I nteractive Analysis of Attack Graphs Using Relational
Queries*

Lingyu Wang!, Chao Yao', Anoop Singhal?, and Sushil Jgjodia’

L Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444, USA
{lwang3, cyao, jajodia}l@gmu.edu
2 Computer Security Division, NIST
Gaithersburg, MD 20899, USA
anoop.singhal@nist.gov

Abstract. Attack graph isimportant in defending against well-orchestrated net-
work intrusions. However, the current analysis of attack graphs requires an a-
gorithm to be developed and implemented, causing a delay in the availability of
analysis. Such a delay is usually unacceptable because the needs for analyzing
attack graphs may change rapidly in defending against network intrusions. An
administrator may want to revise an analysis upon observing its outcome. Such
aninteractive analysis, similar to that in decision support systems, isdifficult if at
all possible with current approaches based on proprietary algorithms. This paper
removes the above limitation and enables interactive analysis of attack graphs.
We devise a relational model for representing necessary inputs including net-
work configuration and domain knowledge. We generate the attack graph from
those inputs as relational views. We then show that typical analyses of the attack
graph can berealized asrelational queries against the views. Our approach elimi-
nates the needs for devel oping a proprietary algorithm for each different analysis,
because an analysisis now simply arelational query. The interactive analysis of
attack graphsis now possible, because relational queries can be dynamically con-
structed and revised at run time. Moreover, the mature optimization techniquesin
relational databases can also improve the performance of the analysis.

1 Introduction

As the result of topological vulnerability analysis, an attack graph describes
al possible sequences of exploits an attacker can follow to advance an intru-

* This material is based upon work supported by National Institute of Standards and Tech-
nology Computer Security Division; by Homeland Security Advanced Research Projects
Agency under the contract FA8750-05-C-0212 administered by the Air Force Research Lab-
oratory/Rome; by Army Research Office under grants DAAD19-03-1-0257 and W911NF-05-
1-0374, by Federal Aviation Administration under the contract DTFAWA-04-P-00278/0001,
and by the National Science Foundation under grants 11S-0242237 and 11S-0430402. Any
opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the sponsoring organizations.

2

sion [16, 18, 1]. Attack graphs have been explored for different purposes in de-
fending against network intrusions. First, an attack graph can more clearly re-
veal the weakness of a network than individual vulnerability does by providing
the context of attacks. Second, attack graphs can indicate available options in
removing identified weaknesses and help administrators to choose an optimal
solution. Third, the knowledge encoded in attack graphs can also be used to
correlate isolated alerts into probable attack scenarios.

However, many current approaches to the analysis of attack graphs share a
common limitation. That is, a proprietary algorithm must be developed and im-
plemented before the corresponding analysis becomes possible. Standard graph-
related algorithms usually do not apply here due to unique characteristics of
attack graphs. However, the delay in the analysis of attack graphsis usually un-
acceptable for defending against network intrusions. The needsfor analyzing an
attack graph usually change rapidly due to constantly changing threats and net-
work configurations. An administrator may need to modify an analysis after the
results of that analysis are observed. Such an interactive analysis, similar to that
in decision support systems, isdifficult if at all possible with current approaches
based on proprietary agorithms.

In this paper, we provide a solution to the interactive analysis of attack
graphs. First, we represent in the relational model the necessary inputs includ-
ing network configuration and domain knowledge. We then generate the attack
graph using relational queries, which can either be materialized as relations or
simply left as the definition of relational views. The latter case is especially
suitable for large networks where materializing the complete attack graph can
be prohibitive. Second, we show how typical analyses of attack graphs can be
realized as relational queries. The interactive analysis of attack graphs is now
possible, because administrators can immediately pose new queries based on
the outcome of previous analyses. Finally, as a side-benefit, the performance of
an analysis can usualy be transparently improved by the mature optimization
techniques available in most relational databases.

The rest of this paper is organized as follows. The next section reviews re-
lated work. Section 3 proposes a relational model for representing the attack
graph. Section 4 then discusses how typical analyses can be written asrelational
queries. Section 5 describes our implementation of the proposed methods. Fi-
nally, Section 6 concludes the paper and gives future direction.

