
 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 365

Journal of Digital

Information Management

NL2 Alloy: A Tool to Generate Alloy from NL Constraints

Imran Sarwar Bajwa1, Behzad Bordbar2, Mark Lee2, Kyriakos Anastasakis2

1Department of Computer Science & IT

The Islamia University of Bahawalpur

Bahawalpur, 63100

Pakistan
2School of Computer Science

University of Birmingham

Birmingham, B15 2TT

UK

imran.sarwar@iub.edu.pk, {b.bordbar, m.g.lee, k.Anastasakis}@cs.bham.ac.uk

ABSTRACT: In this paper, we present a novel approach

to generate Alloy code from Natural Language (NL)

constraints. The proposed research is basically an

extension of two projects, NL2OCL and UML2Alloy.Our

method uses Natural Language Processing (NLP) and

Model Transformation (MT) to transform constraints

expressed in NL to Alloy. We do not directly transform NL

to Alloy, instead we use multiple intermediate translations

such as NL2SBVR and SBVR2OCL and finally OCL2Alloy.

Such intermediate translations help us to monitor the whole

process of translation and produce intermediate artifacts

such as OCL constraints, which can be used for

documentation purposes. and ensure that actual

semantics of NL have been transformed to Alloy. The

generated Alloy code can then be used to check if the

original NL constraints are consistent. We also introduce

the use of OMG’s standard SBVR in translation of NL to

formal languages. The NL2Alloy approach is also

implemented as an Eclipse plugin.

Categories and Subject Descriptors:

I.2.7 [Natural Language Processing]: Language models; F.4.3

[Formal Languages]

General Terms:

Natural Language Processing, Language Models

Keywords: UML, Alloy, SBVR, Natural Language, NL2OCL

Received: 28 June 2012, Revised 29 August 2012, Accepted 3

September 2012

1. Introduction

In this paper, we aim to automate the typical process of

manual translation of Natural Language (NL) constraints/

specification to a formalism that provides analysis

capabilities. The method suggested here is particularly

applicable in early stages of software development; it is

common during the early stages of the software

development process to gather requirements. Typically

these requirements are expressed in NL. Designers and

analysts then manually transform these requirements to

a software specification, usually in the form of UML models.

One of the most challenging aspects is turning constraints

about the system into formal representations such as OCL

and Alloy. In additions, sometimes constraints embedded

in the requirements are in conflict and manual inspection

of the Natural Language statements to discover the

inconsistencies is highly non-trivial. The method suggested

here allows automated creation of formal representation

from NL and analysis of the modes to discover

inconsistencies at early stages of the software

development lifecycle.

We propose Alloy as the formalism for the consistency

analysis of the requirements specification. Alloy is a well-

known language ideal to express complex structural

constraints. The language is supported by a tool, the Alloy

Analyzer, which provides the ability to analyse Alloy

models automatically. In particular the tool can

automatically detect and inconsistent models. A valuable

feature is its UnSat Core functionality [4], which highlights

conflicting statements, making it easier to debug over

constrained models.

In order to automate the generation of the Alloy code from

NL specifications, a sequence of transformations is used.

366 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

First, all NL constraint are syntactically and semantically

analysed to generate a logical representation that can be

mapped to formal languages such as Alloy. Here, the

logical representation is based on the Semantic of

Business Vocabulary and Rules (SBVR) [6] standard.

Then, SBVR based logical representation is mapped to

OCL constraints. Finally, the OCL constraints are mapped

to Alloy expressions for a UML class model in OCL2Alloy

transformation [8].

The rest of the paper is structured as follows. Section 2

describes the preliminary concepts of the research;

section 3 highlights main phases of NL to Alloy approach

and the working of NL2Alloy approach is explained with

the help of a running example in section 4; section 5

describes results and evaluation of the tool. The paper

ends with a conclusion section.

2. Preliminaries

In this section, the primary concepts involved in the

presented research such as OCL and Alloy are introduced.

