Chapter 5

AN INTEGRATED SYSTEM FOR
INSIDER THREAT DETECTION

Daniel Ray and Phillip Bradford

Abstract This paper describes a proof-of-concept system for detecting insider
threats. The system measures insider behavior by observing a user’s
processes and threads, information about user mode and kernel mode
time, network interface statistics, etc. The system is built using Mi-
crosoft’s Windows Management Instrumentation (WMI) implementa-
tion of the Web Based Enterprise Management (WBEM) standards. It
facilitates the selection and storage of potential digital evidence based
on anomalous user behavior with minimal administrative input.

Keywords: Insider threats, anomaly detection, proactive forensics

1. Introduction

Insider threats are “menaces to computer security as a result of unau-
thorized system misuses by stakeholders of an organization” [3]. A sub-
stantial percentage of reported computer crime incidents are perpetrated
by insiders [6]. Insider attacks are problematic because they are diffi-
cult to detect, and because insiders are likely to have intimate knowl-
edge about potential targets as well as physical and logical access to
the targets. Insider threat detection systems seek to discover attacks
perpetrated by organization insiders.

Our insider threat model [2] analyzes computer use from a behavioral
perspective such as data about the programs that employees use on a
daily basis and the programs’ underlying processes. Our research sug-
gests that illicit activities are indicated by variations from a statistical
norm (anomaly detection). Moreover, to be effective, an insider threat
detection system must remotely and unobtrusively gather aggregate in-
formation about user workstation activity for analysis.

76 ADVANCES IN DIGITAL FORENSICS III

The generalized statistical approach to detecting intrusions was first
outlined by Denning [5]. Research on statistical intrusion detection is
described in [7] and in several survey articles [1, 10, 13, 14]. Signif-
icant efforts include SRI’'s EMERALD [19], a distributed system for
intrusion detection in large-scale networks, and the use of data mining
for dynamic intrusion detection by Lee, et al. [12]. More recently, Ka-
hai and colleagues [11] proposed a system for profiling external attacks
while proactively storing forensic information in the event of compro-
mise. Our insider threat detection approach draws from research in
intrusion detection and the sequential hypothesis testing approach to
proactive forensics [2, 3].

Our proof-of-concept insider threat system makes use of the Web
Based Enterprise Management (WBEM) standards. The WBEM ini-
tiative was created to address the difficulty of dynamically managing
distributed IT environments; its goal was to develop a set of standards
that unified the management of diverse systems [4]. The idea was that
companies would embrace the WBEM initiative and develop systems
conforming with WBEM standards, making it possible for a single appli-
cation to manage all the components of an IT infrastructure. Microsoft
adopted the WBEM standards in its Windows Management Instrumen-
tation (WMI) architecture. WMI inherits classes defined according to
the WBEM standards, which makes management data available in struc-
tured form.

This paper discusses how development tools targeted for system ad-
ministration (based on WBEM/WMI) can serve as the foundation for
a real-time insider threat detection system. Our approach is funda-
mentally different from traditional anomaly-based intrusion detection
systems. First, our system only requires that additional resources be
focused on anomalous users; this is different from systems that require
immediate action upon receiving threshold-based alerts (of course, our
system can act on threshold-based alerts, if necessary). Second, our
system requires security administrators to be trusted; these administra-
tors are hard to monitor as they may be aware of the details that are
being measured. Finally, our system is built using standard embedded
functionalities.

2. Common Information Model

The WBEM initiative led to the creation of the Common Information
Model (CIM) standard, which models management data in an object-
oriented fashion [4]. The CIM standard provides a method for expressing
useful management data for computer systems. It does not enforce a

Ray € Bradford 77

scheme for naming classes or specific properties, methods, etc., that are
to be included in classes. Rather, it is “a well-defined collection of class
definitions that all (participating) companies agree to follow” [4].

The CIM schema provides a logical hierarchical structure of class def-
initions. For instance, the base class CIM LogicalElement is a man-
agement class from which CIM Process instances are derived. FEach
CIM_Process instance contains information about a particular process
such as minimum and maximum working set size, process ID, execution
path, etc. The class CIM LogicalFile derives CIM Directory, whose in-
stances contain information about directories, and CIM DataFile, whose
instances contain information about operating system metadata files.
CIM has hundreds of classes [15], which make it attractive for modeling
information involved in managing computer systems.

The key to leveraging management information for insider threat de-
tection is to dynamically select, aggregate and store all data that could
be useful during an investigation (all of this is supported by WBEM).
CIM and its implementations (e.g., WMI) also provide aggregated statis-
tics such as detailed performance information about active processes [15]
for responding to certain system events.