2 Redated Work

Attack graphs represent the knowledge about the inter-dependency between vul-
nerabilities [6, 21, 14, 4,13, 16, 19, 17, 1, 18, 8]. Model checking was first used

3

to decide whether a goal state is reachable from the initial state [16, 15] and
later used to enumerate al possible sequences of attacks connecting the two
states [18, 9]. However, the number of attack sequences is potentialy expo-
nential, leading to high complexity. A more compact representation was thus
proposed based on the monotonicity assumption (that is, an attacker never relin-
quishes an obtained capability) [1]. The new representation keeps exactly one
vertex for each exploit or condition, leading to attack graphs of polynomial size.

Analyses of attack graphs have been used for different purposes in defend-
ing against network intrusions [18, 9, 12,11, 20]. The minimal critical attack
set analysis finds a minimal subset of attacks whose removal prevents attackers
from reaching the goal state[18, 9]. However, the attacksinaminimal critical at-
tack set are not necessarily independent, and a consequence cannot be removed
without removing its causes. This observation leads to the minimum-cost hard-
ening solution, which isaminimal set of independent security conditions [12].
Finding the minimum set of attacks leading to given goals is computationally
infeasible, whereas aminimal set can be found in polynomial time[18,9, 1]. All
attacks involved in at least one of such minimal sets of attacks can also be enu-
merated [1]. Finally, in exploit-centric alert correlation [11, 20], attack graphs
assist the correlation of isolated intrusion alerts.

The afore-mentioned analysis of attack graphs is largely based on propri-
etary algorithms. However, as mentioned earlier, this may delay anew analysis
and make interactive analysis impossible. To our best knowledge, our study is
the first to remove this limitation and to enable interactive analysis of attack
graphs. On the other hand, decision support systems, such as on-line analyti-
cal processing (OLAP) [7], have been used for interactive analysis of data for
along time. However, an analyst there is usually interested in generalized data
and statistical patterns, which is different from the analysis of attack graphs.

3 A Reational Model For Representing Attack Graphs

Section 3.1 reviews the basic concept of attack graph. Section 3.2 then proposes
arelational model for representing attack graphs as relational views.

3.1 Attack Graph

The attack graph is usually visualized as a directed graph having two type of
vertices, exploits and security conditions (or simply conditions). An exploitisa
triple (hs, hq, v), Wwhere hs and h, are two connected hosts and v isavulnerabil -
ity on the destination host k4. A security conditionisapair (h, ¢) indicating the
host h satisfies a condition ¢ relevant to security (both exploits and conditions
may involve more hosts, for which our model can be easily extended).

An attack graph has two types of edges denoting the inter-dependency be-
tween exploits and conditions. First, therequirerelation isadirected edge point-
ing from a condition to an exploit. The edge means the exploit cannot be exe-
cuted unless the condition is satisfied. Second, the imply relation points from an
exploit to a condition. This means executing the exploit will satisfy the condi-
tion. Notice that there is no edge between exploits (or conditions). Example 1
illustrates the concept of attack graph.

Example 1. The left-hand side of Figure 1 depicts our running example of at-
tack graph. The right-hand side shows a simplified version where = denotes
the existence of a vulnerability SADMIND BUFFER OVERFLOW (Nessus ID
11841), y the user privilege, and A the exploitation of that vulnerability. The
attack graph shows an attacker having user privilege on host 3 can exploit the
vulnerability on hosts 1 and 2 and obtain user privilege on the hosts.

Attack Graph (Exploits As Ovals) Simplified Version (Exploits As Triplets)
(h1,sadmind_service) (h3,user_priviledge)

(h2,h1,sadmind_bof) (h3,h1,sadmind_bof)

LX) (€3 2%

(h1,user_priviledge) (h2,sadmind_service)
(2,1,A) (3,1,A) (3,2,A) (1,2,A)

Ly @y
(h2,user_priviledge)

Fig. 1. An Example of Attack Graph

Two important aspects of attack graphs are as follows. First, the require re-
lation is aways conjunctive whereas the imply relation is always digunctive.
More specifically, an exploit cannot be realized until all of its required condi-
tions have been satisfied, whereas a condition can be satisfied by any one of
the realized exploits. Second, the conditions are further classified asinitial con-
ditions (the conditions not implied by any exploit) and intermediate conditions.
Aninitial condition can be independently disabled to harden a network, whereas
an intermediate condition usually cannot be [12].