2.1 Alloy

Alloy [4] is a declarative textual modeling language. An

Alloy model consists of a number of signature, that are

supplemented by field, fact and predicate declarations.

Signatures denote a set of atoms, which are the basic

entities in Alloy. Fields need to be declared under a

signature and represent a relation between two or more

signatures. In essence a field represents a set of tuples of

atoms. Facts are declarative statements in first-order logic

that define constrains on the declared signatures and fields.

Predicates are in essence parameterized constraints that

can be referenced from within other predicates or facts.

The Alloy language is supported by a tool, the Alloy

Analyzer which supports fully automated analysis of Alloy

models. The tool works by converting the Alloy model to

a Boolean formula that is then provided as input to SAT

solvers [4]. The Alloy Analyzer has three main

functionalities. The simulation functionality can produce

random instances of the model that conform to the

constrains. It can also check if the model satisfies certain

desirable properties. These properties can be expressed

in the Alloy language and the tool checks if model satisfies

the properties. These statements are called assertions.

Moreover it provides support to debug over-constrained

models by locating the parts of the model that cause the

inconsistency. This is known as UnSAT core functionality.

2.2 Object Constraint Language (OCL)

A constraint is a way to restrict state or behaviour of an

entity in a UML model [2]. Since 1997, OCL is a foremost

language used for annotation of the UML models with the

constraints [3]. OCL is based on first-order logic. Typically,

OCL is implicated in representation of functional

requirements and operations using class invariants [3,

Section 7.3.3], pre and post conditions [3, Section 7.3.4],

respectively.

In OCL, if a constraint results true, the system is in valid

state and vice versa. Moreover, OCL is a specification

language that is strongly typed. All well-formed expressions

must conform to the rules of OCL.

2.3 UML2Alloy

The UML2Alloy framework was introduced to automatically

transform UML Class Diagrams enriched with OCL

constraints into an Alloy model. The generated, Alloy

model can be automatically analysed, either from within

UML2Alloy or using the Alloy Analyzer. The tool supports

the subset of UML and OCL that is directly expressible in

Alloy. Moreover in order to bridge other differences a UML

profile for Alloy was developed that is used by the tool. In

particular there are a few similarities between UML Class

Diagrams and Alloy from a semantic point of view such

as both Alloy and UML models can be interpreted by sets

of tuples [4], [25]. Alloy is based on first-order logic and is

well suited for expressing constraints on Object-Oriented

models. Similarly, OCL has extensive constructs for

expressing constraints as first-order logic formulas. In spite

of such similarities, the UML and the Alloy have some

fundamental differences [26]. For example, Alloy makes

no distinction between sets, scalars and relations, while

the UML distinguishes between the three. To bridge some

of those semantic differences between UML and Alloy

model elements a UML profile for Alloy has been developed

[26].

3. Problem Description

The framework used for NL to Alloy translation involves

deep syntactic and semantic analysis of NL constraints.

In NL2Alloy translation, a chain of transformations is

involved such as NL to SBVR, SBVR/UML to OCL and

OCL/UML to Alloy. As Alloy will be generated on the basis

of extracted semantics of NL constraints, even a minor

error or mistake generated at the earlier phases of

translation will propagate in rest of the phases and will

ultimately result in wrong OCL and wrong Alloy.

In NL to SBVR translation, we have used the Stanford

parser to perform syntactic analysis by producing a parse

tree and a set of (typed) dependencies. Experiments [7]

manifest that the Stanford parser is 84.1% accurate.

However, during translation of NL constraints to SBVR, it

was found that the Stanford parser is unable to deal with

attachment ambiguity as it generates wrong (typed)

dependencies. This type of ambiguity is categorized as

the prepositional phrase (PP) attachment ambiguity. In

PP attachment, the actual problem is typical pattern of a

sentence i.e. (VP (NP PP)). The NL sentences with such

patterns can be parsed by the human beings but for the

automatic parsers it is a difficult task to perform. Following

are examples of such cases where the same pattern is

interpreted as (VP (NP PP)) in (1) and as (VP (NP) (PP))

in (2) by the Stanford parser.