3. Windows Management Instrumentation

Windows Management Instrumentation (WMI) is a “technology built
into Windows that enables organizations to manage servers and user
PCs connected to their networks” [20]. The WMI architecture has three
layers.

s Layer 1: Managed Objects and Providers
m Layer 22 WMI Infrastructure
m Layer 3: Management Applications

In the WMI nomenclature, “producers” provide information that is
used by “consumers” [17]. The information produced is stored in a set
of data structures called the WMI repository. The managed objects and
providers of Layer 1 represent the WMI producers. Managed objects are
physical or logical components in the environment that are being man-
aged. Providers are responsible for monitoring the managed objects and
passing real-time information about the objects to the WMI infrastruc-
ture. Each managed object is represented by a WMI class. New classes
may be derived to manage additional objects that are not managed by
default.

Layer 2 represents the WMI infrastructure provided by Windows. The
WMI infrastructure, which serves as a bridge between WMI producers

78 ADVANCES IN DIGITAL FORENSICS III

and consumers, has two main components, the WMI repository for stor-
ing information and the WMI service, which is responsible for providing
data to management applications.

Layer 3 constitutes applications that consume WMI information from
the WMI repository (e.g., our insider threat detection system). The
System.Management namespace of the .NET framework provides the
classes needed to interface with WMI in order to build such applications.

Our insider threat detection application employs WMI components
called PerformanceCounter classes along with WMI event handlers. In
the following, we briefly discuss the design and use of these components
via the .NET framework.

WMI allows remote access to instrumentation on another computer
via its namespace scheme. Code provided in [8] demonstrates the in-
stantiation of a ConnectionOptions class, which is used to store the
username and password of an administrator of a networked machine.

Class properties define the characteristics of the real-world object that
the class represents. For example, consider the Win32 Process class
derived from CIM Process mentioned above. Each instance of the class
represents a different process and each instance has 45 properties that
describe the corresponding process. WMI properties may be queried
using the WMI Query Language (WQL), a subset of SQL92 [9]. WQL
provides a syntax for Select statements but not for updating or deleting
WMI information [17].

Figure 1 (adapted from [8]) presents a sample WQL query that ac-
cesses class properties. First, the ManagementScope class is instantiated,
the scope is set to the CIMV2 namespace on the local machine, and the
ManagementObjectSearcher class is instantiated with the appropriate
arguments. Next, the Get method of class ManagementObjectSearcher
is invoked; this returns the collection of objects that satisfies the WQL
query. The collection of objects is stored in an instantiation of the
ManagementObjectCollection class. The objects stored in the collec-
tion are searched serially, the Description and ProcessId properties
of the returned objects are referenced by name, and their values are
converted to strings.

4. WMI Techniques and Threat Detection

This section introduces advanced WMI techniques used to implement
insider threat detection. We first focus on accessing performance counter
classes, which provide statistical information about the state of computer
systems (e.g., average processor load, average network traffic, etc.). Such
statistics offer clues to uncovering insider attacks.

Ray € Bradford 79

string queryString
= ¢‘SELECT Description, ProcessId FROM Win32_Process’’;
string scopeStr = @‘‘\\.\root\CIMV2’’;
SelectQuery query = new SelectQuery(queryString);
ManagementScope scope
= new System.Management.ManagementScope (scopeStr) ;
ManagementObjectSearcher searcher
= new ManagementObjectSearcher(scope, query);
ManagementObjectCollection processes = searcher.Get();
foreach(ManagementObject mo in processes)
{
// Handle getting data from management object here
string teststringl = mo[‘‘Description’’].ToString();
string teststring2 = mo[‘‘ProcessId’’].ToString();

Figure 1. C# example of a WQL query.

Next, we discuss the management of WMI events. These events can
be set to automatically alert a listening application (e.g., an insider
threat detection system) when certain criteria are met. We also in-
troduce methods for creating custom performance counters and event
triggers.

4.1 Accessing Performance Counters

WMI’s “Performance Counter Classes” reveal real-time, Windows
native statistics about the state of computer systems. For example,
Win32 PerfFormattedData Perf0S System provides statistical and ag-
gregated information about the operating system, including file read and
write operations per second, number of processes or threads, and number
of system calls per second.

PerformanceCounter cpuCounter = new PerformanceCounter
(¢ ‘Processor’’, ‘Y% Processor Time’’, ‘‘_Total’’);
int value = cpuCounter.NextValue();

Figure 2. Obtaining performance counter data.