3.2 A Relational Mode for Attack Graphs

The complete attack graph is not explicitly represented in our model, but left
as the result of arelational query. The result to the query may be materialized,
or the query can simply be left as a view. Such flexibility is important to large

5

networks where materializing the complete attack graph may be prohibitive. We
model two inputs, the network configuration (vulnerabilities and connectivity of
the network) and the domain knowledge (the interdependency between exploits
and conditions), asillustrated in Example 2. The domain knowledgeis available
intoolslike the Topological Vulnerability Analysis (TVA) system, which covers
more than 37,000 vulnerabilities taken from 24 information sources including
X-Force, Bugtrag, CVE, CERT, Nessus, and Snort [8]. On the other hand, the
configuration information including vul nerabilities and connectivity can be eas-
ily obtained with tools such as the Nessus scanner [5].

Example 2. Figure 2 depicts the network configuration and domain knowledge
required for generating the attack graph in Example 1. The left-hand side shows
the connectivity between the three hosts, and initially hosts 1 and 2 satisfy the
condition z and host 3 satisfies y. The right-hand side says that an attacker can
exploit the vulnerability A on the destination (denoted by the symbol D) host,
if it satisfies x and the source host satisfies y at the sametime. This exploitation
will then satisfy y on the destination host.

Network Configuration Domain Knowledge

*, D) v 9

v

Fig. 2. An Example of Network Configuration and Domain Knowledge

Definition 1 defines the schema of our model. The connectivity relation rep-
resents the connectivity from each the source host H; to the destination host
Hy. The condition relation indicates ahost H having an initial condition C. The
condition-vulnerability dependency relation indicates a condition C' is required
for exploiting a vulnerability V' on the destination host. The attribute F' indi-
cates whether the condition C' belongs to the source (S) or the destination (D)
host. The vulnerability-condition dependency relation indicates a condition C
is satisfied by exploiting a vulnerability V.

The last three relations together with the condition relation are required for
representing the complete attack graph (those relations may or may not need to
be materialized). The vertices are conditions (therelation H C') and exploits (the
relation £X), and the edges interconnect them are represented by relations CE
and EC'. Each relation has acomposite key composed of all the attributesin that
relation. Example 3 shows the relational model of Example 2.

6

Definition 1. Define the following relational schemata:

Connectivity HH = (Hg, Hy)

Condition HC = (H,C)

Condition-Vulnerability Dependency C'V = (C, F,V)
Vulnerability-Condition Dependency VC = (V,C)
Exploit EX = (H,, Hy, V)

Condition-Exploit CE = (H,C,Hs,Hg,V)
Exploit-Condition EC = (H,, Hy,V, H,C)

Example 3. Table 1 describes a relational model composed of four relations,
which precisely represents Example 2.

hh(HH) hc(HC) ov(CV) vc(VC)

CFV
I
1 x x DA
3 1 y SA
3 2 2 X

Table 1. Representing Network Configuration and Domain Knowledge in Relational Model

4 Analyzing Attack Graphs With Relational Queries

We first show how the complete attack graph can be generated using relational
queries based on our model in Section 4.1. We then realize typical analyses of
attack graphs as relational queriesin Section 4.2.

4.1 Generating Attack Graphs Using Relational Queries

We regard the generation of the complete attack graph from given network con-
figuration and domain knowledge as a special anaysis, and we show how to
conduct thisanalysis using relational queries. First, Example 4 illustrates a gen-
eration procedure similar to that in [1].

Example 4. Given the network configuration and domain knowledge in Exam-
ple 2, the attack graph in Figure 1 can be generated by an iterative procedure
as follows. Initially, the attack graph only includes the three initial conditions
(1,z), (3,y), (2,z) as vertices. First, domain knowledge implies that the con-
ditions (1, z) and (3, y) jointly imply the exploit (3,1, A), and (2,) and (3, y)

7

jointly imply (3,2, A). Second, the two conditions (1,y) and (2,y) are satis-
fied. Next, we repeat the above two steps with the two new conditions and insert
four more edges between (1, y), (2,y) and the two exploits. The process then
terminates because no new conditions are inserted in the second iteration.

