta, GA, USA,
1999. Association for Information Systems.

BIBLIOGRAPHY 167

[35] D. R. Cox and W. L. Smith. The superposition of several strictly periodic
sequences of events. Biometrika, 40(1/2):1–11, June 1953.

[36] I. Crnkovic and M. Larsson, editors. Building reliable component-based
software systems. Artech House, 2002.

[37] D. P. Darcy and C. F. Kemerer. Software complexity: Toward a unified
theory of coupling and cohesion. In Proceedings of ICSC Workshop
2002, 2002.

[38] A. Datta, S. Mukherjee, P. Konana, I. R. Viguier, and A. Bajaj. Multi-
class transaction scheduling and overload management in firm real-time
database systems. Information Systems, 21(1):29–54, 1996.

[39] A. Datta and I. R. Viguier. Providing real-time response, state recency
and temporal consistency in databases for rapidly changin environments.
Technical report, TimeCenter, 1997.

[40] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin,
D.McCarthy, A.Rosenthal, S. Sarin,M. J.Carey,M.Livny, andR. Jauhari.
The hipac project: combining active databases and timing constraints.
SIGMOD Rec., 17(1):51–70, 1988.

[41] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy.
Adaptive push-pull: disseminating dynamic web data. In Proceedings of
the tenth international conference on World Wide Web, pages 265–274.
ACM Press, 2001.

[42] P. Deutsch and J.-L. Gailly. Rfc 1950 - zlib compressed data format
specification version 3.3. http://www.faqs.org/rfcs/rfc1950.html,
1996.

[43] U. Devi. An improved schedulability test for uniprocessor periodic task
systems. In Proceedings of the 15th Euromicro conference on Real-Time
Systems (ECRTS03), pages 23–30. IEEE Computer Society Press, 2003.

[44] N. R. Draper and H. Smith. Applied Regression Analysis. John Wiley &
Sons, 1998.

[45] U. Eklund, Ö. Askerdal, J. Granholm, A. Alminger, and J. Axelsson.
Experience of introducing reference architectures in the development
of automotive electronic systems. In SEAS ’05: Proceedings of the
second international workshop on Software engineering for automotive
systems, pages 1–6, New York, NY, USA, 2005. ACM Press.

[46] Encirq. DeviceSQL. http://www.encirq.connectthe.com.

[47] M. Eriksson. Efficient data management in engine control software for
vehicles - development of a real-time data repository. Master’s thesis,
Linköping University, Feb 2003.

168 BIBLIOGRAPHY

[48] M. R. Garey and D. S. Johnson. Computers and Intractability A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[49] O. Goldsmith, D. Nehme, and G. Yu. Note: On the set-union knapsack
problem. Naval Research Logistics, 41:833–842, 1994.

[50] A. Göras, S.-A. Melin, and J. Hansson. Inbyggda realtidsdatabaser för
motorstyrning. Technical report, Linköping University, 2001.

[51] G. R. Goud, N. Sharma, K. Ramamritham, and S.Malewar. Efficient real-
time support for automotive applications: a case study. In Proceedings
of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA06), 2006.

[52] M. H. Graham. How to get serializability for real-time transactions
without having to pay for it. In Proceedings of the Real-Time Systems
Symposium 1993, pages 56–65, 1993.

[53] T. Gustafsson, H. Hallqvist, and J. Hansson. A similarity-aware mul-
tiversion concurrency control and updating algorithm for up-to-date
snapshots of data. In ECRTS ’05: Proceedings of the 17th Euromicro
Conference on Real-Time Systems (ECRTS’05), pages 229–238, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[54] T. Gustafsson and J. Hansson. Scheduling of updates of base and derived
data items in real-time databases. Technical report, Department of
computer and information science, Linköping University, Sweden, 2003.

[55] T. Gustafsson and J. Hansson. Data management in real-time systems: a
case of on-demand updates in vehicle control systems. In Proceedings of
the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’04), pages 182–191. IEEE Computer Society Press,
2004.

[56] T. Gustafsson and J. Hansson. Dynamic on-demand updating of data in
real-time database systems. InProceedings of the 2004ACMsymposium
on Applied computing, pages 846–853. ACM Press, 2004.

[57] T. Gustafsson and J. Hansson. Data freshness and overload handling
in embedded systems. In Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA06), pages 173–182. IEEE Computer Society Press,
2006.

[58] T. Gustafsson and J. Hansson. On the estimation of cpu utilization
of real-time systems. Technical report, Department of Computer and
Information Science, Linköping University, Sweden, 2006.

BIBLIOGRAPHY 169

[59] T. Gustafsson and J. Hansson. Performance evaluations and estima-
tions of workload of on-demand updates in soft real-time systems. In
Proceedings of the 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA07). To
appear, 2007.

[60] T. Gustafsson, J. Hansson, A. Göras, J. Gäddevik, and D. Holmberg.
2006-01-0305: Database functionality in engine management system.
SAE 2006 Transactions Journal of Passenger Cars: Electronic and
Electrical Systems, 2006.

[61] T. Gustafsson, A. Tešanović, Y. Du, and J. Hansson. Engineering active
behavior of embedded software to improve evolution and performance:
an aspect-oriented approach. In Proceedings of the 2007 ACM sympo-
sium on Applied computing, pages 673–679. ACM Press, 2007.

[62] H. Hallqvist. Data versioning in a real-time data repository. Master’s
thesis, Linköping University, 2004.

[63] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment
technique for streams with (m, k)-firm deadlines. IEEE Transactions on
Computers, 44(12):1443–1451, December 1995.

[64] J. Hansson. Value-Driven Multi-Class Overload Management in Real-
Time Database Systems. PhD thesis, Institute of technology, Linköping
University, 1999.

[65] J. R. Haritsa, M. J. Carey, and M. Livny. On being optimistic about
real-time constraints. In Proceedings of the 9th ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 331–343.
ACM Press, 1990.

[66] J. R. Haritsa, M. Livny, and M. J. Carey. Earliest deadline scheduling for
real-time database systems. In IEEE Real-Time Systems Symposium,
pages 232–243. IEEE Computer Society Press, 1991.

[67] H. Heinecke, K.-P. Schnelle, J. Bortolazzi, L. Lundh, J. Leflour, J.-L.
Maté, K. Nishikawa, and T. Scharnhorst. AUTomotive Open System
ARchitecture - an industry-wide initiative to manage the complexity of
emerging automotive e/e-architectures. In Proceedings of Convergence,
number SAE-2004-21-0042, 2004.

[68] S.-J. Ho, T.-W. Kuo, and A. K. Mok. Similarity-based load adjustment
for real-time data-intensive applications. In Proceedings of the 18th
IEEE Real-Time Systems Symposium (RTSS ’97), pages 144–154. IEEE
Computer Society Press, 1997.

[69] W. Horn. Some simple scheduling algorithms. Naval Research Logistics
Quartely, (21), 1974.

170 BIBLIOGRAPHY

[70] J.Huang, J.A. Stankovic, andK.Ramamritham. Experimental evaluation
of real-time optimistic concurrency control schemes. In Proceedings of
the 17th International Conference on Very Large Data Bases, pages
35–46, September 1991.

[71] S. S. Inc. http://www.sleepycat.com.

[72] K.-D. Kang, S. H. Son, and J. A. Stankovic. Managing deadline miss ratio
and sensor data freshness in real-time databases. IEEE Transactions on
Knowledge and Data Engineering, 2003.

[73] K.-D. Kang, S. H. Son, J. A. Stankovic, and T. F. Abdelzaher. A QoS-
sensitive approach for timeliness and freshness guarantees in real-time
databases. In Proceedings of the 14th Euromicro International Con-
ference on Real-Time Systems, pages 203–212. IEEE Computer Society
Press, 2002.

[74] B. Kao, K.-Y. Lam, B. Adelberg, R. Cheng, and T. Lee. Maintaining tem-
poral consistency of discrete objects in soft real-time database systems.
IEEE Transactions on Computers, 2002.

[75] B. Kao, K.-Y. Lam, B. Adelberg, R. Cheng, and T. Lee. Maintaining tem-
poral consistency of discrete objects in soft real-time database systems.
IEEE Transactions on Computers, 52(3):373–389, March 2003.

[76] Y.-K. Kim and S. H. Son. Supporting predictability in real-time database
systems. In 2nd IEEE Real-Time Technology and Applications Sympo-
sium (RTAS ’96), pages 38–48. IEEE Computer Society Press, 1996.

[77] G. Koren and D. Shasha. Skip-over: algorithms and complexity for
overloaded systems that allow skips. In RTSS ’95: Proceedings of
the 16th IEEE Real-Time Systems Symposium (RTSS ’95), page 110,
Washington, DC, USA, 1995. IEEE Computer Society.

[78] R. kr. Majumdar, K. M. Moudgalya, and K. Ramamritham. Adaptive
coherencymaintenance techniques for time-varying data. InProceedings
of the 24th Real-Time Systems Symposium (RTSS’03), pages 98–107.
IEEE Computer Society Press, 2003.

[79] C. M. Krishna and K. G. Shin. Real-Time Systems. The McGraw-Hill
Companies, 1997.

[80] H. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6(2):213–226, 1981.

[81] T.-W. Kuo andA. K.Mok. Application semantics and concurrency control
of real-time data-intensive applications. In Proceedings of IEEE 13th
Real-Time Systems Symposium, pages 35–45. IEEE Computer Society
Press, 1992.

BIBLIOGRAPHY 171

[82] T.-W. Kuo and A. K. Mok. Real-time data semantics and similarity-based
concurrency control. IEEE Transactions on Computers, 49(11):1241–
1254, November 2000.

[83] A. Labrinidis and N. Roussopoulos. Update propagation strategies for
improving the quality of data on the web. In The VLDB Journal, pages
391–400, 2001.

[84] J. J. Labrosse. MicroC/OS-II The Real-Time Kernel Second Edition.
CMPBooks, 2002.

[85] K.-Y. Lam, T.-W. Kuo, B. Kao, T. S. Lee, and R. Cheng. Evaluation of
concurrency control strategies for mixed soft real-time database systems.
Information Systems, 27:123–149, 2002.

[86] K.-Y. Lam and W.-C. Yau. On using similarity for concurrency control
in real-time database systems. The Journal of Systems and Software,
(43):223–232, 2000.

[87] S. Lauzac, R. Melhem, and D. Mossé. An improved rate-monotonic ad-
mission control and its applications. IEEE Transactions on Computers,
52(3):337–350, 2003.

[88] C.-G. Lee, Y.-K. Kim, S. Son, S. L. Min, and C. S. Kim. Efficiently sup-
porting hard/soft deadline transactions in real-time database systems. In
Third International Workshop on Real-Time Computing Systems and
Applications, 1996., pages 74–80, 1996.

[89] E. A. Lee. What’s ahead for embedded software? Computer, pages 18–26,
2000.

[90] K. Lee and S. Park. Classification of weak correctness criteria for real-
time database applications. In Proceedings of the 20th International
Computer Software and Applications Conference 1996 (COMPSAC’96),
pages 199–204, 1996.