System.Diagnostics is the principal .NET namespace for handling
WMI performance counters. Figure 2 (from [16]) shows how an object
of the PerformanceCounter class (member of the System.Diagnostics
namespace) is used to obtain WMI performance counter information.

80 ADVANCES IN DIGITAL FORENSICS III

In Figure 2, the PerformanceCounter class takes as parameters the
category of performance data, the particular performance category class,
and the handle of a particular instance of this class (in this example, the
keyword _Total) to aggregate all processes. A PerformanceCounter
object is returned. The NextValue method can be called on this object
to retrieve the current statistic represented by the object.

bool pleaseContinue = true
public void doit()
{
int processID =
System.Diagnostics.Process.GetCurrentProcess().Id;
int workingSet = 30000000;
string wqlQuery = String.Format(
@‘‘Select * FROM __InstanceModificationEvent WITHIN 1
WHERE TargetInstance ISA ‘Win32_Process’ AND
TargetInstance.ProcessId = {0} AND
TargetInstance.WorkingSetSize >= {1} AND
PreviousInstance.WorkingSetSize < {2} ’’,
processId, workingSet, workingSet);
WglEventQuery query = new WqlEventQuery(wqlQuery);
ManagementEventWatcher watcher =
new ManagementEventWatcher (query);’
watcher.EventArrived +=
new EventArrivedEventHandler (onEvent);
watcher.Start();
ArrayList array = new ArrayList();
while(pleaseContinue){
array.Add(1);
if (i%1000 == 0) System.Threading.Thread.Sleep(1);

public void onEvent(object sender, EventArrivedEventArgs e)

{
pleaseContinue = false;
Console.WriteLine(‘‘Found a misbehaving process’’);

Figure 3. Dealing with WMI events.

4.2 Event Handlers

WMI event handlers define and consume events related to data han-
dled by WMI. The code in Figure 3 (from [16]) shows how a .NET
application can specify the events it is interested in capturing. The inter-
nal WMI event __InstanceModificationEvent fires whenever a value

Ray & Bradford 81

in the namespace is updated. The WQL statement selects instances
from the set of stored WMI events where a value in the namespace
Win32 Process changes, the ProcessId is 1367, and the working set
size is more than 30,000,000. The code then creates an event watcher
object whose EventArrived method is invoked when such an event oc-
curs. The code dictates that a .NET event handler should be initiated
so that the specific code for handling an event can be managed in a
different onEvent function according to .NET conventions. In this case,
the event is handled by printing ‘ ‘Found a misbehaving process’’
and exiting the loop.

This technology is powerful and has “out of the box” functionality
that provides useful statistics about system operations to any application
interfacing with WMI. Numerous possibilities exist for leveraging these
statistics to detect insider threats.

4.3 Custom Performance Counters and Events

WMI enables programmers to create custom performance counters
and to expose custom events to WMI. Thus, WMI can generate and store
highly specialized data at individual workstations rather than relying on
complicated WQL statements and statistical calculations at a centralized
server.

Creating custom performance counters involves defining the metadata
about the new performance counter, giving it proper types, etc. The
System.Diagnostics.PerfomanceCounter class that was used to read
in performance counter information [16] may be used to create custom
performance counters for WMI. To prevent naming collisions, the Exists
method must be invoked to check if a performance counter with the same
name already exists. If not, a new performance counter is created using
the Create method.

The code in Figure 4 (from [16]) implements this functionality. It cre-
ates a CounterCreationDataCollection object and populates it with
CounterCreationData instances. The performance counter merely in-
dicates the number of 7’s in an integer parameter to a web service. A
PerformanceCounterType is assigned to each performance counter that
is created in order to determine how the NextValue method works. Sev-
eral statistics are supported (average, difference, instantaneous, percent-
age and rate), but the type chosen (NumberOfItems32) simply returns
the number of items [16]. PerformanceCounterCategory.Create then
adds the counter to the WMI CIM repository.

82 ADVANCES IN DIGITAL FORENSICS III

// Check if the category already exists or not.
if (!PerformanceCounterCategory.Exists(categoryName))
{
CounterCreationDataCollection creationData =
new CounterCreationDataCollection();

// Create two custom counter objects

creationData.Add(new CounterCreationData(‘‘Number of 7s - Last’’,
¢ ‘Number of occurences of the number 7 in the last WS call’’,
PerformanceCounterType . NumberOfItems32)) ;

// Bind the counters to a PerformanceCounterCategory

PerformanceCounterCategory myCategory =
PerformanceCounterCategory.Create(‘ ‘TestWS Monitor’’,
helpInfo, creationData);

Figure 4. Creating custom performance counters.