(1) A directory is assigned to all files with an extension.

(2) A directory object is assigned to all files with a directory.

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 367

Figure 1 highlights the case that is misanalysed by the

Stanford parser in example (2).

English: A directory is assigned to all files with an extension.

Typed Dependency (Collapsed):

 det(directory-2, A-1)

 nsubjpass(assigned-4, directory-2)

 auxpass(assigned-4, is-3)

 root(ROOT-0, assigned-4)

 det(files-7, all-6)

 prep_to(assigned-4, files-7)

 det(extension-10, an-9)

 prep_with(files-7, extension-10)

English: A directory object is assigned to all files with a directory.

Typed Dependency (Collapsed):

 det(object-3, A-1)

 nn(object-3, directory-2)

 nsubjpass(assigned-5, object-3)

 auxpass(assigned-5, is-4)

 root(ROOT-0, assigned-5)

 det(files-8, all-7)

 prep_to(assigned-5, files-8)

 det(directory-11,a-10)

 prep_with(files-8, directory-11)

Figure 1.Typed dependencies generated by the

Stanford Parser

Figure 2. Architecture of NL2Alloy

Figure 1 highlights that the typed dependencies generated

by the Stanford parser are correct for example (1) such

as prep_with(files-8, extension-10)but wrong

for example (2) such as prep_with(files-8,

Directory-10). However, the correct typed dependency

for the example (2) should be prep_with(object-3,

Directory-10) to represent the actual meanings of

the example i.e. a Directory Object with Directory is

assigned to all the files. This problem becomes more

critical when we map these (typed) dependencies to SBVR

vocabulary and OCL. Wrong dependencies generated by

the Stanford parser will result in wrong SBVR and wrong

OCL. Similarly, the wrong OCL will be mapped to wrong

Alloy.

4. NL2Alloy: Sketch of the Solution

This section elaborates the architecture of the solution to

generate Alloy from NL constraints. The proposed archite-

cture of the solution is an integration of our existing tools

and newly developed modules. The newly developed

modules integrate our existing tools. Our existing tools

are NL2SBVR, SBVR2OCL and UML/OCL to Alloy. There

was need to integrate all these tools and optimize the

output of one tool so that next tool in the chain may process

text effectively. Additionally, a semantic analyzer was

developed to deal with attachment ambiguity of NL

constraints discussed in section 3. The NL2Alloy archite-

cture is shown in Figure 2.

To translate NL constraints to Alloy, a set of two inputs

are required such as a piece of English text (NL constraint)

and domain of English text (a UML class model). Both

inputs are processed by our tool and SBVR rule

representation is generated. Such SBVR rule

representation helps the user to double-check the

correctness of semantic analysis of input English. Such

measures help in restricting the complexities associated

to the inherent ambiguities of a natural language. This is

the only semi-automated part of our approach. The

remaining steps of the transformation are fully automated.

SBVR is transformed into OCL and then into the Alloys

module. These steps are discussed in the following

chapters. It is possible to produce the UML diagram via

one of the many Class diagram extraction tools. However,

this step, which is a minor extension of work, remains a

task for future.

4.1 NL to SBVR Rules Translation

In this phase, a SBVR business rule is generated from

NL constraint that is a semantically unambiguous

representation. To overcome ambiguity of a natural

language, basic natural language processing (NLP) (lexical

analysis [27], syntax analysis [35], and semantic analysis

[33]) phases are applied to understand the actual

meanings of the NL statement and then map NL statement

to a SBVR statement. Following sections explains the

transformation of NL text to SBVR rules.

4.1.1 Lexical Analysis

First phase in analysis of natural language specification

of Alloy text is lexical analysis. In this step, the input

368 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

English text is tokenized and part-of-speech (POS)

tagging is performed using the Stanford POS tagger [17].

An example of POS tagging using the Stanford POS tagger

is shown in Figure 3.

English: A directory object is assigned to all files with a directory.

Tags:A/DTdirectory/NNobject/NNis/VBZassigned/
VBNto/TOall/DTfiles/NNSwith/INa/DTdirectory/
NN./.