[91] C. L. Liu andJ.W.Layland. Scheduling algorithms formultiprogramming
in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[92] J. W. S. Liu, K.-J. Lin, W.-K. Shih, A. C. shi Yu, J.-Y. Chung, and
W. Zhao. Algorithms for scheduling imprecise computations. Computer,
24(5):58–68, 1991.

[93] D. Locke, L. Sha, R. Rajikumar, J. Lehoczky, and G. Burns. Priority
inversion and its control: An experimental investigation. In IRTAW ’88:
Proceedings of the second international workshop on Real-time Ada
issues, pages 39–42, New York, NY, USA, 1988. ACM Press.

172 BIBLIOGRAPHY

[94] C. Lu, J. A. Stankovic, and S. H. Son. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Systems,
23(1–2):86–126, 2002.

[95] R. Majumdar, K. Ramamritham, R. Banavar, and K. Moudgalya. Dis-
seminating dynamic data with qos guarantee in a wide area network: A
practical control theoretic approach. In Proceedings of the 10th IEEE
Real-Time and Embedded Technology and Applications Synmposium
(RTAS’04), pages 510–517. IEEE Computer Society Press, May 2004.

[96] McObject LLC. eXtremeDB. http://www.mcobject.com/.

[97] P. Mejia-Alvarez, R. Melhem, and D. Mossé. An incremental approach to
scheduling during overloads in real-time systems. In Proceedings of the
21th Real-Time Systems Symposium (RTSS’00), pages 283–293. IEEE
Computer Society Press, 2000.

[98] Microsoft. Microsoft SQL Server 2005 Compact Edition.
http://www.microsoft.com/downloads/details.aspx?FamilyId=
%2085E0C3CE-3FA1-453A-8CE9-AF6CA20946C3&displaylang=en.

[99] L. Nielsen and L. Eriksson. Course Material Vehicular Systems.
Linköping Institute of Technology, Vehicular Systems, ISY, 2001.

[100] L. Nielsen and U. Kiencke. Automotive Control Systems For Engine,
Driveline, and Vehicle. Springer-Verlag, 1999.

[101] D. Nyström, A. Tešanović, C. Norström, J. Hansson, and N.-E. B.
nkestad. Data management issues in vehicle control systems: a case
study. In Proceedings of the 14th Euromicro International Conference
on Real-Time Systems, pages 249–256, Vienna, Austria, June 2002.
IEEE Computer Society Press.

[102] M. A. Olson. Selecting and implementing an embedded database system.
IEEE Computer, 2000.

[103] C. Olston, B. T. Loo, and J. Widom. Adaptive precision setting for cached
approximate values. SIGMOD Rec., 30(2):355–366, 2001.

[104] C. Papadimitriou. The Theory of Database Concurrency Control. Com-
puter Science Press, 1987.

[105] R. Pellizzoni. Efficient feasibility analysis of real-time asynchronous task
sets. Master’s thesis, Scuola Superiore S. Anna, Pisa, Italy, 2004.

[106] J. Philip J. Koopman. Embedded system design issues (the rest of the
story). In Proceedings of the International Conference on Computer
Design (ICCD 96), 1996.

BIBLIOGRAPHY 173

[107] C. Pu and A. Leff. Epsilon-serializability. Technical report, Department
of Computer Science, Columbia University, 1991.

[108] K. Ramamritham. Real-time databases. Distributed and Parallel
Databases, 1(2):199–226, 1993.

[109] K. Ramamritham, P. Deolasee, A. Katkar, A. Panchbudhe, and P. Shenoy.
Dissemination of dynamic data on the internet. In Proceedings of
Databases inNetworked Information Systems, InternationalWorkshop
(DNIS) 2000, pages 173–187, 2000.

[110] K. Ramamritham, S. H. Son, and L. C. DiPippo. Real-time databases and
data services. Real-Time Systems, (28):179–215, 2004.

[111] J. Real and A. Crespo. Mode change protocols for real-time systems: A
survey and a new proposal. Real-Time Systems, (26):161–197, 2004.

[112] J. T. Robinson. Design of concurrency controls for transaction process-
ing systems. PhD thesis, 1982.

[113] A. Sen and M. Srivastava. Regression Analysis Theory, Methods, and
Applications. Springer-Verlag, 1990.

[114] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspective. Real-Time Systems, 28:101–
155, 2004.

[115] S. Shah, K. Ramamritham, and P. Shenoy. Resilient and coherence
preserving dissemination of dynamic data using cooperating peers. IEEE
Transactions on Knowledge and Data Engineering, 16(7):799–812,
2004.

[116] L. Shu and M. Young. Versioning concurrency control for hard real-time
systems. The Journal of Systems and Software, (63):201–218, 2002.

[117] X. Song and J. W. Liu. Maintaining temporal consistency: Pessimistic vs.
optimistic concurrency control. IEEE Transactions on Knowledge and
Data Engineering, 7(5):786–796, 1995.

[118] SPSS. SPSS regression models. http://www.spss.com/regression/.

[119] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo. Implications
of classical scheduling results for real-time systems. IEEE Computer,
28(6):16–25, 1995.

[120] J. Stone, M. Greenwald, C. Partridge, and J. Hughes. Performance
of checksums and CRC’s over real data. IEEE/ACM Transactions on
Networking, 6(5):529–543, 1998.

174 BIBLIOGRAPHY

[121] R. Sun and G. Thomas. Performance results on multiversion time-
stamp concurrency control with predeclared writesets. In Proceedings of
the sixth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 177–184. ACM Press, 1987.

[122] H. Sundell. Ecient and Practical Non-Blocking Data Structures. PhD
thesis, Chalmers University of Technology, 2004.

[123] H.Sundell andP.Tsigas. Simplewait-free snapshots for real-timesystems
with sporadic tasks. In Proceedings of the 10th International Confer-
ence on Real-Time and Embedded Computing Systems and Applicatins
(RTCSA04), 2004.

[124] A. Tešanović, T. Gustafsson, and J. Hansson. Separating active and on-
demand behavior of embedded systems into aspects. In Proceedings of
the International Workshop on Non-functional Properties of Embedded
Systems (NFPES’06), 2006.

[125] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Embedded
databases for embedded real-time systems: a component-based ap-
proach. Technical report, Department of Computer Science, Linköping
University, 2002.

[126] M. E. Thomadakis and J.-C. Liu. Linear time on-line feasibility testing
algorithms for fixed-priority, hard real-time systems. Technical Report
TR00-006, 26, 2000.

[127] S. Tomic, S. V. Vrbsky, and T. Camp. A new measure of temporal
consistency for derived objects in real-time database systems. Inf. Sci.
Inf. Comput. Sci., 124(1-4):139–152, 2000.

[128] S. V. Vrbsky. A datamodel for approximate query processing of real-time
databases. Data Knowl. Eng., 21(1):79–102, 1996.

[129] S. V. Vrbsky and J. W. S. Liu. Approximate: a query processor that
produces monotonically improving approximate answers. IEEE Trans-
actions on Knowledge and Data Engineering, 5(6):1056–1068, 1993.

[130] S. V. Vrbsky and S. Tomic. Satisfying temporal consistency constraints
of real-time databases. J. Syst. Softw., 45(1):45–60, 1999.

[131] H. F. Wedde, S. Böhm, and W. Freund. Adaptive concurrency control in
distributed real-time systems. Technical report, University of Dortmund,
Lehrstuhl Informatik 3, 2000.

[132] E. W. Weisstein. Correlation coefficient. From MathWorld
– A Wolfram Web Resource. http://mathworld.wolfram.com/
CorrelationCoefficient.html.

BIBLIOGRAPHY 175

[133] R. N. Williams. A painless guide to CRC error detection algorithms.
ftp://ftp.rocksoft.com/papers/crc_v3.txt.

[134] M. Xiong, S. Han, and D. Chen. Deferrable scheduling for temporal con-
sistency: Schedulability analysis and overhead reduction. In Proceedings
of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA06), pages 117–124, 2006.

[135] M. Xiong, S. Han, and K.-Y. Lam. A deferrable scheduling algorithm for
real-time transactions maintaining data freshness. In Proceedings of the
26th IEEE Real-Time Systems Symposium, 2005. RTSS 2005, 2005.

[136] M. Xiong and K. Ramamritham. Deriving deadlines and periods for
real-time update transactions. In Proceedings of the 20th Real-Time
Systems Symposium, pages 32–43. IEEE Computer Society Press, 1999.

[137] M. Xiong, R. Sivasankaran, J. Stankovic, K. Ramamritham, and
D. Towsley. Scheduling access to temporal data in real-time databases,
chapter 1, pages 167–192. Kluwer Academic Publishers, 1997.

[138] J. Zweig and C. Partridge. Rfc 1146 - TCP alternate checksum options.
http://www.faqs.org/rfcs/rfc1146.html, 1990.

APPENDIX A

Abbreviations and Notation

Symbol Denotes
D Set of (derived) data items
B Set of base items
dj

i Version j of data item i
di The current version of data item i
bj Base item corresponding to a sensor value
V (di) Set of all versions of di

V (x) Variance of a set of values
R(di) Set of data items read when deriving di

#R(di) = |R(di)| Number of members in the read set
RR(di) Subset of read set containing required data

items
NRR(di) Subset of read set containing not required data

items. Note thatNRR(di) ∩RR(di) = ∅
PAR(di) Set of currently potentially affected members

of the read set of di

PAA(di) Set of currently potentially affected ancestors
of di

A(di) Set of currently affected ancestors of di

G = (N,E) Data dependency graph
τ Task or transaction in a real-time task
τvalue
di

Task using on-demand updating measuring
data freshness in value domain of data item
di

Continues on next page.

176

177

Continued from previous page
Symbol Denotes
τ time
di

Task using on-demand updating measuring
data freshness in time domain of data item
di

dt(τ) Relative deadline of transaction τ
ts(τ) Unique timestamp of transaction τ
gvts Global virtual timestamp
wt(dj

i) Write timestamp of version j of di

vt
di

Value of di at time t
pa(di) Timestamp when latest version of di was af-

fected by any dk ∈ R(di)
change(di) Binary marking which is true if di is potentially

affected and false if di is not potentially affected
by a change in an ancestor

fixedintdi(v
t
di

) Interval number of di at time t
level(di) The level of data item di

avi(di) Allowed age of di’s value.
δbj ,di Allowed changes of bj with respect to di. If

δbj ,di equal for all di being immediate children
of bj the denote it δbj

wcet(τ) WCET of task excluding on-demand update
wcet(di) = wcet(τdi

) WCET of update of di

wceti(bj) 1 if task i has an on-demand update of bj ,
otherwise wceti(bj) = 0

update_di Update of di

code(update_di) The code of the update of di

wcet(update_di) WCET of update of di

wcet(code(update_di)) WCET of update of di

period(τ) Period time of τ
MTBI Mean time between invocations
MIT Mean interarrival time
MTBI(P) MTBI of executions of periodic tasks in set P
MTBI(y,P) MTBI of executions of periodic tasks in setP if

they are not started if the latest execution was
at maximum y time units ago

APPENDIX B

On-Demand Updating
Algorithms in Value-Domain

This appendix discusses algorithms and shows performance results that arerelated to results presented in Chapter 4. Algorithm descriptions and
performance evaluations are presented in this appendix in order not to clutter
the text of Chapter 4 too much. The outline of this appendix is as follows.
Section B.1 describes the updating schemes AUS and PAUS that are being used
by top-bottom and bottom-up on-demand updating algorithms respectively
(see Section 4.5.3 for ODTB and Section B.3 for ODDFT). Section B.2 discusses
why a binary marking of stale data items is not sufficient for correctly marking
stale data items. Sections B.3–B.6 give a detailed description of the updating
algorithms ODDFT, ODBFT, ODKB_C, and ODTB. Section B.7 describes the
functionality of the auxiliary functions BeginTrans, ExecTrans, and AssignPrio
that are used by the RADEx++ simulator in Chapter 4. Remember that DIESIS
is also used to evaluate performance of algorithms, and the performance
evaluations using DIESIS are described in Section 5.5 and in Appendix C.
Finally, Section B.8 describes the results of experiments 1b, 1c, 1e, 2a, and 2b.
Experiments 1a and 1d are described in Section 4.5.5.