The key challenge in realizing the above procedure using relational queries
liesinthe conjunctive nature of the require relation. More specifically, an exploit
cannot berealized unlessall the required conditions are satisfied. In contrast, the
imply relation can be easily realized using a join operation, since a condition
can be satisfied by any one of the realized exploits. We dea with this issue
with two set-difference operations as follows (similar to the division operation
in relational algebra). Intuitively, we first subtract (that is, set difference) the
satisfied conditions from the conditions required by all possible exploits. The
result includes all the unsatisfied but required conditions, from which we can
derive the exploits that cannot be realized. Then we subtract the unrealizable
exploits from all possible exploits to derive those that can indeed be realized.

Definition 2 states the relational queries corresponding to each iteration of
the procedureillustrated in Example 4. In the definition, @1 and Q5 areinterme-
diate results (we shall use subscripts in numbers to denote intermediate results)
of satisfied and unsatisfied conditions up to this iteration, respectively. The ver-
tices of the attack graph are . and QQ.., which arerealized exploits and satisfied
conditions, respectively. The fourth and fifth relation jointly compose the edge
set. The set union operations do not keep duplicates, and hence this process
always terminates. Example 5 illustrates those queries.

Definition 2. Given hh(HH), he(HC'), cv(CV), and ve(VC), let Q. = he,
andlet Q.(EX), Q..(CE), Qe.(EC) be empty relations, define queries

- Q1 = UHS:Hde:H(hh X Hv(’l)c) X hc)

= Q2 =, m,v,u,;c(hh X or=p(cv)) U Iln, m,v,u,,c(hh X or=s(cw)) — Q1

= Qe = (Iu,my,v(hh X cv) = I, my,v(Q2)) U Qe

= Qce = nycm,,m1,,v(Qe X 0r=p(cv)) U T, com,m,,v(Qe X 0r=s(cv)) U Qee

- Qec = HHS,Hd,V,Hd,C(UQe.V:'uc.V(Qe X UC)) U Qec
- QC = HH,C(Qec) U Qc

Example 5. Table 2 shows the result to each query in the first iteration in gen-
erating the attack graph of Example 1. The relation (), are the satisfied condi-
tions and their related (but not necessarily realizable) vulnerabilities. Subtract-
ing those from the conditions required by all possible exploits yields the two
unsatisfied conditions and the unrealizable exploitsin 2. Then, subtracting the
unrealizable exploits from all possible exploits gives the two realizable exploits
in Q.. The exploits then imply the two conditionsin Q.. The edgesin .. and
Q.. interconnect the conditions and exploits.

Q1 Q2 Qe
1 2 A1 x

1 2 Al2 x

2 1 Al1 x [Hs Hqy V]H C]| [Hs Hq V]|
2 1 A|l2 x 1 2 Ally 3 1A
3 1 A1 x 2 1 Al2y 3 2 A
3 1A[3y

3 2 Al2 X

3 2 A3y

ch Qec Qc
HC|Hs Hy V

1 x[3 1A Hs Ha VIH C
2 x|3 2 A 3 1 A[1ly 1y
3 y[3 1A 3 2 A2y 2y
3 y|3 2A

Table 2. An Example of One Iteration in Deriving the Complete Attack Graph
4.2 Typical Analysesof Attack Graphsin Relational Queries

We now turn to typical analyses of attack graphs previoudy studied in the lit-
erature. We show how to rewrite those analyses as relational queries based on
our model. In the following discussion, our queries are against the relations (or
views) given by Definition 2.

Vulnerability-Centric Alert Correlation and Prediction The alert correlation
method first maps a currently received intrusion alert to the corresponding ex-
ploit. Then, it reasons about previous exploits (al erts) that prepare for the current
one and possible exploits in the future [20]. The key difference between this
analysis and the one used to generate the attack graph is that the conjunctive
nature of the require relation should be ignored here. The relationship between
aertsis usualy regarded as casual instead of logical [10, 3]. Such a conserva-
tive approach is more appropriate in this context because alerts may have been
missed by intrusion detection systems.