Figure 3. Part-of-Speech tagged text

After POS tagging, the inflectional endings are removed

and the base or dictionary form of a word is extracted,

which is known as the lemma. The lemma or base form of

a token (all nouns and verbs) is identified by removing

various suffixes attached to the nouns and verbs e.g. in

Figure 3, verb “assigned ” is analyzed as “assign+ed ”.

Similarly, the noun “files” is analyzed as “file + s”.

4.1.2 Syntactic Analysis

We have used the Stanford parser to parse the pre-

processed English text. The Stanford parser is 84.1%

accurate (Cer, 2010). However, the Stanford parser is not

capable of voice-classification. Hence, we have developed

a small rule-based module classifies the voice in English

sentences. We have used the Stanford parser to generate

parse tree and (typed) dependencies (Marneffe, 2006) from

NL text. To address the identified cases of attachment

ambiguity, discusses in the Section 1, we need the context

of the NL statement that is a UML class model is the

context of the Alloy code. Therefore, we have used the

UML class model shown in Figure 6 to correct

dependencies. We have used the given relationships in

the UML class model such as the associations (directed

and un-directed) to deal with the attachment ambiguity.

For example in Figure 8, it is shown that there is no direct

association in ‘Directory’ and ‘File’ class, while class

‘Directory’ is directly associated to class ‘Directory

Object’. By using such information, we can correct the

dependency asprep_with(object-3, Directory-

11)instead of the prep_with(files-8, Directory-

11)identified by the Stanford Parser.

A last phase in syntactic analysis of NL constraints is

identification of (active/passive) voice of a sentence. Since,

an active voice sentence is treated differently from a

passive voice sentence. The Stanford Parser does not

classify the voice of English sentences. Various

grammatical features manifest passive-voice

representation such as the use of past participle tense

with main verbs can be used for the identification of a

passive-voice sentence. Similarly, the use of ‘by’

preposition in the object part is also another sign of a

passive-voice sentence. However, the use of by is optional

in passive-voice sentences.

4.1.3 Semantic Analysis

In semantic analysis phase, we aim to understand the

exact meanings of the input English text; to identify the

relationships in various chunks and generate a logical

English: A directory object is assigned to all files with a directory.

Parse Tree:

 (ROOT
 (S(NP (DT A) (NN directory) (NN object))
 (VP (VBZ is)
 (VP (VBN assigned)
 (PP (TO to)
 (NP
 (NP (DT all) (NNS files))
 (PP (IN with)
 (NP (DT a) (NN directory)))))))
 (. .)))

Typed Dependency (Collapsed):

 det(object-3, A-1)
 nn(object-3, directory-2)
 nsubjpass(assigned-5, object-3)
 auxpass(assigned-5, is-4)
 root(ROOT-0, assigned-5)
 det(files-8, all-7)
 prep_to(assigned-5, files-8)
 det(directory-11,a-10)
 prep_with(object-3, directory-11)

Figure 4. Corrected (typed) dependencies

representation. For semantic analysis English constraints,

we have to analyze the text in respect of particular context

such as UML class model. Our semantic analyzer

performs following three steps to identify relations in various

syntactic structures:

a) Shallow Semantic Parsing

In shallow semantic parsing, the semantic or thematic

roles are typically assigned to each syntactic structure

in English sentence. We use SBVR vocabulary as the

target semantic roles due to the fact that the mapping of

SBVR vocabulary to OCL is easy and straightforward.

We have identified mappings of English text elements to

SBVR vocabulary (see Table 1).