B.1 Updating Schemes

This section describes the AUS and the PAUS updating schemes that are used
by the on-demand updating algorithms.
The reason there are two updating schemes is that the data dependency

graph G can be traversed either top-bottom or bottom-up. AUS should be used

178

B.2. Binary marking of stale data items 179

together with top-bottom algorithms, e.g., ODTB, and PAUS should be used
together with bottom-up algorithms, e.g., ODDFT. The steps of AUS are.

• AUS_S1: Update base items periodically in order to keep an up-to-date
view of the external environment.

• AUS_S2: Mark immediate children of a data item that is found to be stale
when it is updated.

• AUS_S3: Determine which data items should be updated before a user
transaction starts its execution. This must be done by traversing the data
dependency graph, G, top-bottom since step AUS_S2 only marks the
immediate children. An example of an updating algorithm that could be
used is ODTB.

The steps of PAUS are.

• PAUS_S1: Update base items periodically in order to keep an up-to-date
view of the external environment.

• PAUS_S2: Mark all descendants of the data item that is found to be stale
when it is updated.

• PAUS_S3: Determine which data items should be updated before a user
transaction starts its execution. This can be done by a bottom-up traversal
of G since all descendants are marked as potentially marked by a change
and are therefore found in a bottom-up traversal. An example of an
algorithm is ODDFT.

The reason top-bottom algorithmsmay be better than bottom-up algorithms
is that the scheduling algorithm and the updating scheme can be implemented
in a more efficient way, because the marking of (potentially) stale data items is,
generally, performed on a less number of data items using AUS compared to
using PAUS, because immediate children instead of all descendants aremarked.
Performance results using thesemarking techniques are evaluated in Section

4.5.5 and Section B.8.

B.2 Binary marking of stale data items

This section discusses why the pa timestamp is needed and why using the
simpler approach of binary flags may fail.
The solution that first comes to mind to mark whether a data item is

potentially affected by a change in an ancestor is to use a binary flag taking the
values false, i.e., the data item is not potentially affected, and true, i.e., the data
item is potentially affected. Using the PAUS updating scheme and binary flags,
there are cases where PAUS would set the marking to false where it instead
should remain set at true. This is illustrated with the example below.

180 On-Demand Updating Algorithms in Value-Domain

ODDFT(d, t, UTrt. freshness_deadline)
1: for all x ∈ R(d) in prioritized order do
2: if pa(d) > 0 ∧ error(x, freshness_deadline) > δd,x then
3: if Skip late updates ∧ t− wcet(τx)× blockingf < at(τd) then
4: break
5: else
6: Put τx in schedule SdUT

. Check for duplicates and remove any.
7: rl(τx) = t− wcet(τx)× blockingf
8: dt(τx) = UTrt
9: ODDFT(x, rl(τx), UTrt, freshness_deadline)
10: end if
11: end if
12: end for

Figure B.1: The ODDFT algorithm.

Example B.1. Consider data item d7 in Figure 2.6 and change(d7) is the
binary marking of d7 and it equals true. A triggered update τd7 has started to
update d7 because change(d7) equals true (and therefore pa(d7) > 0). Assume a
UT starts for another data item in the system and the UT has a higher priority
than τd7 . Meanwhile, d7 is again marked as potentially affected by a change
in one of the base items b5 and b6. Using the pa timestamp means that pa is
set to a new higher value since the transaction updating the base item has a
higher timestamp, and this timestamp is propagated to d7. Using the change
flag, when τd7 commits and writes d7, the change flag is reset to false. Hence,
the system now believes that d7 is not potentially affected by changes in any of
its ancestors, which is not correct.

The example above shows that the pa timestamp should be used when using
the PAUS updating scheme.

B.3 Bottom-Up Traversal: Depth-First Approach

This section describes the on-demand depth-first traversal (ODDFT) algorithm
that implements the on-demand scheduling of updates in step PAUS_S3.
The ODDFT algorithm is given in Figure B.1. The input parameters are d, the

data item thatmight be included in the schedule, t, the release time of an update,
UTrt, which is the release time of the UT, and freshness_deadline, which is the
earliest time a data item should be valid needing no update. freshness_deadline
is set to the deadline of the arrived UT. The variable blockingf on line 7 is used
to regard interruptions from higher prioritized transactions and their updates.
Section 4.5.1 gives four algorithmic steps of ODDFT. They are (i) traverse

G bottom-up using depth-first order, (ii) in each reached node determine if
the corresponding data item needs to be updated, (iii) put needed updates in
a schedule, and (iv) execute the updates in the schedule. Algorithmic step (i)

B.3. Bottom-Up Traversal: Depth-First Approach 181

is implemented by the for-loop on line 1 and the recursive call on line 9. The
prioritized order is determined by algorithm AssignPrio that is described in
Section B.7. Algorithmic step (ii) is implemented with the if-statement on line
2, where error(x, freshness_deadline) is a worst-case value change of x at time
t from the value previously used when deriving d. If d is stale, then algorithmic
step (iii) is implemented with lines 6–9. Line 7 calculates the latest possible
release time of the update updating d, and line 8 sets the deadline of the update.
Algorithmic step (iv) only involves taking the top entry of the schedule and start
a TU of the data item represented in that entry.
The ODDFT algorithm can be adjusted to skip scheduling updates whose

calculated release times are earlier than the release time of the UT executing
ODDFT. The if-statement on line 3 implements this check.
The attentive reader may have seen that the depth-first traversal in ODDFT

is not implemented with a check if a node in G has already been visited. The
reason is that data items needing an update must be put in the schedule in
an order that obeys data relationships in G. So, if ODDFT has scheduled
ancestors of data item di, where di ∈ R(dUT), then when scheduling ancestors
of dj ∈ R(dUT), di 6= dj , the same ancestors may be found. These ancestors
must be put before dj in the schedule. One way to achieve this is to put them
in the schedule and remove the duplicates (line 6). However, checking for
duplicates is a computational expensive task since the whole schedule SdUT

must be traversed.
ODDFT is now described by an example using G in Figure 2.6.

Example B.2. Assume a UT, deriving the total multiplicative fuel factor d9,
arrives and that the temperature compensation factorand the start enrichment
factors (d8, d5, d7, d2, d3, d4) are marked as potentially affected. Now, the two
parents of d9, d7 and d8, have pa set to values greater than zero. Moreover, if
error(x, t) > δd7,x evaluates to true for some x ∈ {d2, d3, d4}, then d7 needs to
be updated. Assume both d7 and d8 need to be updated. The algorithm then
chooses the one with highest error by evaluating error(d7, t) and error(d8, t),
and continues with the chosen branch. If d7 has the highest error, then an
update τd7 is put in the schedule followedbyupdates for d2, d3, and d4 according
to a priorization. Finally, the algorithm continues with the d8 branch and τd8

is put in the schedule followed by τd5 . The total schedule is [τd5τd8τd4τd3τd2τd7]
and is shown in Figure B.2. Every update is tagged with the latest possible
release time and deadline by accounting for WCETs of added updates in the
schedule. When the release time of an update is earlier than the arrival time
of UT τd9 the algorithm is terminated since no more updates can be executed
(assuming WCETs on updates).

Computational Complexity

Since ODDFT is a recursive algorithm possibly traversing all branches from a
node in G, the computational complexity can be derived in the same way as for

182 On-Demand Updating Algorithms in Value-Domain

td7
td2

td3
td4

td8
td5

Arrival time UT Deadline UT

Deadlines of updates Utrl

Figure B.2: A schedule of updates generated by ODDFT.

OD. Consider the graph in Figure 4.5 and the following recurrence relation:{
T (n) = mT (n + 1) + O(m log m)
T (k) = 1

where O(m log m) is the running time of an algorithm that prioritizes nodes
(AssignPrio described in Section B.7) and m is the maximum out-degree of a
node. The total running time of algorithm ODDFT is O(mnm log m), where
m is the maximum in-degree of a node in graph G, and n is the number of
levels in the graph. However, in reality data items do not have the relationship
described in Figure 4.5, and, thus, the running time of the algorithm is probably
polynomial with the size of the graph in realistic examples.
Note that if the if-statement on line 3 in the ODDFT algorithm is being used,

then the execution time of ODDFT grows polynomially with the size of the slack
of the user transaction. This is because by using line 3, ODDFT is stopped when
there is no slack time left for updates. There can only be a polynomial amount
of updates in the slack time since the execution time of updates and the slack
time are of the same order of magnitude.

