
 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 389

Effective Implementation of Basic Operations for Information Retrieval

Julian Szymanski

Department of Computer Systems Architecture

Faculty of Electronics, Telecommunications and Informatics

Gdansk University of Technology, Poland

julian.szymanski@eti.pg.gda.pl

Abstract. In the article we describe the approach to par-

allel implementation of elementary operations for textual

data categorization. In the experiments we evaluate par-

allel computations of similarity matrices and k-means al-

gorithm. The test datasets have been prepared as graphs

created from Wikipedia articles related with links. W also

present the approach to computing pairs of eigenvectors

and eigenvalues for visualizations of the datasets. The

implemented basic operations: computing similarity ma-

trix, data clustering and spectral analysis have been used

in our system for visualization of the Wikipedia catego-

ries on SOM as well as in a system for categorization

search results in Wikipedia.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]; Clustering I.2.7

[Natural Language Processing] Text analysis

General Terms:

Text Processing, Datasets, Visualization

Keywords: Documents Categorization, PCA, SOM, Text

clustering, Information Retrieval

Received: 18 July 2012, Revised 12 September 2012, Accepted

21 September 2012

1. Introduction

In the face of growing sizes of text repositories effective

processing of large text collections became a very

important challenge. One of the most effective ways of

their processing is to analyze the texts as a graphs. The

graphs can be represented as a set of n points in n-

dimensional Euclidean space. The position of a point is

described according to its relation to other points and is

coded as a vector containing a list of the nearest neighbors.

In the simplest case it is a binary matrix where 0 denotes

the lack of a reference and 1 indicates a relation between

two nodes. The representation space is a n – dimensional

hypercube and all the points cover only of accessible

space and they can form theoretically 2(n)different

combinations. In practice the graphs, especially the

linguistic ones, have low density, so the number of relations

is much smaller. Exploiting that fact it is possible to

introduce some optimizations into algorithms and data

structures. If the text documents are considered their

representation vectors are constructed with a binary coding

of particular words occurrences or the presence of inner

relations, such as bibliographic or hyper references.

Processing textual data involves additional issues related

to the scale of the problem. The analyzed matrices, that

represent text collections, are huge and for real data they

can not be loaded into memory, also their processing on

single a processor takes too much time. In our experi-

ments we use data taken form Wikipedia. This electronic

encyclopedia has different databases for different lan-

guages so it allows to rise crossbar size of processed

data easily. Actually the size of Wikipedia data bases for

different languages may differ even by two orders of mag-

nitude. In our experiments we use the data, that while

represented as graphs, contain thousands and hundreds

of thousands nodes. Our first dataset is constructed from

Simple English Wikipedia, and it contains nearly 100 thou-

sands of articles. The second dataset is built from

PolishWikipedia data and it approaches 1 million of ar-

ticles. Processing such large datasets to be finished in

reasonable time requires effective parallel algorithms that

can be run on multiple processors. Also it is important to

take into consideration the size of available operating

system memory as well a disk storage. The effective imple

mentation of the algorithms and their successful evalua-

tion on our test datasets will be the basis for performing

computations on a larger scale – English Wikipedia that

contains over 3.5 millions of articles.

n
2n

2

Journal of Digital

Information Management

´

´

390 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

Wikipedia File size Articles number (n) References number (m) Density [%]

 Simple 8.9 MB 61822 2172829 0.0569

 Polish 106 MB 712734 26403853 0.0052

Table 1. The characteristics of the datasets

2. The Data

From the point of view of Natural Language Processing

(NLP) Wikipedia is a very interesting material. It covers

very vast area of human knowledge that can be represented

in the form of interconnected concepts described in the

articles. The analysis of the content of the articles is a

interesting task in itself, but in this paper we focus only

on the structure formed by connections between the

articles.

The backup of Wikipedia dumps is available online for all

languages. We use them to create Wikipedia articles

representation based on their references. In that approach

each of the articles is represented as a binary vector where

1 denotes presence of hyperlink between two articles.

This structure can be stored in the form of asymmetric

matrix of neighborhood.

The datafile containing that matrix has a size O(n2), where

n is a number of nodes (articles). The final size depends

on how relation is coded eg. in case of small integer the

value should be multiplied with 2 bytes. Storing the

representation matrix in the form of neighbors list it is

possible to generate the size O(n + m), where m is the

number of graph edges (references). The lists of neighbors

form a representation space where each article

corresponds to a n-dimensional point. The lists are sorted

so their zero coordinates can be easily omitted during

computations.