Example 6. In Figure 1, suppose the current alert maps to the exploit (2,1, A).
The backward search will first reach conditions (1, x) and (2, y) and then fol-
lows (2,y)to (3,2, A) and (1,2, A) to find aprevious correlated alert if thereis
any, or to make a hypothesisfor amissing alert, otherwise. The search continues
from (1,2, A) to (1,y) and (2, x), then from (1, y) to (3,1, A) (the branch to
(2,1, A) isaloop and hence ignored) and consequently to (1, z) and (3, y). The
search stops when it reaches only initial conditions or if aloop is encountered.

Definition 3 states the relational queries corresponding to the backward
search in Example 6. The forward search can be realized in a similar way and

9

hence is omitted. First, the relation (03 includes the conditions reachable from
the current exploits while ignoring the conjunctive relationship between those
conditions. Second, subtracting from @3 the initial conditions in hc and the
previously visited conditions in (05 (to avoid loops) yields the reachable con-
ditions and consequently the exploits in Q4. The above two steps are repeated
until no more conditions are |eft (that is, al the conditions arein hc or in Qs).
The exploits encountered in this process are collected in () 4 as the final result.
Loops are avoided in this process because the set union operation does not keep
duplicates and the relation (05 ensures each condition to be visited at most once.

Definition 3. Given hh(HH), he(HC), co(CV), ve(VC), and (hg, ha, V), let
Qs3(HC), Q5, and Q 4 be empty relationsand Q4(EX) = {(hs, hq,V)}. De-
fine

- Q3 =1In,c(QaXNor=p(cv))UIlh, c(Qs X or=s(cv))

- Qa=Hu, 5, v(0H,=HrQs5.C=ve.c(hh X (Q3 — hc — Q5) X vc))

- Qs =05UQs

- Qa=QaUQq
Example 7. Table 3 shows the three iterations corresponding to the backward
search in Example 6. The first iteration starts from the given exploit (2,1, A)
and reaches two exploits (1,2, A) and (3,2, A) through the condition (2, y).
The second iteration reaches (3,1, A) and (2, 1, A) through (1, y). The exploit
(2,1, A) leadsto two previously visited conditions (that is, aloop) and the other
exploit (3,1, A) reaches only initial conditions. Consequently, no new exploit
appearsin Q4 inthisiteration and the search terminates.

Enumerating Relevant Attacks and Network Hardening Enumerating the rele-
vant exploits (those appears in at least one sequence of attacks leading to the
goal conditions [1]) and finding a network hardening solution (given goal con-
ditions represented as alogic formula of initial conditions[12]) share a similar
backward search in the attack graph, asillustrated in Example 8 and Example 9,
respectively.

Example 8. In Figure 1, we start from a given goal condition (1, y) and search
backwardsin the attack graph. First, the two exploits (3,1, A) and (2,1, A) are
reached. The former branch ends at initial conditions, and the latter leads to one
initial condition (1, z) and an intermediate condition (2, y). The condition (2, y)
then leads to (3,2, A) and (1,2, A). The former ends at initial conditions, and
the latter leads to a loop back to (1,y). The relevant exploits with respect to
the goal condition (1,y) arethus (2,1, A), (3,1, A), and (3,2, A) (the exploit
(1,2, A) is not relevant because it can never be realized before satisfying the
god (1,y) itself).

10

First Iteration Qs Q4 Qs Qa
[HC] |[HsHaV] [HC| [HsHaV|

1 x 1 2 A 1 x 1 2 A
2y 3 2 A 2y 3 2 A
Second Iteration Qs Q4 Qs Qa
e
T H, Hy V 5 1 2 A
zi 3 1A 1y 3 2 A
2 2 1A Zi 3 1A
b 2 1A
3y
Third Iteration Qs Qi=2¢ Qs Qa
79 mam
1 2 A
1 x 2y
3 2A
3y ly
5 i 3 1A
y 2 1A
3y

Table 3. An Example of Analyzing Attack Graphs for Alert Correlation and Prediction

Example 9. With a similar search, we can transform the goal condition (1, y)
into alogic formula of initial conditions as follows (by regarding the exploits
and conditions as Boolean variables). In the fourth line, the value FALSE re-
places the second appearance of the goal condition (1, y), becauseit is a prede-
cessor of (1,2, A), indicating aloop. The final result says that if any of the two
conditions (1,) and (3, y) is disabled, then the goal can no longer be satisfied.