B.4 Bottom-Up Traversal: Breadth-First Approach

This section describes the ODBFT algorithm that implements the on-demand
scheduling of updates in the PAUS_S3 step. ODBFT has four algorithmic
steps. Algorithmic step (i) is traversing G bottom-up using breadth-first order.
Algorithmic step (ii) is the same as for ODDFT, i.e., in each reached node
determine if the corresponding data item needs to be updated. Step (iii) is also
the same as for ODDFT, i.e., put needed updates in a schedule, and step (iv)
is to execute updates of the scheduled data items in the order they appear in
the schedule. Algorithmic step (i) is described now. The breadth-first algorithm
(see [33]) is implemented by using a FIFO queue denoted Q for determining
fromwhich node to continue to search for data items inG. This is not sufficient,
instead the nodes should be picked in both level and priority order. Level order

B.4. Bottom-Up Traversal: Breadth-First Approach 183

is used to obey the precedence constraints, and priority order is used to pick the
most important update first. The relation A is introduced, and x A y, where x
and y are data items in the database, is defined as:

x A y iff level(x) > level(y)∨
(level(x) = level(y) ∧ Sprio(x) > Sprio(y))∨
(level(x) = level(y) ∧ Sprio(x) = Sprio(y) ∧ id(x) > id(y)),

where Sprio is the product of the priority of the data item and the weight, level
is the level the data item resides at (see definition 3.2.1), and id is a unique
identifier associated with the data item. If data item d4 has the integer 4 as an
identifier and data item d5 the integer 5, then d5 A d4 if they reside in the same
level and are assigned the same priority by algorithm AssignPrio.
In algorithmic step (ii), all nodes are initially colored white to represent

unscheduled data items. Nodes that are inserted into Q must be white and
represent data items that need to be updated. When a data item is inserted into
Q it is considered scheduled and is colored gray. Every time a node of the data
dependency graph is inserted into Q, the node is inserted in the right position
based on relation A. The head of Q is used by ODBFT to start a new search for
undiscovered nodes in the graph. Since A orders the data items according to
level, ODBFT behaves as a breadth-first search.
In algorithmic step (iii), the head of Q is inserted into the schedule of

updates. This is iterated as long as there are elements inQ. In this way only data
items that are stale according to pa > 0 and the function error are scheduled.
The ODBFT algorithm is described in Figure B.3. The input parame-

ters are the arrived UT τ , t initially set to the time dt(τ) − wcet(τ), and
freshness_deadline which is the earliest time a data item should be valid
needing no update. freshness_deadline is set to the deadline of the arrived UT.
Algorithmic step (i) is implemented by lines 4, 5, 15, 16, and 18. The algorithm
cycles through nodes put in Q by using a while-loop (lines 4 and 5), inserted
nodes are colored gray so they cannot be found again (lines 15 and 16), and
nodes are inserted in Q on line 18.
Algorithmic step (ii) is implemented by lines 12, 14, and 17. The AssignPrio

algorithm used on line 12 is described in the Supporting Mechanisms and
Algorithms section (Section B.7). The for-loop on line 14 cycles through all
immediate parents of a data item. The if-statement on line 17 checks if a found
data item should be put in the schedule of updates. Algorithmic step (iii) is
implemented on line 23.
ODBFT is described by an example using G in Figure 2.6.

Example B.3. AUT that derives data item d9 arrives, and d9 is put into queue
Q. Assume d2–d9 are marked as potentially affected by changes in base items.
Ancestors d6, d7, and d8 are put into Q and the one with highest priority is
picked first in the next iteration of the algorithm. Assume that d6 is picked. Its
ancestor d1 has pa set to zero and d1 is not inserted into Q. Next, d7 is picked
from Q. Assume its whole read set is inserted into Q. The relation A sorts

184 On-Demand Updating Algorithms in Value-Domain

ODBFT(τ , t, freshness_deadline)
1: Assign color WHITE to all nodes in the data dependency graph
2: Let d be the data item updated by τ
3: Put d in queue Q
4: while Q 6= ∅ do
5: Let u be the top element from Q, remove u from the queue
6: Let τu be the transaction associated with u
7: dt(τu) = t
8: rt(τu) = t− wcet(τu)× blockingf
9: if Skip late updates and rt(τu) < at(τUT) then
10: break
11: end if
12: priority_queue = AssignPrio(u, t)
13: t = t− wcet(τu)× blockingf
14: for all v ∈ priority_queue in priority order do
15: if color(v) =WHITE then
16: color(v) =GRAY
17: if pa(v) > 0 ∧ error(v, freshness_deadline) > δd,v then
18: Put v in Q sorted by relation A
19: end if
20: end if
21: end for
22: color(u) =BLACK
23: Put τu in the scheduling queue SdUT

24: end while

Figure B.3: The ODBFT algorithm.

B.5. ODKB_C Updating AlgorithmWith Relevance Check 185

these items to be placed after d8, that still resides inQ, because A orders items
first by level and d8 has a higher level than d2–d4. The next iteration picks d8,
which has the ancestor d5 that is placed in Q. Since d5 has the same level as
d2–d4, they are already placed in Q by an earlier iteration, the priority of the
data items determines their order. None of d2–d5 has derived data items as
immediate parents so the algorithm finishes by taking the data items one by
one and putting an update into the schedule. Thus, the resulting schedule is
[τd2τd3τd4τd5τd8τd7τd6].

Computational Complexity

The total running time of algorithm ODBFT is O(|N | + |E|) if the operations
for enqueuing and dequeuing Q take O(1) time [33]. In algorithm ODBFT,
the enqueuing takes in the worst-case O(log |N |) since the queue can be kept
sorted and elements are inserted in the sorted queue. The total running time
of algorithm AssignPrio called by ODBFT is the same as the for-loop adding
elements to a sorted queue, i.e., O(|E| log p), where p is the maximum size of
the read set of a data item. Thus, the algorithm has a total running time of
O(|N | log |N |+ |E| log p).

B.5 ODKB_C Updating Algorithm With Relevance
Check

This algorithm is the on-demand with knowledge-based option using data
freshness defined in the value domain, i.e., ODKB_V (see Section 4.5). Before
a scheduled update is execute is a check performed if the current value of the
data item being updated is affected by any changes in its immediate parents
in G. If the data item is unaffected by any such changes, the update is not
triggered. Hence, a relevance check (see definition 4.3.2) is added to the
triggering criterion.

Computational Complexity

ODKB_C has polynomial time complexity since the data freshness check has
polynomial complexity and the check is applied to every scheduled update
generated by ODKB_V, and ODKB_V has polynomial time complexity.

B.6 Top-Bottom Traversal: ODTB With Relevance
Check

This section gives a detailed description of ODTB. An overview of ODTB can be
found in Section 4.5.3. The steps of ODTB are:

186 On-Demand Updating Algorithms in Value-Domain

(i) Traverse G top-bottom to find affected data items.

(ii) Top-bottom traversal from found affected data items to dUT .

(iii) Execute updates of scheduled data items.

Data dependency graph G = (N,E) describes the relation <G. To obtain
a pregenerated schedule that can be used by ODTB, a bottom node is added,
denoted bottom, to N and all leaf nodes are connected to it by adding edges to
E. A schedule is generated using BuildPreGenSchedule, which is described in
Figure B.4, for the added bottom node1 and denote it S.

BuildPreGenSchedule(d)
for all x ∈ R(d) in prioritized order do
Put τx in schedule S
etime = etime + wcet(τx) // etime is the cumulative execution time of
scheduled updates.

Annotate τx with etime
BuildPreGenSchedule(x)

end for

Figure B.4: The BuildPreGenSchedule algorithm.

Theorem B.6.1. It is always possible to find a sub-schedule of S that is
identical, with respect to elements and order of the elements, to a schedule Sd

starting in node d and Sd is generated by BuildPreGenSchedule.

Proof. Assume the generation of S by BuildPreGenSchedule has reached node
d. Start a generation of a schedule at d and denote it Sd. BuildPreGenSchedule
only considers outgoing edges from a node. Assume two invocations of Build-
PreGenSchedule, which origin from the same node, always pick branches in the
same order. BuildPreGenSchedule has no memory of which nodes that have
already been visited. Hence, the outgoing edge that is picked by BuildPreGen-
Schedule generating S is the same as BuildPreGenSchedule generating Sd and,
thus, there exists a sub-schedule S that has the same elements and the same
order as Sd.

Corollary B.6.2. A schedule Sd generated by BuildPreGenSchedule for data
item d with l number of updates can be found in S from index startd to index
stopd where l = |startd − stopd|.

Proof. Follows immediately from theorem B.6.1.

1The order of choosing branches can be arbitrary. In this thesis the order branches is chosen is
from low data item numbers to high numbers, i.e., b1 < bi < d1 < dj (i > 1, j > 1). If the order
is important then weights can be assigned to each edge and a branch is chosen in increasing weight
order.

B.6. Top-Bottom Traversal: ODTBWith Relevance Check 187

ODTB(dUT)
1: at = deadline(τUT)− release_time(τUT)− wcet(τdUT

)× blockingf
2: for all x ∈ R(dUT) do
3: Get schedule for x, Sx, from S
4: for all u ∈ Sx do
5: if pa(u) > 0 then
6: wcet_from_u_to_x = (WCET of path from u to x)× blockingf
7: if wcet_from_u_to_x ≤ at then
8: Add data items u to x to schedule SdUT

. Calculate release times
and deadlines.

9: at = at− wcet_from_u_to_x
10: else
11: Break
12: end if
13: end if
14: end for
15: end for

Figure B.5: Top-Bottom relevance check algorithm (pseudo-code).

By corollary B.6.2 it is always possible to get, from S, a sub-schedule of
all possibly needed updates for data item dUT that a UT derives. Every data
item has start and stop indexes indicating where its BuildPreGenSchedule
schedule starts and stops within S. Every data item also knows about its
neighbors (immediate parents and immediate children) in G. Every element
in the schedule S, which is a data item, can be annotated with an execution
time (line 4). The execution time is the cumulative execution time of all data
items currently traversed by the algorithm (line 3). The execution time of a
sub-schedule of S is calculated by taking the annotated execution time of the
start element minus the execution time of the stop index. The cumulative
execution time of elements bottom . . . startd is canceled.
The ODTB algorithm is shown in Figure B.5. Algorithmic step (i) of ODTB

is implemented on lines 2, 3, and 4. The for-loop on line 2 cycles through all
immediate parents of dUT , and for every immediate parent a sub-schedule is
fetched from S on line 3. The fetched sub-schedule is traversed top-bottomwith
the for-loop on line 4. Algorithmic step (ii) of ODTB is implemented on lines
5, 7, and 8. The pa timestamp of a data item in the sub-schedule is checked
on line 5. If it is stale, then it is determined on line 7 if the remainder of the
sub-schedule should be inserted in the schedule of updates. The remainder of
the sub-schedule is copied on line 8.
Note that using line 7 in the ODTB algorithm makes it impossible to

guarantee fresh values on data items since needed updates might not be put in
the schedule of updates. Using ODTB together with multiversion concurrency
control algorithms, this line is changed into if(1).
Next we give an example of using ODTB.

188 On-Demand Updating Algorithms in Value-Domain

d5 d8 d2 d3 d4 d7 d1 d6 d9

1 2 3 4 5 6 7 80

Schedule

Index

Figure B.6: Pregenerated schedule by BuildPreGenSchedule forG in Figure 2.6.

Example B.4. AUT τd7 arrives to a system that has a data dependency graph
as given in Figure 2.6. The fixed schedule S is given in Figure B.6, indexes for
starts and stops within schedule S for d7 are 2 and 5, i.e., schedule Sd7 is the
sub-schedule that spans the indexes 2 through 5 in S. For every ancestor x
of d7 (d2, d3, and d4) the schedule Sdx is investigated from the top for a data
item with pa > 0 (see Figure B.5). If such a data item is found, WCET for the
data item u and the remaining data items in Sx, denoted wcet_from_u_to_x,
has to fit in the available time availt of τd7 . The execution time of the updates
can be stored in the pregenerated schedule by storing, for each update, the
cumulative execution time of all updates up to and including itself. By taking
the difference between two updates from Sd the cumulative part of the update
for d is canceled and the result is the execution time between the updates. When
ODTB is finished the schedule SdUT

contains updates that can be executed in
the interval between the current time until the deadline of UT.