The code in Figure 5 (from [16]) may be used to read from a custom
performance counter.

PerformanceCounter counter = new PerformanceCounter
(¢ ‘TestWS Monitor’’, ‘‘String Length - Last’’, false);
counter.RawValue = count;

Figure 5. Reading from a custom performance counter.

The code in Figure 6 (from [16]) shows how to make extensions to
WMI CIM events that can be consumed by event consumer applications.
It uses several .NET namespaces described in [16].

The CustomEvent class, which is created in Figure 6, extends the
System.Management . Instrumentation.BaseEvent class. Such an ex-
tended class could contain any properties and methods deemed appropri-
ate to its task [16]. Calling the event is as easy as creating a CustomEvent
instance and invoking the Fire method inherited from BaseEvent.

5. Insider Threat Detection System

Our insider threat detection system is designed to be an asset to
systems administrators. It leverages system management tools to obtain
system information; it archives the information and compiles it into
useful information about expected versus actual user behavior. It alerts
administrators to take action when anomalous user activity is indicated.

Ray & Bradford 83

// Specify which namespace the Management Event class is created
// in [assembly:Instrumented(‘‘Root/Default’’)]
// Let the system know you will run installUtil.exe against this
// assembly -- add reference to System.Configuration.Install.dll
// [System.ComponentModel.RunInstaller(true)]
public class CustomEventInstaller:DefaultManagementProjectInstaller{}
namespace WorkingSetMonitor
{
// Event class: Renamed in the CIM using ManagedNameAttribute
// [ManagedName (’’SuperEvent’’)]
public class CustomEvent : BaseEvent
{
string data; // Not exposed to the CIM -- its primitive
int state; // Exposed via public property
public CustomEvent (string data)
{
this.data = data
¥
public int State
{
get { return state; }
set { state = value; }
¥
X
¥

Figure 6. Creating custom events.

Moreover, it provides this functionality without placing any demands on
systems administrators.

The insider threat detection system has a three-tier architecture. The
first tier is the functionality provided by WMI. The second is the server-
side insider threat detection application, which uses C# code to interface
remotely with WMI. This application also performs statistical analyses
on raw WMI data; the computations are performed on a central server
to determine if aberrant user behavior is occurring. The third tier is a
database that stores raw WMI data and the results of statistical analysis.

The database is required to store historical user behavior and to
demonstrate that a threat actually exists. This is because insider threat
detection relies on statistics that compare current user behavior with
past behaviors.

84 ADVANCES IN DIGITAL FORENSICS III

6. WMI Service Expectations

The WMI repository must have up-to-date data; therefore, the time
interval at which data is updated is an important issue. The more fre-
quent the updates, the more likely the recorded data will accurately
portray the current system state. An equally important issue is the
speed at with WQL queries are fielded. This section discusses whether
or not WMI can offer service guarantees on providing accurate, up-to-
date information.

Because WQL is a subset of SQL92, optimizing the execution of the
WQL Select statement falls in line with research for optimizing SQL
statements in general [18]. More importantly, it is necessary to arrive at
reasonable expectations of the speed of execution of queries and updates
to the WMI repository.

Tunstall and Cole [20] suggest that it is possible to provide certain ser-
vice guarantees. They discuss the notion of “high performance classes”
that provide real-time information about current activity. Special reg-
istry keys are used to provide fast access to information on remote com-
puters. The high performance classes built into Windows are exposed by
WDMTI’s performance counter classes. As explained in [20], a refresher ob-
ject can be called to quickly make real-time data available to a WMI ap-
plication. But “quickly” and “real-time” are relative terms that depend
on the functioning of Windows internals, which is not public knowledge.

However, experiments can be conducted to obtain assessments of WMI
service guarantees. Our insider threat detection system was interfaced
with the WMI repository and a local SQL database; Microsoft SQL
Server 2005 was attached to a local network. In our experiment, a sim-
ple remote WQL query was issued 1,000 times in succession to another
machine on the same laboratory subnet, and the results were stored in
a database housed on a server located elsewhere in the building. The
query requested the remote machine for its local time (this type of query
is consistent with querying for information about processes).

Our analysis showed that each operation set consisting of querying
the remote machine, receiving a reply and writing to the database took
35.01 milliseconds on the average. We believe this meets moderate ser-
vice expectations. Our future research will investigate the handling of
forensic evidence that is more ephemeral in nature.