English Text elements SBVR Vocabulary

Common Nouns Object Type

Proper Nouns Individual Concept

Generative Noun, Adjective Characteristic

Action Verbs Verb Concepts

Subject + verb + Object Fact Type

Table 1. Mapping class model to English

Following is the procedure used for semantic role labelling

of English constraints:

To identify predicates, first of all system identifies the

words in the sentence that can be semantic predicates

or semantic arguments. In English text, a predicate can

be in the form of a simple verb, a phrasal verb or a verbal

collocation. Similarly, the predicate arguments can be

nouns in subject and object part of a sentence. In English,

nouns can have pre-modifiers such as articles

(determiners) and can also have post-modifiers such as

prepositional phrases, relative (finite and non-finite)

clauses, and adjective phrases. Once the predicates are

identified, semantic roles are assigned by using the

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 369

A
Object_Type

[directory object]
verb_concept

[is assigned] to all
Object_Type

[files] with
Object_Type

[directory].

mappings given in Table 1. Role classification is performed

as the syntactic information (part of speech and syntactic

dependencies). The output of this phase is shown in Figure

5.

b) Deep Semantic Analysis

The computational semantics aim at grasping the entire

meanings of a natural language sentence, rather than

focusing on text portions only. For computational

semantics, we need to analyze the deep semantics of

the input English text. The deep semantic analysis involves

generation of a fine-grained semantic representation from

the input text. Various aspects are involved in deep

semantics analysis. However, we are interested in

quantification resolution (see Figure 6) and quantifier scope

resolution:

In English constraints, the quantifiers are most commonly

used. We not only cover all two traditional types (Universal

and Existential) of quantifications in FOL but also we have

used two other types: Uniqueness and Solution quantific-

ation.

Besides, the quantification resolution, we also need to

resolve the scope of quantifiers in input English text.

Moreover, the multiplicity given in the target UML class

model also helps in identifying a particular type of

quantification. For example, in Figure 7, the multiplicity

‘0…1’ specifies that customer can get at most one credit

card. This will be equal to At-most n quantification in SBVR.

Figure 5. Semantic Roles assigned to input English sentence

Univeral_Quantification
[A]

Object_Type
[directory object]

verb_concept
[is assigned]

 to
Univeral_Quantification

[all]
Object_Type

[files] with
Object_Type

[directory].

Figure 6. Semantic roles assigned to Input English Sentence

Finally, a semantic interpretation is generated that is

mapped to SBVR and OCL in later stages. A simple

interpreter was written that uses the extracted semantic

information and assigns an interpretation to a piece of

text by placing its contents in a pattern known

independently of the text. Finally,the logical representation

is mapped to SBVR rules. Details of the mapping are

given in [14].Figure 7 shows an example of the semantic

interpretation and a SBVR representation, we have used

in the NL to OCL approach:

(assign

 (object_type = (∃ = 1X ~ (Directory_Object ? X)) AND

 (object_type = (∃ = 1Y ~ (Directory? Y)))

 (object_type = (∀Z ~ (Files ? Z))))

SBVR: It is obligatory that a directory objectis assigned to eachfile with directory.

Figure 7. Semantic roles assigned to input English sentence

4.2 SBVR to OCL Transformation

After generation of SBVR rules, BVR is mapped to OCL

constraints by using model transformation technology. In

SBVR2OCL transformation, SiTra transformation engine

is used. A set of model transformation rules were used to

transform SBVR rules to OCL constraints [9]. For model

transformation of NL to OCL, we need following two things

to generate OCL constraints:

A. Select the appropriate OCL template (such as invariant,

pre/post conditions, collections, etc.)

B. Use set of mappings that can map source elements of

logical form to the equivalent elements in used OCL

templates.

A set of OCL templates were designed to generate

common OCL expressions such as OCL invariant, OCL

pre-condition, and OCL post-condition. User has to select

one of these three templates manually. Once the user

selects one of the constraints, the missed elements in

the template are extracted from the logical representation

of English constraint. Following is the template for

invariant:

In the all above shown templates, elements written in

brackets ‘[]’ are required. We get these elements from

the logical representation of English sentence. Following

mappings are used to extract these elements:

• UML-Package is package name of the target UML class

model.

• UML-Class is name of the class in the target UML-Class

model and UML-Class should also be an Object Type in

the subject part of the English Constraint.

• Class-Op is one of the operations of the target class

(such as context) in the UML Class model and Class-Op

should also be the Verb Concept in English constraint.