Computational Complexity

This algorithm is built on the same traversal of G as ODDFT, i.e., a depth-first
order. A BuildPreGenSchedule pregenerated schedule is traversed for every
immediate parent of dUT . There are a polynomial number of ancestors to a data
item, but, as described for ODDFT, the schedule can contain exponentially, in
the size of the graph, many elements. Thus, the pregenerated schedule can also
contain exponentially, in |N |, number of updates. In the worst-case, all of these
updates need to be checked and, thus, ODTB has exponential complexity in the
size of the graph. However, every step of ODTB is cheaper than for both ODDFT
and ODBFT, since the only thing the algorithm is doing is reading values from
arrays and copying values between arrays.
The algorithm ODTB traverses a pregenerated schedule top-bottom and if a

stale data item is found the remaining part of the schedule is put in a schedule
of updates. Some of these items might be fresh and unrelated to the found stale
data item, i.e., they are unnecessary updates. Duplicates of a data item can be
placed in the schedule. Checks for detecting these two issues can be added to
the algorithm but this is not done in this thesis, because the target platform is
an EECU and, thus, the overhead of CPU usage should be kept small.
ODTB takes the longest time to execute when none of the data items in the

B.7. Supporting Mechanisms and Algorithms 189

schedule is stale. One way to address this is to have two pa timestamps, one
that indicates a stale data item and one that indicates that none of the ancestors
are changed. These two timestamps are a combination of the second step of
the updating scheme for ODDFT and ODBFT and the second step for ODTB.
Hence, more time is spent marking data items when they change, but when data
items do not change a fresh data item can immediately be detected.

B.7 Supporting Mechanisms and Algorithms

This section covers algorithms that describe how transactions are started, how
updates are started, and how updates can be prioritized in the ODDFT, ODBFT,
and ODDFT_C algorithms.

B.7.1 BeginTrans

A database system is notified by a UT when it starts to execute the BeginTrans
algorithm. In this section, we only discuss the generation of timestamps and
execution of updating algorithms. The algorithm is presented in Figure B.7 and
gvts is the global virtual timestamp. As can be seen on line 2, the gvts variable
is monotonically increasing implying that UTs get unique timestamps.

BeginTrans
1: Begin critical section
2: gvts = gvts + 1
3: End critical section
4: ts(τ) = gvts
5: Execute updating algorithm
6: ExecTrans(τUT)

Figure B.7: Pseudo-code of the BeginTrans algorithm.

B.7.2 ExecTrans

This section describes the ExecTrans algorithm that implements PAUS_S2 and
AUS_S2, triggers updates, and has the relevance check if an update is needed
in ODDFT_C and ODTB.
There are two choices how to handle late updates. Remember that latest

possible release time of an update is calculated in the updating algorithms.
Either all updates are executed before the UT continues to execute, or late
updates are skipped. Executing all updates means that the derived data item,
dUT , is based on relatively consistent data. There is a risk that the UT can be
finished too late if all updates are executed including those that are late, i.e., the
UT might miss its deadline. However, skipping late transactions, the derived

190 On-Demand Updating Algorithms in Value-Domain

data item might instead be based on stale data. The designer of the database
system needs to choose one of these two approaches.
Line 2 implements the ability to skip late updates. If this functionality is

unwanted, lines 2–4 are removed from ExecTrans. Lines 6–11 implement the
relevance check, i.e., the current update is skipped if a value in the database
is unaffected by changes in its immediate parents. If the update τx cannot be
skipped, then the transaction is generated and started in line 12. Lines 16–25
implement the steps PAUS_S2 and AUS_S2.

B.7.3 AssignPrio

When the updating algorithms ODDFT, ODBFT, and ODDFT_C can choose
from several nodes in G, the AssignPrio algorithm (see Figure B.9), prioritizes
the nodes, and the updating algorithm chooses branches in priority order. A
function error(d, t) is used in AssignPrio to approximate the error in the stored
value of d at time t. This function is application-specific and can look as in
Figure B.10where the error is approximated by howmuch the value can possibly
change during the duration until t. Time t in AssignPrio is the future time at
which data items should be fresh for the transaction to derive a fresh value [54].
The most natural value to assign to t is the commit time of the UT. However,
when the schedule of updates is constructed, it is impossible to know the commit
time of the transaction since it depends on the actual execution of the updates
and other transactions. In this thesis, t is set to the deadline of the UT, i.e., the
same as in an absolute system described by Kao et al. [75].

B.8 Performance Results

The discrete-event simulator RADEx++ is used to conduct experiments to
test the performance of the updating algorithms [64]. A benefit of using a
discrete event simulator is that code taking long time to execute but are not
part of the algorithms does not affect the performance of the algorithms. The
experiments performed in the RADEx++ simulator conform to an absolute
consistent system [75] which is defined in Definition 4.5.1. An instantaneous
system applies base item updates and necessary recomputations in zero time.
Hence, in an absolutely consistent system, a UT is valid if changes to data items
during the execution of the transaction do not affect the derived value of the
transaction. The process of gathering statistical results is time-consuming, e.g.,
checking if an updated data item is unaffected by concurrent writes to other data
items requires storing all versions of data items. However, using RADEx++ we
can collect the statistical data without affecting the performance results (this is
also known as the probe effect). All paths from base items to the updated data
item need to be checked if they affect, by performing recalculations, the new
value of the data item.

B.8. Performance Results 191

ExecTrans(τ)
1: for all x ∈ SdUT

do
2: if current_time > rt(x) then
3: break
4: end if
5: ts(τx) = ts(τd)

-- Relevance Check --
6: if ODDFT_C and ∀y ∈ R(x), previously used value of y is valid compared

to new value of y using a definition of data freshness (definitions 4.2.1
or 4.2.2) then

7: continue
8: end if
9: if ODTB and pa(x) = 0 then
10: continue
11: end if

12: Execute τx

13: if pa(x) < ts(τx) then
14: Set pa of x to 0
15: end if

-- Step PAUS_2 and AUS_S2 --
16: for all descendants of x that have x as parent do
17: if child c affected by change in x then
18: pa(c) = max (ts(τx), pa(c))
19: if PAUS updating scheme then
20: for all children c of x do
21: pa(c) = max (ts(τx), pa(c))
22: end for
23: end if
24: end if
25: end for

26: end for

Figure B.8: Pseudo-code of the ExecTrans algorithm.

192 On-Demand Updating Algorithms in Value-Domain

AssignPrio(d,t)
1: for all x ∈ R(d) do
2: if error(x, t) ≥ δd,x then
3: total_error = total_error + error(x, t)
4: Put x in queue Q1

5: end if
6: end for
7: for all x ∈ Q1 do
8: Sprio(x) = error(x, t)
9: Multiply Sprio(x) with weight(x)
10: Put x in queue Q2 sorted by priority
11: end for
12: Return Q2

Figure B.9: The AssignPrio algorithm.

error(d, t) = (t− timestamp(d))×max_change_per_time_unit

Figure B.10: Example of error function.

Two experiments can be found in Chapter 4, Experiments 1a and Experi-
ment 1d. In this section are the experiments Experiment 1b, Experiment 1c,
Experiment 1e, Experiment 2a, and Experiment 2b presented.

B.8.1 Experiment 1b: Deriving Only Actuator User Transac-
tions

The objective of this experiment is to investigate the performance of a system
that only derives data items in leaf nodes. The performance metric is valid
committed user transactions.
One question is how to interpret the nodes in the data dependency graph G

and how these nodes map to transactions. The nodes can be divided into base
nodes, i.e., those that correspond to sensor data, and the nodes corresponding
to derived data: intermediate nodes and leaf nodes. A leaf node has no children,
and intermediate nodes have both parents and children. Intermediate nodes
can be seen as containing data that are shared among the leaf nodes, and the
leaf nodes represent data at the end of a refinement process involving data on
paths from base nodes to the leaf node. The data in leaf nodes is then likely data
that is sent to actuators.
The results for when UTs derive only leaf nodes can be seen in Figure B.11.

Figure B.11(a) shows the number of valid committed UTs deriving data items
that have at least one derived data item as immediate parent. ODDFT and
ODBFT are performing much better than the other updating algorithms due to
their ability to update data that is judged to be stale at the deadline of the UT.
Note that using no updating scheme always gives stale data. In Experiment 1a,

B.8. Performance Results 193

a UT is deriving a data item that is randomly chosen among all derived data
items. This way of choosing data items helps keeping them valid, because there
is a probability that a data item and its ancestors are updated often enough to
keep them valid. In this experiment, however, intermediate nodes are not kept
valid by these random transactions. All updating algorithms are suffering from
this which can be seen in Figure B.12 showing the number of triggered updates.
Comparing these numbers to those in Figure 4.8(b) shows that more updates
are needed.
Figure B.11(b) shows the results for UTs deriving data items depending only

on sensor values. Remember that using no updating algorithm gives fresh data
items since the values read by the UTs are always valid. The other updating
algorithms also produce valid UTs, but their performance drop due to triggering
updates taking time to execute, and, thus, delaying UTs such that they miss
their deadlines.

B.8.2 Experiment 1c: Comparison of Using Binary Change Flag
or pa Timestamp

The objective with this experiment is to investigate how the usage of the pa
timestamp changes the behavior of the updating algorithms compared to using
a boolean change flag as in our previous work [54–56], where the pa timestamp
is a boolean flag denoted change. Unfortunately, there can be no guaranteed
mapping from change(d) equals true to pa(d) > 0 and from change(d) equals
false to pa(d) = 0. Example B.1 shows this.
The reason the pa timestamp is used is to correctly determine if an update

is needed. This is important when relative consistency of data is considered.
The updating algorithms that are implemented in the RADEx++ simulator
are implemented with the choice of skipping late updates. This destroys the
possibilities to measure relative consistency, and, thus, it might be sufficient
to use the change flag which takes less memory to store. What happens if the
change flag is used instead of the pa timestamp? Figure B.13 shows that the
performance of the system is not dependent upon using either pa or change,
i.e., the potentially missed updates from using the change flag do not affect
validity of committed transactions. This shows that the change flag approach
can be used, and such an implementation uses less memory than using the pa
timestamp.

B.8.3 Experiment 1e: Effects of Blocking Factor

The objective of this experiment is to investigate how the blocking, modeled
with blockingf , affects the performance of updating algorithms. Late updates
are not executed since line 2 in ExecTrans rejects late updates. A blocking factor
greater than zero effectively blocks more updates, because the calculated latest
release time of an update is earlier for blockingf > 1. In essence, the workload

194 On-Demand Updating Algorithms in Value-Domain

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Fresh transactions, Derived parents

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

(a) Number of valid committed UTs where the UTs are de-
riving leaf nodes having at least one derived data item as an
immediate parent.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Fresh transactions, Only sensor parents

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

(b) Number of valid committed UTs for UTs deriving data
items having only base nodes as immediate parents.

Figure B.11: Experiment 1b: Consistency and throughput of UTs that only derive
leaf nodes.

B.8. Performance Results 195

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

Arrival rate

ge

ne
ra

te
d

tra
ns

.

Database size 45*105 Number of generated transactions

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

Figure B.12: Experiment 1b: Number of generated triggered updates where UTs
derive leaf nodes (confidence intervals are presented in Figure D.3).