(1,y)

2,A)V (1,2, 4))
JY) N (2,2) V (2,2) AN FALSE)

= ===

Py

The key differences between the above backward search and that used for
correlating aerts are as follows. First, the conjunctive nature of the require re-
lation must be considered. In Example 8, the exploit (1,2, A) is not relevant,
because one of its required conditions (1, y) is not satisfiable, even though the
other required condition (that is, (2, z)) is aready satisfied. Second, duplicate
appearances of exploits and conditions must be kept. Thisisrequired for obtain-
ing sequences of relevant exploits leading to the goal, as well as for generating
the logic formulain network hardening. In the former case, different sequences
may share common exploits or conditions, whereas the logic formula in the
second case clearly contains duplicates. In order for the search to traverse an
exploit or condition for multiple times, the set union operation needs to keep
duplicates. Hence, loops must be avoided by maintaining a predecessor list for

11

each vertex as in standard breadth-first search (BFS) [2] (although the search
discussed above is different from a BFS).

Definition 4 states the relational queries used to enumerate relevant exploits
or to generate the logic formula in network hardening. The two queries simply
traverse the attack graph given by Definition 2. The two relations in the defini-
tion keep duplicates in set union operations. Notice that the actual construction
of the logic formula (adding the and and or connectives) is external to the rela-
tional queries and can easily be incorporated.

Definition 4. Givenrelationshh(HH), he(HC'), co(CV), ve(V C) and anon-
empty relation Q7(HC), let Q¢(F X) be an empty relation. Define

= Qo = Hu, 1, v((Q7r — hc) X Qec)
- Q7 = HH,C(QG X ch)

Example 10. Table 4 shows the iterations corresponding to the procedure in
Example 8 and Example 9. Originaly, Q7 = {(1,y)}.

First Iteration Qs Q7
71 C]

H, Hy V 1 x

3 1A 2y

2 1A 1 X

3y

Second Iteration Qs Q-
>)

X

Table 4. An Example of Enumerating Relevant Exploits and Network Hardenning

Reachability From Subsets of Initial Conditions and Incremental Updates of At-
tack Graphs Many analyses ask asimilar question, that iswhether the goal con-
dition is still satisfiable, if a given subset of initial conditions are disabled. The
guestion may arise when we need to determine the potential effect of enforcing a
security measure (so someinitial conditions will be disabled), or when we want
to decide whether the goal condition isreachable with only stealthy attacks[18].
The question may also be asked simply because the network configuration has
changed and some initia conditions are no longer satisfied (on the other hand,
new initial conditions can be easily handled with more iterations of the queries
in Definition 2.) In each case, we can certainly recompute the attack graph from

12

scratches, with the given conditions removed from the relation hc. However,
thisis not desired especially when the attack graph is much larger than the set
of conditionsto be disabled. Instead, we should incrementally update the attack
graph by computing the effect of disabling the given conditions. The conjunc-
tive nature of the require relation must be taken into accounts, but in a different
way, asillustrated in Example 11.

Example 11. In Figure 1, suppose the condition (2, x) is disabled. Then the
exploits (1,2, A) and (3,2, A) can no longer be realized. Then the condition
(2,y) becomes unsatisfiable, because it can only be implied by the above two
exploits. Finally, the exploit (2,1, A) cannot not longer be realized. However,
the condition (1, y) is still satisfiable, due to another exploit (3, 1, A).

Example 11 shows that such a negative analysis is quite different from the
previous ones. The previous searches are all unidirectional in the sense that the
edges are only followed in one direction (either forwards or backwards). How-
ever, the above analysis follows edges in both directions. For example, after the
forward search reaches the condition (1, y) from the exploit (2, 1, A), it must go
back to see whether other exploits also imply the condition (1,y) (in this case,
the exploit (3,1, A) does s0). Definition 5 states the relational queries for this
purpose. The first query simply derives unrealizable exploits from unsatisfied
conditions. The next three queries use two set difference operations to derive
the unsatisfied conditions while taking into accounts the conjunctive nature of
the require relation. Finally, the results are collected.