7. Conclusions

The insider threat detection system described in this paper is intended
to operate as a watchdog within an enterprise environment, remotely
and covertly gathering data from user workstations. The design lever-

Ray & Bradford 85

ages several technologies that were originally designed to expose impor-
tant enterprise management information to I'T administration personnel.
These include system-independent Web Based Enterprise Management
(WBEM) schemas and a system-dependent implementation of Microsoft
Windows Management Instrumentation (WMI).

It is important to note that the data exposed by WMI (and WBEM
implementations for other operating systems) conveys user activity on
individual workstations. Moreover, these implementations are ubiqui-
tous and their activities are abstracted from the normal user by the
operating system.

Our insider threat detection system facilitates the selection and stor-
age of potential digital evidence based on anomalous user behavior with
minimal administrative input. In particular, it leverages WMI to sup-
port remote access, expose current information about user activity, pro-
vide basic aggregated statistical information and event handling, and
support custom event handling and statistical aggregation for applica-
tions that access WMI via the .NET framework.

References

[1] S. Axelsson, Intrusion Detection Systems: A Survey and Taxon-
omy, Technical Report 99-15, Department of Computer Engineer-
ing, Chalmers University of Technology, Goteborg, Sweden, 2000.

[2] P. Bradford, M. Brown, J. Perdue and B. Self, Towards proactive
computer-system forensics, Proceedings of the International Con-
ference on Information Technology: Coding and Computing, vol. 2,
pp. 648-652, 2004.

[3] P. Bradford and N. Hu, A layered approach to insider threat de-
tection and proactive forensics, Proceedings of the Twenty-First

Annual Computer Security Applications Conference (Technology
Blitz), 2005.

[4] J. Cooperstein, Windows management instrumentation: Adminis-
tering Windows and applications across your enterprise, MSDN
Magazine (msdn.microsoft.com/msdnmag/issues/0500/wmiover),
May 2000.

[5] D. Denning, An intrusion-detection model, IEEE Transactions on
Software Engineering, vol. 13(2), pp. 222-232, 1987.

[6] J. Evers, Computer crime costs $67 billion FBI says, CNET News
.com, January 19, 2006.

86

[7]

[11]

[12]

ADVANCES IN DIGITAL FORENSICS III

M. Gerken, Statistical-based intrusion detection, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania (www.sei.cmu.edu/str/descriptions/sbid.htm).

K. Goss, WMI made easy for C#, C# Help (www.csharphelp.com
/archives2/archive334.html).

C. Hobbs, A Practical Approach to WBEM/CIM Management,
Auerbach/CRC Press, Boca Raton, Florida, 2004.

A. Jones and R. Sielken, Computer System Intrusion Detection: A
Survey, Technical Report, Department of Computer Science, Uni-
versity of Virginia, Charlottesville, Virginia, 2000.

P. Kahai, M. Srinivasan, K. Namuduri and R. Pendse, Forensic
profiling system, in Advances in Digital Forensics, M. Pollitt and S.
Shenoi (Eds.), Springer, New York, pp. 153-164, 2005.

W. Lee, S. Stolfo and K. Mok, A data mining framework for building
intrusion detection models, Proceedings of the IEEE Symposium on
Security and Privacy, pp. 120-132, 1999.

T. Lunt, Automated audit trail analysis and intrustion detection:
A survey, Proceedings of the Eleventh National Computer Security
Conference, 1988.

T. Lunt, A survey of intrusion detection techniques, Computers and
Security, vol. 12(4), pp. 405418, 1993.

Microsoft Corporation, WMI classes (msdn2.microsoft.com/en-us
/library/aa394554.aspx), 2006.

J. Murphy, A quick introduction to WMI from .NET, O’Reilly Net-
work (www.ondotnet.com/pub/a/dotnet/2003/04/07 /wmi.html),
2003.
K. Salchner, An in-depth look at WMI and instrumentation, Devel-
operLand (www.developerland.com/DotNet/Enterprise/145.aspx),
2004.

L. Snow, Optimizing management queries, .NET Developer’s Jour-
nal (dotnet.sys-con.com/read/38914.htm), July 21, 2003.

SRI International, Event Monitoring FEnabling Responses to
Anomalous Live Disturbances (EMERALD) (www.csl.sri.com/proj
ects/emerald).

C. Tunstall and G. Cole, Developing WMI Solutions, Pearson Edu-
cation, Boston, Massachusetts, 2002.