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

ODDFT with PA
ODDFT with change

Figure B.13: Experiment 1c: Number of valid committed UTs using either
the pa timestamp or a change flag to indicate potentially affected data items
(confidence intervals are presented in Figure D.4).

196 On-Demand Updating Algorithms in Value-Domain

from updates can be reduced by increasing blockingf , but the risk is that more
user transactions become invalid.
The blocking factors are part of the algorithms ODDFT, ODBFT, and ODTB,

and Figure B.14(a) shows the performance of ODDFT using different blocking
factors where UTs derive random data items. The figure shows the ratio of
valid committed UTs and the generated UTs. The blocking factor can give a
positive effect on the number of valid committed UTs. The reason is that fewer
triggered updates are started which can be seen in Figure B.14(b), and, thus,
the workload on the system is reduced letting more triggered updates and UTs
to commit. However, if the blocking factor becomes too large, the risk of not
updating enough data items is higher. This can be seen in Figure B.14(a) where
ODDFT with blockingf = 3.0 lets fewer valid UTs to commit compared to when
a blocking factor of 2.0 is used.
Note that, as indicated by Figure B.15, the number of committed UTs

increases but also the number of invalid committed UTs. Hence, increasing a
blocking factor above 1 makes ODDFT more of a throughput-centric updating
algorithm than a consistency-centric. It is a design decision for the designer of
the system what to set blockingf to.
Figure B.16 shows the effect of blocking factors where UTs derive only leaf

nodes, i.e., the system only executes actuator user transactions. In this setting,
only triggered updates can make intermediate nodes valid while in the case of
UTs deriving random data items an intermediate node can be made valid by a
UT deriving the data item. Thus, more triggered updates are needed to keep
data items valid. Also note that out of the 105 derived data items, 43 data items
are leaves in the data dependency graph, and out of these 15 data items have
only base items as immediate parents. The UTs derive only one of the 43 leaf
nodes meaning that transactions deriving a specific node arrive more often to
the system in this experiment compared to when UTs derive any derived data
item. This implies that there are also more generated triggered updates for
the intermediate nodes compared to the random case. Thus, in the only leaves
experiment, data items on paths from base items to leaf nodes get updated
more often compared to randomly choosing data items. Figure B.16 shows the
ratio of valid committed UTs and generated UTs in an experiment deriving only
leaf nodes and changing blockingf . Comparing the results in Figure B.16 to the
results in Figure B.14(a), we see that a larger value of blockingf is needed to
drop the performance for the only leaves experiment. This confirms the fact
that more triggered updates are generated for data items in the only leaves
experiment since the larger the blockingf the more updates are not scheduled.

B.8.4 Experiment 2a: Consistency and Throughput With
Relevance Check

The objective of this experiment is to investigate the performance of updating
algorithms using relevance checks. The rationale of using relevance checks is to
skip unnecessary recalculations of data items, and, thus, decrease the workload

B.8. Performance Results 197

10 20 30 40 50 60 70 80 90 100
Arrival rate

Database size 45*105. Ratio of valid and generated UT

Without updates
OD
ODDFT blockingf 1.0
ODDFT blockingf 1.5
ODDFT blockingf 2.0
ODDFT blockingf 3.0

5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(#
 v

al
id

 c
om

m
itt

ed
 U

Ts
)/(

ge

ne
ra

te
d

UT
s)

(a) Ratio of valid committed UTs and generated UTs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

Arrival rate

ge

ne
ra

te
d

tra
ns

.

Database size 45*105 Number of generated transactions

Without updates
OD
ODDFT blockingf 1.0
ODDFT blockingf 1.5
ODDFT blockingf 2.0
ODDFT blockingf 3.0

(b) Number of generated triggered updates.

Figure B.14: Experiment 1e: The effect of blockingf on the number of valid
committed UTs where a UT randomly derives a data item.

198 On-Demand Updating Algorithms in Value-Domain

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Arrival rate

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

Database size 45*105

ODDFT blockingf 1.0

Committed trans.
Generated trans.
Stale time domain
Temporal trans.
Stale value domain
Valid trans.

(a) ODDFT with blockingf = 1.0.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Arrival rate

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

Database size 45*105

ODDFT blockingf 2.0
Committed trans.
Generated trans.
Stale time domain
Temporal trans.
Stale value domain
Valid trans.

(b) ODDFT with blockingf = 2.0.

Figure B.15: Experiment 1e: Statistical data for ODDFT using two different
blocking factors.

B.8. Performance Results 199

5 10 20 30 40 50 60 70 80 90 100
Arrival rate

Database size 45*105. Ratio of valid and generated UT

Without updates
OD
ODDFT blockingf 1.0
ODDFT blockingf 1.5
ODDFT blockingf 2.0
ODDFT blockingf 3.0
ODDFT blockingf 4.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(#
 v

al
id

 c
om

m
itt

ed
 U

Ts
)/(

ge

ne
ra

te
d

UT
s)

Figure B.16: Experiment 1e: The effect of blockingf on the number of valid
committed UTs where a UT derives leaf nodes.

on the system whenever possible.
Figure B.17(a) shows the total number of committed UTs within their

deadlines for value domain based updating algorithms (ODKB_V, ODDFT, and
ODTB), time domain based updating algorithms (OD and ODKB), and using no
updates. In this experiment, the algorithms OD, ODKB, ODKB_V, and ODDFT
have no relevance check and, thus, they try to execute as many of the updates as
possible even though some of them might be unnecessary. They are plotted to
represent base lines to compare ODTB to. A skipped transaction is considered
to be successful if the skip happened before the deadline. At around 45 UTs
per second the system becomes overloaded since the number of committed
UTs stagnates using no updates. ODTB has the best performance and at high
arrival rates more UTs can commit than using no updates. This is because
of the skipping of transactions reduces the concurrency thereby giving more
time to transactions that need to be executed. The load on the system can
be decreased by using ODTB since it lets unnecessary updates and UTs to be
skipped. The value of a data item stored in the database can be used without
recalculating it. Thus, this enables resources to be reallocated to other tasks,
e.g., the diagnosis application of an EECU. Figure B.17(b) shows the number of
valid and committed UTs. ODTB lets the most valid UTs to commit and during
overload (above 45 UTs per second) the difference is in the order of thousands
UTs ormore than a 50% increase compared to updating algorithms not skipping
transactions.
The results of comparing ODTB to ODDFT_C and ODKB_C are in Figure

B.18. ODDFT_C and ODKB_C can now let more UTs to commit at high load
as many updates can be skipped since executing them produces only the same
result as the one already stored in the database, i.e., unnecessary updates are
skipped. The total load on the system is, thus, decreased.

200 On-Demand Updating Algorithms in Value-Domain

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Arrival rate

#c
om

m
itt

ed
 tr

an
sa

ct
io

ns
Database size 45*105. Number of committed UTs

Without updates
ODKB
ODKB_V
ODDFT
ODTB

(a) Number of committed UTs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

Without updates
ODKB
ODKB_V
ODDFT
ODTB

(b) Number of valid committed UTs.

Figure B.17: Experiment 2a: Consistency and throughput of UTs with no
relevance check on ODDFT and ODKB_V.

B.8. Performance Results 201

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Arrival rate

#c
om

m
itt

ed
 tr

an
sa

ct
io

ns

Database size 45*105. Number of committed UTs

Without updates
ODKB
ODKB_V
ODDFT
ODTB
ODDFT_C
ODKB_C

(a) Number of committed UTs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

Without updates
ODKB
ODKB_V
ODDFT
ODTB
ODDFT_C
ODKB_C

(b) Number of valid committed UTs.

FigureB.18: Experiment2a: Consistencyand throughputofUTswitha relevance
check on triggered updates on ODDFT (confidence intervals are presented in
Figure D.5.)

202 On-Demand Updating Algorithms in Value-Domain

From Figure B.18 we see that ODKB_C lets slightly more UTs commit
than ODTB, but more UTs are valid for ODTB. ODTB also has more valid
committed UTs than ODDFT_C. A comparison between ODTB and ODDFT_C
using blocking factors greater than 1 is presented in Experiment 2b.

B.8.5 Experiment 2b: Effects of Blocking Factors and Only
Deriving Actuator Transactions

Figure B.19 shows the behavior of updating algorithms that can skip updates
and their behavior with different values on blockingf . ODDFT_C increases the
performance with blockingf > 1 while ODTB decreases the performance for
all blockingf > 1. The reason ODTB drops in performance is that a check is
done for the execution time of the remainder of a path to the data item being
updated (the if-statement on line 7 of ODTB in Figure B.4). If the check fails,
none of the updates are put in the schedule of updates. Since blockingf > 1
increases the execution time of a path, it is more likely there is not enough time
for these updates. Skipping too many updates results in a negative impact on
the performance. ODDFT_C could put some of these updates in the schedule,
which makes it a more consistency-centric algorithm than ODTB.
Figure B.20(a) shows the performance of ODTB, ODDFT_C, and ODKB_C

when they perform the best. A blocking factor of 1.5 has been chosen for
ODDFT_C since all the blocking factors perform equally as shown in Figure
B.19(a). The blocking factor is not used in the ODKB_C algorithm. ODDFT_C
has the best performance of the algorithms. However, a full ODDFT schedule
is needed and a validity check of the immediate parents is needed before a
triggered update is started. The scheduling step and the validity check are
cheaper in the ODTB algorithm.
Figure B.21 shows the performance of ODTB and ODDFT_C, and it shows

that ODTB lets more transactions commit, but ODDFT_C let more valid
transactions to commit. Hence, ODDFT_C is consistency-centric while ODTB
is throughput-centric.

B.8. Performance Results 203

5 10 20 30 40 50 60 70 80 90 100
Arrival rate

Database size 45*105. Ratio of valid and generated UT

ODDFT_C blockingf 1.0
ODDFT_C blockingf 1.5
ODDFT_C blockingf 2.0
ODDFT_C blockingf 2.5
ODDFT_C blockingf 3.0

0.4

0.5

0.6

0.7

0.8

0.9

1

(#
 v

al
id

 c
om

m
itt

ed
 U

Ts
)/(

ge

ne
ra

te
d

UT
s)

(a) Ratio of valid committed UTs and generated UTs for
ODDFT_C.

10 20 30 40 50 60 70 80 90 100
Arrival rate

Database size 45*105. Ratio of valid and generated UT

ODTB blockingf 1.0
ODTB blockingf 1.5
ODTB blockingf 2.0
ODTB blockingf 2.5
ODTB blockingf 3.0

5

0.4

0.5

0.6

0.7

0.8

0.9

1

(#
 v

al
id

 c
om

m
itt

ed
 U

Ts
)/(

ge

ne
ra

te
d

UT
s)

(b) Ratio of valid committed UTs and generated UTs for
ODTB.

Figure B.19: Experiment 2b: Performance for updating algorithms that have
the possibility to skip updates.

204 On-Demand Updating Algorithms in Value-Domain

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

ODTB
ODDFT_C blockingf 1.5
ODKB_C

(a) Number of valid committed UTs for the ODDFT_C,
ODTB, and ODKB_C with parameters such that they per-
form the best.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Arrival rate

ge

ne
ra

te
d

tra
ns

.