Definition 5. Givenrelationshh(HH), he(HC'), co(CV'), ve(V C) and anon-
empty relation Q11 (HC') as a subset of he, let Qs(EX), Qo(EC), Qio(EC),
Q., and Q. be empty relations. Define

- Qs =g, 1, v(Qi1 X Qce))

- QQ - QS X Qec

— Q10 = Qec X Ty c(Qo) — Qo
— Qi1 = Hu,c(Qo) — I, (Q1o)
- Qe = QE U QS

- Qc == Qc @] Qll

Example 12. Table 5 shows the iterations corresponding to the procedure in
Example 11. Originally, @11 = {(2,x)}.

5 Empirical Results

As proof of concept, we have implemented the analyses discussed in the previ-
ous section. The queries are written in PL/SQL . The queries are tested in Oracle

13

First Iteration Qs 9 Quo=¢ Q11
[H, H, V| [H, H,V HC] ke
3 2A [3 2A2y
1 2A |1 2A2y y

Second Iteration Qs Qo Q1o Qi1 =¢
[HiHs V]| [HiHsVHC| |[H:sHqV HC]|

2 1A 2 1TA1y] [B3 1A1y]
Table 5. An Example of Incremental Updates

9i in its default settings on a Pentium IV 2GHz PC with 512MB RAM. In our
preliminary experiments, we test the queries against the attack scenario origi-
nally studied in[18, 1] 3. The results of the analyses match those in the previous
work, which justifies the correctness of our techniques. Next we test the per-
formance of our techniques. We have two main objectives. First, we want to
determine whether the running time of the queries is practical for interactive
analysis. For most decision support systems, the typical delay to aquery that is
considered astolerable in interactive analyses is usually in a matter of seconds.
Such a short delay is also critical to the analysis of attack graphs, especially
when the analysis is used for real-time detection and prevention of intrusions.

Second, we want to determine whether the techniques scale well in the size
of attack graphs. Although the attack graph may be very large for a large net-
work, an analysis and its result usually only involves a small part of the at-
tack graph. The running time of an analysis thus depend on how efficiently
an analysis searches the attack graph. We expect the mature optimization tech-
niques available in most databases can transparently improve the performance
and make the analyses more scalable. To test the queries against large attack
graphs in a manageable way, we increase the number of vertices in the origi-
nal attack graph by randomly inserting new hosts with random connectivity and
vulnerabilities. We then execute the same set of analyses in the new network
and measure the running time of each analysis. The main results are shown in
Figure 3. All the results have 95% confidence intervals within about 5% of the
reported values.

The left-hand side shows the running time of generating the attack graph in
the size of that attack graph. The attack graph with about 20,000 vertices can
be generated in less than seven minutes. The result also shows that our methods
scale well in the size of attack graphs. The right-hand side shows the running
time of each analysis in the size of the attack graph. The result shows that all
the analyses require less than a second, which clearly meets the requirement of

8 Our ongoing work will compare the performance of our approach with that of the proprietary
algorithms proposed before.

14

an interactive analysis. The analyses all scale well with the size of the attack
graph. This proves our conjecture that the optimization techniques in databases
such asindexing can transparently help to keep analyses efficient. A closer look
at the result reveals that the increase in running time is mainly caused by larger
results. This also explains the fact that the incremental update analysis scales
differently from the other two (the effect of disabled initial conditions does not
change much when the size of the attack graph increases).

Generating Attack Graph Execution Time of Analysis

—+— Alert Correlation
350 0.3 —e— Relevant Attacks
—— Incremental Updates

0.1

0.05

» W
0 \ . .

o 05 1 15 2 0 05 1 15 2
4

Graph Size x10° Graph Size X 10

Fig. 3. The Performance of Analyzing Attack Graphs Using Relational Queries

6 Conclusion

We have proposed a relational model to enable interactive analysis of attack
graphsfor intrusion detection and prevention. We have shown that the complete
attack graph can be generated as relational views. Any analysis of the attack
graph are thus relational queries against such views. We have shown how to
write relational queries for typical analyses previously studied in the literature.
This approach made the analysis of attack graphs an interactive process similar
to that in the decision support systems. As aside effect, the mature optimization
techniques existing in most relational databases also improved the performance
of the analysis.