• Param is the list of input parameters of the Class-Op and

we get them from the UML class model. These parameters

should be of type Characteristics in English constraint.

• Return-Type is the return data type of the Class-Op and

we get them from the UML class model. The return type

is the data-type of the used Characteristic in English

constraint and this data type is extracted from the UML

class model.

370 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

• Body can be a single expression or combination of more

than one expression. The details of Body are given in the

next section.

4.3 OCL to Alloy Transformation

UML2Alloy can map an OCL expression to Alloy code by

using model transformation that incorporates the mapping

rules between OCL and Alloy. Every OCL invariant

expression maps to an Alloy fact statement. OCL Boolean

operations, such as conjunction, disjunction and

statements (i.e. and, or, not) map to theequivalentAlloy

conjunction (& &), disjunction (||) and negation (!)

operators. Most of the OCL operations on collections

have a corresponding Alloy expression.More detailed

information on the OCL to Alloy transformation can be

found in [30].

5. A Running Example

To explain the presented approach, we have applied our

approach to the following NL text:

Consider a model of file system in which every entity is a

DirectoryObject. A DirectoryObject could be a File or a

Directory. Each Directory may include a number of

DirectoryObjects, which are the entries of the directory. If a

DirectoryObject has a Directory as its entity, it is its parent. A

DirectoryObject is assigned to all Files with Directory. There

is a root Directory without any parents. A directory cannot

not be a parent of itself.

The above example was used described in Section 3.

Figure 6 UML Class Diagram of a Simple File System

Model depicts a UML class diagram of the file system.

This UML Class Diagram model was generated manually

from the text description, but tools like CM-Builder [22]

can be used to automate this task.

5.1 Generating Alloy

In the following we present the transformation of the NL

statements to SBVR, then to OCL and finally to Alloy.

Constraint1:

English: There is exactly one directory that has no parent.

SBVR: It is obligatory that there isexactly one directory that has no parent.

OCL: context Directory
invoneRootDirectory : Directory.allInstances() ->

select (d : Directory | d.parent ->isEmpty()) -> size() = 1

Alloy: fact { Directory_oneRootDirectory[]}
predDirectory_oneRootDirectory[]{# {d:Directory | no d . parent }=1}

Constraint2:

English: A directory may not be a parent of itself.

SBVR: It is possibility that a directorymay not be a parent of itself.

OCL: context Directory

inv:self.parent -> excludes (self)

Alloy: fact{all self: Directory | Directory_notAncestorOfItself[self] }

predDirectory_notAncestorOfItself[self: Directory]{

self !in self.parent }

Figure 8.UML Class Diagram of a Simple File System Model

File
DirObject + entries

Directory

+allParents +Parents

0...π

0...π 0...1

0...π

5.2 Model Analysis

The analysis of the model can be carried out from within

the NL2OCL, using the UML2Alloy and the Alloy Analyzer

APIs

First we try to simulate the model with a scope[31] of4.

This means that the Alloy Analyzer will attempt to find

instances, which conform to the model and its constraints

using combinations of up to four File and Directory

instances. After producing a number of acceptable

instances, the Alloy Analyzer returned the instance

depicted in Figure 7. This was automatically transformed

from the Alloy Analyzer analysis notation to UML Object

Diagrams by UML2Alloy. The instance shows a directory

(Directory 0), which is not part of the directories hierarchy.

Moreover we see that Directory1 is indirectly a parent of

itself (through Directory 2).

Directory1: Directory

entries:DirObject = Directory2

parent:DirObject = Directory2

parent_entries
parent_entries

Directory2: Directory

entries:DirObject = Directory1

parent:DirObject = Directory1

Directory0: Directory

Figure 9. Instance provided by the Alloy Analyzer

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 371

This is clearly an instance that is not desirable. Inspecting

our initial model, we can assume that Constraint 2 needs

to be augmented to express that a directory may not be

directly or indirectly a parent of itself (i.e. we need to

express that the parent association is acyclic). In order to

do that we would need to express transitive closure using

natural language in the NL2Alloy tool. We use an auxiliary

self-association on the Directory class as shown in Figure

8. This self-association relates a Directory to all its direct

and indirect parents (through the allParents association

end). We replaced Constraint1, so that instead of the

“parent” it uses the “allParents” reference. After this

change, simulating the system provided only valid

instances.