Database size 45*105 Number of generated transactions
ODTB
ODDFT_C blockingf 1.5
ODKB_C

(b) Number of generated triggered updates.

Figure B.20: Experiment 2b: Performance for updating algorithms that has the
possibility to skip updates (confidence intervals are presented in Figure D.6).

B.8. Performance Results 205

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Arrival rate

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

Database size 45*105

ODDFT_C blockingf 1.5
Committed trans.
Generated trans.
Stale time domain
Temporal trans.
Stale value domain
Valid trans.

(a) ODDFT_C with blockingf = 1.5.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Arrival rate

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

Database size 45*105

ODTB
Committed trans.
Generated trans.
Stale time domain
Temporal trans.
Stale value domain
Valid trans.

(b) ODTB

Figure B.21: Experiment 2b: Performance metrics for ODDFT_C with
blockingf = 1.5 and ODTB.

APPENDIX C

Multiversion Concurrency
Control with Similarity

This appendix describes the simulator setup of DIESIS and performanceresults of MVTO-SUV, MVTO-SUP, and MVTO-SCRC where ODTB is used
as the updating algorithm. The performance results are contrasted to well-
established techniques to implement concurrency control. The sections in this
chapter complement sections 5.1–5.5.

C.1 Performance Results

C.1.1 Simulator Setup

This section describes the settings of RADEx++ being used in the experiments
in sections 5.5 and C.1.2–C.1.6.
A set of tasks is executing periodically, and they invoke UTs that execute

with the same priority as the task. The tasks are prioritized according to RM,
and the base period times are: 60 ms, 120 ms, 250 ms, 500 ms, and 1000 ms.
These period times are multiplied with the ratio 32/arrival_rate, where 32 is
the number of invoked tasks using the base period times, and arrival_rate is
the arrival rate of UTs. The data item a UT derives is randomly determined by
taking a number from the distribution U(0,|D|). In the experiments a 45× 105
database has been used. Every sensor transaction executes for 1 ms and every
user transaction and triggered update executes for 10 ms. A simulation runs
for 150 s with a specified arrival rate. The database system is running on
µC/OS-II [84] in a DOS command window on an IBM T23 laptop running
Windows 2000 servicepack 4. The PC has 512 Mb of RAM and a Pentium 3

206

C.1. Performance Results 207

running with 1.1 GHz. The user transactions are not started if they have passed
their deadlines, but if a transaction gets started it executes until it is finished.
As in the discrete event simulator RADEx++, a value on every data item

is simulated by adding a random value such that the value of a data item
is always monotonically increasing. Every write operation creating the most
recent version is adding, if not stated otherwise, a value from the distribution
U(0,350) to the previous most recent version. The data validity intervals are set
to 400 for all data items. The creation of versions by multiversion concurrency
control algorithms involves taking values of the two closest versions, one older
and one newer and then randomly deriving a value that is not larger than the
newer version. Base item updates are executing on average every 100 ms with a
priority higher than UTs, i.e., the period time is 50 ms and for every base item
bi there is a chance of 50% that a bi is updated. The memory pool used by the
multiversion concurrency control algorithms is set to 300 data items and 150 of
these are always used to store the latest version of every data item.
The updating algorithm in all conducted experiments presented in this

section is the ODTB algorithm since it has shown (Experiment 2a) to give good
performance. blockingf is set to 1 and execution times on updates are not used
since all scheduled updates are executed.

C.1.2 Experiment 4b: Memory Pool Size

This experiment investigates how the memory pool size influences the perfor-
mance of the system. The simulator uses the settings described in the Simulator
Setup section. The hypothesis is that MVTO-SUP should note a larger decrease
in performance when the pool size decrease. MVTO-SUP uses more versions
since a new version is stored even though it is similar to an already existing
version.
Results in Figure C.1 support the hypothesis. MVTO-SUP clearly has worse

performance when the pool size is small. Note that at least 150 versions are
used to store the current versions of all data items. The remaining versions in
the pool are used by the concurrency control algorithm because of concurrent
transactions.
Figure 5.11(b) shows the number of committed user transactions before

their deadlines using multiversion concurrency control algorithms using fixed
validity intervals. MVTO-SCRC and MVTO-SUV have the same performance,
whereas MVTO-SUP has worse performance for small pool sizes. If data items
in a system are best modeled by fixed validity intervals, then MVTO-SCRC is a
good choice of a concurrency control algorithm.

C.1.3 Experiment 4c: Priority Levels

This experiment investigates at which priority levels transactions are restarted.
Restarts should preferably be based on priorities, restarting transactions with
low priority before restarting those with higher priority. The purging and

208 Multiversion Concurrency Control with Similarity

20 30 40 50 60 70 80
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO–S 170
MVTO–S 300
MVTO–S 170
MVTO–S 300
MVTO–S 170
MVTO–S 300

CRC

CRC
UP
UP
UV
UV

Figure C.1: Experiment 4b: The performance when using different sizes of the
memory pool.

restart mechanisms of the MVTO concurrency control algorithms are designed
for restarting low priority transactions first. Figure C.2 shows how many
transactions are restarted in each priority level.
The absolute number of restarts is highest for high prioritized transactions

for HP2PL and OCC whereas the multiversion algorithms restart transaction
in low levels first. This is indicated as the number of restarts drops for high
prioritized transactions and this number is increasing for HP2PL and OCC for
higher priority levels.

C.1.4 Experiment 4d: Overhead

The purpose of this experiment is to investigate how the overhead affects
performance of concurrency control algorithms.
Experiment 4a has also been conducted on a slower computer (denoted

computer two), and the results for NOCC and OCC on both computers are in
Figure C.3(a), where NOCC-C2 and OCC-C2 are executed on computer two.
Technical data of computer two are: Pentium 3 600 MHz, Windows 2000
Service Pack 4.
All transactions have a fixed execution time, and the workload of the sensor

transactions has an average utilization of 45/2 × 1/100 = 0.225. Thus, if the
system had no overhead then the algorithms would give the same performance
on both computers. Figure C.3(b) shows that the database system introduces
overhead that penalizes the performance on a slow computer. The scheduling of
updates also takes time, and concurrency control algorithms addmore overhead
to the system and this can be seen in Figure C.3(b) where the OCC/OCC-C2 plot
is above the NOCC/NOCC-C2 plot.

C.1. Performance Results 209

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

Priority

re

st
ar

te
d

tra
ns

ac
tio

ns

Database size 45*105. Number of restarted transaction.

HP2PL
OCC
MVTO–S
MVTO–S
MVTO–S
OCCS

UP
CRC
UV

Figure C.2: Experiment 4c: Number of restarts at different priority levels at an
arrival rate of 40 UTs per second. Level one represents the highest priority.

C.1.5 Experiment 4e: Low Priority

In this experiment an additional task with the lowest priority has been added,
issuing one UT reading 25 data items. The period time of the new task is 1000
ms. The throughput of this transaction shows how the system can cope with,
e.g., a diagnosis task executing with the lowest priority as in the EECU. The
results in Figure C.4(a) show that the low prioritized task only gets time to
execute at low arrival rates, because the system is overloaded at high arrival
rates. No low prioritized transactions are successfully committed using the
RCR algorithms. The reason can be seen in Figure C.4(b) plotting the restarts
of the lowest prioritized transaction. This indicates that the values read by
the transaction are not relative consistent. This is expected since the read set
has 25 members, and it is quite likely that at least one of them has changed
making the set not relative consistent. In this case using a large read set, we
see that multiversion concurrency control gives better performance since fewer
transactions need to be restarted.

C.1.6 Experiment 4f: Transient State

In this experiment, the simulator is set up as in experiment 4a, but value
changes are not random. Instead every write of a data item increase its value
with 450 making every new version outside the data validity intervals since
these are set to 400 for every data item. The ODTB algorithm cannot skip as
many transactions as in experiment 4a. Comparing results in Figure C.5 to those
in Figure 5.7 show that the throughput of UTs has lessened when values change
with 450 instead of randomly. The few restarts of multiversion concurrency
control algorithms do not affect the performance, and they perform the same

210 Multiversion Concurrency Control with Similarity

15 20 25 30 35 40 45 50 55 60
2000

2500

3000

3500

4000

4500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed UTs.

NOCC
NOCC−C2
OCC
OCC−C2

(a) Number of committed UTs on fast and slow computers.

15 20 25 30 35 40 45 50 55 60
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Arrival rate

Ra
tio

Database size 45*105. Ratio of peformance on fast and slow computer.

NOCC/NOCC−C2
OCC/OCC−C2

(b) Ratio of committed UTs of fast and slow computer.

FigureC.3: Experiment 4d: An experiment executed on fast and slow computers.

C.1. Performance Results 211

15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed low priority UTs.

MVTO
MVTO–S
MVTO–S
MVTO–S
RCR–NOCC
RCR–OCC
RCR–OCC–S

CRC
UP

UV

(a) Number of committed UTs executing with lowest priority.

15 20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

400

Arrival rate

re

st
ar

te
d

UT
s

Database size 45*105. Number restarts of low priority UTs.

MVTO
MVTO–S
MVTO–S
MVTO–S
RCR–NOCC
RCR–OCC
RCR–OCC–S

CRC
UP

UV

(b) Number of restarts at low arrival rates of the transaction with
the lowest priority.

Figure C.4: Experiment 4e: Performance of an additional task with the lowest
priority issuing a transaction reading 25 data items.

212 Multiversion Concurrency Control with Similarity

as using no concurrency control at all. In this experiment, OCC-S has the same
performance as OCC, which is expected since no restarts can be skipped in
OCC-S due to that values are never similar.
The RCR algorithms have considerably worse performance compared to

results presented in Figure 5.9. The reason is again that values are not similar.
When values are not similar, updates cannot be skipped and changes in a base
item are propagated to all its descendants. This means that it is likely that some
values read by a transaction are derived after the transaction started which
results in a restart of the transaction.

15 20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

3000

3500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of commited user transactions.

HP2PL
MVTO
MVTO–S
MVTO–S
MVTO–S
NOCC
OCC
OCC–S
RCR–NOCC
RCR–OCC
RCR–OCC–S

CRC
UP

UV

Figure C.5: Experiment 4f: Every write of a data item changes its value with 450
(confidence intervals are presented in Figure D.9).

APPENDIX D

Confidence Intervals

This chapter presents 95% confidence intervals (see Section 2.4), using thet-distribution, of some of the performance evaluations.

213

214 Confidence Intervals

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Arrival rate

#c
om

m
itt

ed
 tr

an
sa

ct
io

ns
Database size 45*105. Number of committed UTs

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

(a) Number of committed UTs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

(b) Number of valid committed UTs.

Figure D.1: Experiment 1a: Consistency and throughput of UTs.

215

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

OD
OD with pa
ODDFT

(a) Number of valid committed UTs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

Arrival rate

ge

ne
ra

te
d

tra
ns

.

Database size 45*105 Number of generated transactions

OD
OD with pa
ODDFT

(b) Number of generated triggered updates.

Figure D.2: Experiment 1a: Effects of measuring staleness of data items at
deadline of UT.