Acknowledgements The authors are grateful to the anonymous reviewers for
their valuable comments.

References

1. P Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vulnerability
analysis. In Proceedings of the 9th ACM Conference on Computer and Communications
Security (CCS 02), pages 217224, 2002.

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

15

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, 1990.
F. Cuppensand A. Miege. Alert correlation in a cooperative intrusion detection framework.
In Proceedings of the 2002 | EEE Symposium on Security and Privacy (S& P’ 02), pages 187—
200, 2002.

M. Dacier. Towards quantitative evaluation of computer security. Ph.D. Thesis, Institut
National Polytechnique de Toulouse, 1994.

R. Deraison. Nessus scanner, 1999. Available at http://www.nessus.org.

D. Farmer and E.H. Spafford. The COPS security checker system. In USENIX Summer,
pages 165-170, 1990.

J. Gray, A. Bosworth, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totals. Data Mining and Knowledge Discovery, 1(1):29-53, 1997.

S. Jajodia, S. Noel, and B. O'Berry. Topologica analysis of network attack vulnerability.
In V. Kumar, J. Srivastava, and A. Lazarevic, editors, Managing Cyber Threats: |ssues, Ap-
proaches and Challenges. Kluwer Academic Publisher, 2003.

S. Jha, O. Sheyner, and JM. Wing. Two formal analysis of attack graph. In Proceedings of
the 15th Computer Security Foundation Workshop (CSFW 02), 2002.

P. Ning, Y. Cui, and D.S. Reeves. Constructing attack scenarios through correlation of intru-
sion aderts. In Proceedings of the 9th ACM Conference on Computer and Communications
Security (CCS 02), pages 245-254, 2002.

S. Noel and S. Jgjodia. Correlating intrusion events and building attack scenarios through
attack graph distance. In Proceedings of the 20th Annual Computer Security Applications
Conference (ACSAC' 04), 2004.

S. Nodl, S. Jgjodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost network harden-
ing via exploit dependency grpahs. In Proceedings of the 19th Annual Computer Security
Applications Conference (ACSAC' 03), 2003.

R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting with quantitative evaluation tools
for monitoring operational security. |EEE Trans. Software Eng., 25(5):633-650, 1999.

C. Phillips and L. Swiler. A graph-based system for network-vulnerability analysis. In
Proceedings of the New Security Paradigms Workshop (NSPW 98), 1998.

C.R. Ramakrishnan and R. Sekar. Model-based analysis of configuration vulnerabilities.
Journal of Computer Security, 10(1/2):189-209, 2002.

R. Ritchey and P Ammann. Using model checking to analyze network vulnerabilities. In
Proceedings of the 2000 IEEE Symposium on Research on Security and Privacy (S& P’ 00),
pages 156-165, 2000.

R. Ritchey, B. O'Berry, and S. Noel. Representing TCP/IP connectivity for topological
analysis of network security. In Proceedings of the 18th Annual Computer Security Applica-
tions Conference (ACSAC' 02), page 25, 2002.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and JM. Wing. Automated generation and
analysis of attack graphs. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy (S& P’ 02), pages 273-284, 2002.

L. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer attack graph generation tool.
In Proceedings of the DARPA |nformation Survivability Conference & Exposition Il (DIS
CEX'01), 2001.

L. Wang, A. Liu, and S. Jajodia. An efficient and unified approach to correlating, hypothe-
sizing, and predicting intrusion alerts. In Proceedings of the 10th European Symposium on
Research in Computer Security (ESORICS 2005), pages 247266, 2005.

D. Zerkle and K. Levitt. Netkuang - a multi-host configuration vulnerability checker. In
Proceedings of the 6th USENIX Unix Security Symposium (USENIX' 96), 1996.