5.3 Results & Discussion

NL2Alloy tool was used to translate 10 examples, similar

to the ones presented in this section. All examples

contained a UML model and different English description

examples to generate Alloy code. The largest English

example was composed of 23 words and the smallest

sentence was composed of 9 words. We calculated total

required (sample) elements in all 10 examples and

extracted (correct, incorrect, missing) elements from

English description. The Calculated recall, precision and

f-values of the solved examples are shown in table 1.

Type N
sample Ncorrect

N
incorrect

N
missing Rec% Prec% F-Value

Data 48 43 4 1 89.58 91.48 90.07

Table 2. Evaluation results of NL to Alloy

The average F-value is 90.07 is encouraging for initial

experiments. However, it was not possible to compare

our results to any other tool as NL-based constraint tool

is a novel idea and no comparative tool is available for

comparison. However, we can note that other language

processing technologies, such as information extraction

systems, and machine translation systems, have found

commercial applications with precision and recall figure

well below this level. Thus, the results of this initial

performance evaluation are very encouraging and support

both NL2Alloy approach and the potential of this technology

in general.

6. Related Work

Many contributions have been made in the field of

automated transformations to soft the various processes

an phases of software modelling. Recent improvements

in model transformation technology, particularly Model

Driven Development [7] (MDD), have allowed production

of one model from another automatically. There are any

instances of this type of transformations example OCL/

UML to Alloy [8], SBVR to OCL [9], SBVR to UML [10],

UML/OCL to SBVR [11], OCL to B [5], SBVR to SQL

[12], etc. Such automated transformations has made easy

and simple to reuse the existing information.

7. Conclusion

In this research paper, a framework is presented for

dynamic generation of the Alloy code from the NL

constraints input by the user. Here, the user is supposed

to write simple and grammatically correct English. The

designed system can find out the required information to

generate a SBVR representation and then transform to a

complete SBVR rule, after mapping with the input UML

model. The SBVR rules are transformed to OCL

expressions and finally translated to Alloy code.

References

[1] Bajwa, I. S., Bordbar, B., Anastasakis, K., Lee, M.G.

(2012). On A Chain of Transformations for Generating Alloy

from NL Constraints, IEEE ICDIM, Macau

[2] OMG. (2007). Unified Modeling Language (UML), OMG

Standard, v. 2.3.

[3] OMG. (2006). Object Constraint Language (OCL), OMG

Standard, v. 2.0.

[4] Jackson, D. (2006). Software Abstractions: Logic,

Language, and Analysis. The MIT Press, London, England.

[5] Kitchin, D. E., McCluskey, T. L., West, Margaret M. B.

(2005). vsOCL: comparing specification languages for

Planning Domains. In: Proceedings of the Fifteenth

International Conference on Automated Planning and

Scheduling (ICAPS)

[6] OMG. (2008). Semantics of Business vocabulary and

Rules (SBVR), OMG Standard, v. 1.0.

[7] Michael Azoff. (2008). The Benefits of Model Driven

Development: MDD in Modern Web-based Systems,

Butler Group, Marc, Available at: http://www.ca.com/~/

media/Files/whitepapers/the-benefits-of-model-driven-

development.pdf

[8] Anastasakis, K., Bordbar, B., Georg, G., Ray, I. (2007).

UML2Alloy: A Challenging Model Transformation, ACM/

IEEE 10th International Conference on Model Driven

Engineering Languages and Systems, LNCS, 735, 436-

450

[9] Bajwa, I. S., Lee, M. G. (2011). Transformation Rules

for Translating Business Rules to OCL Constraints. In:

ECMFA 2011- Seventh European Conference on Modelling

Foundations and Applications, Birmingham, UK, June.