216 Confidence Intervals

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

Arrival rate

ge

ne
ra

te
d

tra
ns

.

Database size 45*105 Number of generated transactions

Without updates
OD
ODKB
OD_V
ODKB_V
ODDFT
ODBFT

Figure D.3: Experiment 1b: Number of generated triggered updates where UTs
derive leaf nodes.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

ODDFT with PA
ODDFT with change

Figure D.4: Experiment 1c: Number of valid committed UTs using either the pa
timestamp or a change flag to indicate potentially affected data items.

217

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Arrival rate

#c
om

m
itt

ed
 tr

an
sa

ct
io

ns

Database size 45*105. Number of committed UTs

Without updates
ODKB
ODKB_V
ODDFT
ODTB
ODDFT_C
ODKB_C

(a) Number of committed UTs.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

Without updates
ODKB
ODKB_V
ODDFT
ODTB
ODDFT_C
ODKB_C

(b) Number of valid committed UTs.

Figure D.5: Experiment 2a: Consistency and throughput of UTswith a relevance
check on triggered updates using ODDFT.

218 Confidence Intervals

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Arrival rate

#v
al

id
 c

om
m

itt
ed

 tr
an

sa
ct

io
ns

Database size 45*105 Valid transactions, Validity bounds

ODTB
ODDFT_C blockingf 1.5
ODKB_C

(a) Numberof valid committedUTs for theODDFT_C,ODTB,
and ODKB_C with parameters such that they perform the
best.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Arrival rate

ge

ne
ra

te
d

tra
ns

.

Database size 45*105 Number of generated transactions

ODTB
ODDFT_C blockingf 1.5
ODKB_C

(b) Number of generated triggered updates.

Figure D.6: Experiment 2b: Performance for updating algorithms that has the
possibility to skip updates.

219

15 20 25 30 35 40 45 50 55 60
2000

2500

3000

3500

4000

4500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

HP2PL
NOCC
OCC
OCC−S
RCR−NOCC
RCR−OCC
RCR−OCC−S

(a) Number of committed UTs for single-version concurrency con-
trol algorithms.

15 20 25 30 35 40 45 50 55 60
2000

2500

3000

3500

4000

4500

5000

5500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO
MVTO-S
MVTO-S
MVTO-S
NOCC

CRC
UP
UV

(b) Number of committed UTs for multiversion concurrency con-
trol algorithms.

Figure D.7: Experiment 4a: Number of UTs committing before their deadlines
using single- and multiversion concurrency control algorithms.

220 Confidence Intervals

15 20 25 30 35 40 45 50 55 60
2000

2500

3000

3500

4000

4500

5000

5500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of committed user transactions.

MVTO
MVTO–S
MVTO–S
MVTO–S
RCR–NOCC
RCR–OCC
RCR–OCC–S

CRC
UP

UV

Figure D.8: Experiment 4a: A comparison of single-version concurrency control
algorithms enforcing relative consistency andmultiversion concurrency control
algorithms.

15 20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

3000

3500

Arrival rate

co

m
m

itt
ed

 U
Ts

Database size 45*105. Number of commited user transactions.

HP2PL
MVTO
MVTO−S
MVTO−S
MVTO−S
NOCC
OCC
OCC−S
RCR−NOCC
RCR−OCC
RCR−OCC−S

CRC

UP
UV

Figure D.9: Experiment 4f: Every write of a data item changes its value with
450.

INDEX

adjacency matrix, 116
Admission control, 15, 123
ancestor, see data item
AssignPrio, 67, 154, 182, 183, 190

BeginTrans, 63, 189

concurrency control
current version, 40
proper version, 34, 40, 77, 79

coupling, 26, 38
crank angle, 25

DAG, see directed acyclic graph
data dependency graph, see directed

acyclic graph
data dissemination, 158
data freshness
absolute consistency, 20
AVI, 20, 162
relative consistency, 21
similarity, 21, 52, 152, 161

data item
required, 27, 113, 115, 157
not required, 27, 113, 115, 157
ancestor, 40, 43
current version, 40
data freshness, see data freshness
descendant, 40
immediate children, 40, 121
immediate parents, see read set

updating algorithm, see schedule
data items
potentially affected, 43

database
absolute consistency, 20
active database, 23
before image, 30, 48
cache manager, 18
consistency constraint, see con-
currency control

data freshness, see data freshness
data manager, 18
database management system, 17
database system, 18
HP2PL, 32
information system, 17
integrity constraint, see concur-
rency control

real-time, 18
recoverable, 30
recovery manager, 18
recovery module, 29
relative consistency, 20
snapshot, 7, 35, 75, 76, 155
strict 2PL, 32
transaction management, 18
transaction manager, 49

descendant, see data item
directed acyclic graph, 39
adjacency matrix, 116

221

222 INDEX

edge, 40
head, 40
in-degree, 40
intermediate nodes, 40, 64
leaf node, 40, 50, 116
out-degree, 40
path, 40
source nodes, 40
tail, 40

dispatching, 13

Earliest Deadline First, 14
embedded system, 1
engine control, 2
crank angle, 25

Engine Management System, 3
ExecTrans, 189, 193
explanatory variable, 137

Imprecise computation
milestone approach, 157
Primary/alternativeapproach, 157
sieve approach, 157

job, 11

materialized relation, 153

Rate Monotonic, 14
RBound, 123
read set, 40
real-time operating system, 13
real-time system, 11
deadline, 11
job, 11
RTOS, 13
task, 11
workload, 12, 14

regression analysis, 134
relevance check, 47, 57
response variable, 137
restart flag, 86

schedule
(m, k)-firm, 15
ACUA, 119, 157

Adaptive Earliest Deadline First,
15

algorithm, 12
data items, 43
dynamic priority, 14
Earliest Deadline First, 14
feasibility test, 15, 114, 119
feasible, 13, 15
non-preemptive, 13
OD, 58
ODBFT, 182
ODDFT, 61, 180
ODDFT_C, 62
ODKB, 58
ODKB_C, 185
ODO, 58
ODTB, 62, 185
optimal, 15
preemptive, 13
Rate Monotonic, 14
RBound, 123
Skip-over, 16
static priority, 14

software complexity, 2

task, 11
aperiodic, 11
arrival time, 12
firm real-time, 12
hard real-time, 12
job, 11
periodic, 11
precedence constraint, 12
relative deadline, 12
release time, 12
soft real-time, 12
sporadic, 11
utility function, 12

task instance, 11
temporal coherency, 158
transaction, 18
abort, 19, 30
ACID, 19
commit, 19
dirty read, 28
ghost update, 28

INDEX 223

inconsistent read, 28
lost update, 27
sensor transaction, 50
triggered update, 50, 116
user transaction, 41, 50, 62, 72,
120, 154

WCET, 40
well-formed, 19

update function, 116
code part, 116
control part, 116

updating
AUS, 56, 178
MTBI, 117, 134
PAUS, 57, 178

utility function, 12

view, 153

workload, 12, 14

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

No 94 Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity

of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

No 292 Mats Wirén: Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

No 371 Bengt Savén: Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

No 383 Andreas Kågedal: Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

No 461 Lena Strömbäck: User-Defined Constructions in

Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och flexi-
bla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Syn-
thesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

No 563 Eva L Ragnemalm: Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN
91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and

Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN
91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems,
2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-
318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication Among
Programmers Worldwide, 2002,
ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the
Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av informa-

tionsystem, 2003, ISBN 91-7373-618-X.
No 821 Mikael Kindborg: Concurrent Comics - program-

ming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-
Time Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Improve
Development and Testing - An Emperical Study in
Software Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineer-
ing Tool Data Representation and Exchange, 2004,
ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for

Digital TV, 2004, ISBN 91-7373-940-5.
No 869 Jo Skåmedal: Telecommuting’s Implications on

Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enterprise
Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of On-
tologies in Information-Providing Dialogue Sys-
tems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Health-
care Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish
human-human and human-machine travel booking
dialogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign Lin-
quistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using Fi-
nite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-
inventory systems - Modellling and Analysis in
both a traditional and an e-business context, 2004,
ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interac-
tion, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-
5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Schedul-
ing Techniques for Real-Time Embedded Systems,
2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as Con-
structing and Opposing Customer Focus: Three Case
Studies on Management Accounting and Customer
Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other Exten-
sions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Infor-
mation Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for
Constraint Satisfaction and Related Problems -
Methods and Applications, 2005, ISBN 91-85297-
99-2.

No 963 Calin Curescu: Utility-based Optimisation of Re-
source Allocation for Wireless Networks, 2005.
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic Situa-
tions, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-
85457-54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour,
2005, ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application Inte-
gration for Business-to-Business Communications,
2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for Auto-
mated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Re-
usable and Reconfigurable Real-Time Software us-
ing Aspects and Components, 2006, ISBN 91-
85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with De-
tailed Contact Analysis, 2006, ISBN 91-85497-43-
X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact Sat-
isfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level
Language for Modeling with Partial Differential
Equations, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-
79-8.

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN
91-85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Coopera-
tion, 2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code
Generation for Digital Signal Processors, 2006,
ISBN 91-85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of
Equation-Based Simulation Programs, 2006, ISBN
91-85523-68-2.

No 1023 Sonia Sangari: Some Visual Correlates to Focal
Accent in Swedish, 2006, ISBN 91-85523-67-4.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and Specifica-
tions, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natu-
ral Language Processing, 2006, ISBN 91-85643-
88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of
Glasses - Applying Systemic Accident Models on
Road Safety, 2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which can-
not be seen - A Cognitive Systems Engineering per-
spective on requirements management, 2006, ISBN
91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for
Semantic Web Technology, 2007, ISBN 91-85643-
31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion
in Software Testing, 2007, ISBN 978-91-85715-74-
9.

No 1075 Almut Herzog: Usable Security Policies for
Runtime Environments, 2007, ISBN 978-91-
85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for satisfiability and related prob-
lems, 2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architec-
tures, 2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogene-
ous Scheduling Policies, 2007, ISBN 978-91-
85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous
Shape Writing for Text Entry and Control, 2007,
ISBN 978-91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007,
ISBN 978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting
socially through embodied action, 2007, ISBN 978-
91-85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Manage-
ment in Conversational Recommender Systems,
ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in Em-
bedded Systems, ISBN 978-91-85831-33-3.

Linköping Studies in Information Science

No 1 Karin Axelsson: Metodisk systemstrukturering- att
skapa samstämmighet mellan informa-tionssyste-
markitektur och verksamhet, 1998. ISBN-9172-19-
296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet
- en studie av datorstödd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos in-
formationssystem och affärsprocesser, 2000. ISBN
91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi
för metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden -
Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-
963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005, ISBN
91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-
85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese Chris-
tiansson: Mötet mellan process och komponent -
mot ett ramverk för en verksamhetsnära kravspeci-
fikation vid anskaffning av komponentbaserade in-
formationssystem, 2006, ISBN 91-85643-22-X.

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070221161557
 680.3150
 S-5
 Blank
 467.7165

 Tall
 1
 0
 No
 635
 395
 None
 Right
 62.3622
 0.0000

 Both
 97
 AllDoc
 107

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