[10] Raj, A., Prabhakar, T. V., Hendryx, S. (2008). Transfor-

mation of SBVR business design to UML models, In:

Proceedings of the 1st India software engineering

conference, February 19-22, Hyderabad, India

[11] Cabot, J., et al. (2009). UML/OCL to SBVR Specificat-

ion: A challenging Transformation, Journal of Information

Systems.

[12] Moschoyiannis, S., Marinos, A., Krause, P. J. (2010).

Generating SQL Queries from SBVR Rules. In RuleML

128-143

372 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

[13] Shah, S., Anastasakis, K., Bordbar, B. (2009). From

UML to Alloy and Back, 6th Workshop on Model Design,

Verification and Validation (MODEVVA 09), In: ACM

International Conference Proceeding Series; 413, p. 1-

10.

[14] BajwaI, S., Behzad, B., Lee, M. (2010). OCL Constr-

aints Generation from Natural Language Specification.

EDOC 2010 – 14th IEEE EDOC Conference, Vitoria, Brazil,

p. 204-213.

[15] Bajwa, I. S., Lee, M. G., Behzad, B. (2011). SBVR

Business Rules Generation from Natural Language

Specification. AAAI 2011 Spring symposium – AI for

Business Agility, San Francisco, USA, p. 2-8.

[16]Richters, M. (2002). A Precise Approach to

Val idat ing UML Models and OCL Constraints.

Universitaet Bremen. Berlin : Logos Verlag. BISS

Monographs, (14).

[17]Toutanova, K., Manning, C. D. (2000). Enriching

the Knowledge Sources Used in a Maximum Entropy

Part-of-Speech Tagger. In: Joint SIGDAT Conference

on Empirical Methods in Natural Language Processing

and Very Large Corpora, p. 63-70.

[18]Kleppe, A., Warmer, J., Bast, W. (2003). MDA

Explained: The Model Driven Architecture Practice and

Promise. The Addison-Wesley Object Technology

Series. Addison-Wesley.

[19] Akehurst, D. H., Boardbar, B. et al. (2006). SiTra:

Simple Transformations in Java, ACM/IEEE 9 th

International Conference on Model Driven Engineering

Languages and Systems, LNCS, 4199, 351-364.

[20] Anastasakis, K. (2009). A Model Driven Approach for

the Automated Analysis of UML Class Diagrams, University

of Birmingham, PhD Thesis.

[21] Mendel, L. (2007). Modeling By Example. M. Eng.

Thesis. Dept. of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology.

[22] Harmain, H. M., Gaizauskas, R. (2003). CM-Builder: A

Natural Language-Based CASE Tool for Object- Oriented

Analysis. Automated Software Engineering. 10 (2) 157-181

[23] NL2Alloy Webpage, Available at: http://www.cs.bham.

ac.uk/~bxb/ NL2OCLviaSBVR /NL2Alloy.html

[24] Reddy, Anmandla Sindhura (2011). Building Concept

Maps from Unified Medical Language System (UMLS)

Dataset, Journal of E-Technology , 2 (3) 98-103.

[25] Kaddes, Mourad., Amanton, Laurent., Sadeg, Bruno.,

Ali, Mouez ., Abdouli, Majed., Bouaziz, Rafik. (2011). RT-

ETM: Toward Analysis and Formalizing Transaction and Data

Models in Realtime Databases, International Journal of Web

Applications, 3 (2) 72-79.

[26] Malek, Ben Youssef., Ahmed, Lbath (2011). Towards a

method of design of real-time GeoProcessing Applications

for Geospatial databases, Journal of Networking Technology,

2 (2) 56-62.

[27] Carvalho e Silva, Hedwio ., Cassia C. de Castro, Rita

de., Gomes, Marcos Jose Negreiros., Garcia, Anilton Salles

(2012). IT Architecture from the Service Continuity

Perspective: Application of Well-Founded Ontology in

Corporate Environments, Journal of Information Security

Research, 3 (2) 47-63.