The characteristics of the two test datasets used in the

experiments constructed from Simple English and Polish

Wikipedias have been given in Table 1. The Table contains

information about the size of input datafile, the number of

the articles (graph nodes), the number of references

(edges) and graph density – the average number of

references between two articles expressed in %.

3. The computations

In this paragraph we describe three main computations

we perform on Wikipedia data. We describe the basis of

the algorithms as well as their optimizations and the

methods of their parallelization.

The first task is to compute a similarity matrix. According

to the used distance measure we obtain square similarity

matrix that can be used further as a metrics representation

space and also is used for computing clusters. The

second task – clustering can be performed in many ways

[1]. In our approach we use k-means – one of the simplest

algorithms that allows us to estimate computational cost

of identifying groups of similar elements. The clustering

may be performed on raw data, using metric space

(constructed from similarity matrix) as well as using data

transformed in spectral mapping constructed with eigen

analysis [2], [3] which is our third implemented operation

for large matrices.

3.1 Matrices of distances and similarity

The basic approach to compute similarity of two points in

geometrical space is to calculate Euclidean distance (then

the similarity is its reverse). When we operate on high

dimensional vectors the alternative to Euclidean distance

is the cosine angle between vectors formed between the

origin of the coordinates and the points.

To reduce the size of final similarity matrix (that is n2)

typically given a priori threshold p is used that allows to

filter small values of similarities and treat them as 0. Then

final matrix is stored as a list of neighbors. This approach

allows to considerably reduce the final matrix, that is used

in other computations, where small values are not very

significant. Note eg. for a graph with 1 million nodes

creating full similarity matrix (which elements coded as

integers) the final file will be near 1 TB. For our experiments

we empirically set up the threshold that, while similarity

expressed in % is < 0.05, allows to reduce outcoming files

by 67% ± 15%.

In our experiments we use two distance measures: Cosine

and Euclidean. These two metrics complete each other,

and they find different applications. Cosine distance is

known to be better for computing similarities between

sparse vectors that are typical while representing graph

nodes. It is also suitable for visualization tasks. Euclidean

measure givesmore precise information about distances

between points especially when their mutual cosine

similarity is zero. This information is necessary eg. in k-

means algorithm (section 3.2) when only small fraction of

all similarities are non zero.

As we operate on high-dimensional data their processing

causes also additional problems called curse of dimen-

sionality [4]. The main issue here is the fact that, while

increasing dimensions, the distribution of the distance

averages concentrates around their expectations [5]. This

requires to apply special approaches: dimensionality re-

duction and dimension (eg. with discussed further PCA)

based on weighting distances.

The next problem with processing natural language data

is that the vectors of the representation are sparse. Due

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 391

to that we use Cosine similarity in preprocess phase.

Transforming data into metric space is known to be a

good technique for high dimensional space vectors [6].

While calculating distances the most computation

intensive operation is matrix multiplication with complexity

O(n3). It has been optimized and implemented in parallel

environment using MPI. As we operate on vectors that

represent graph nodes in the form of neighbors lists average

complexity of each operation is O () which finally reduces

the algorithm of matrix multiplication to O(n . m). Additionally

we exploit the fact that the vectors are binary which allows

to replace the floating points operations with logical ones.

In that way Euclidean distance between vectors can be

computed as square root of their Hamming distance and

vectors dot product is the number of their non-zero

common elements. Due to the fact the final matrices are

symmetric and sparse we compute and store only one

part of them, without main diagonal, in the compressed

form of sorted lists (containing only non zero elements).

In our implementation of computing similarities we use

data distribution that can be run on any number of pro-

cessors The distribution algorithm divides the data be-

tween processors in such a way that the size of the data

packages (constructed from matrix triangle) is the same

on all processors. Note we assume here the uniform dis-

tribution of data density which may not be true and thus

cause some problems, which is discussed further.

The distribution of the source matrix D we base on se-

lecting areas from triangle matrix (built form matrix D

formed with its diagonal) which has been shown in Figure

1A.

n
m

Figure 1. Creating data packages from data matrix

for growing processors number

If we want to distribute the data between two processors

we divide matrix D (given in Figure 1.A) into trapezoid and

triangle in such a way that they have the same fields,

which has been shown in Figure 1.B. To distribute the

data between four processors the trapezoid and the

triangle are divided again in two figures with equal fields

what has been shown in Figure 1.C.

This approach does not require master process because

using the information about the first index of the free range

and the number of processors used for computations, each

of processors is able to determine the size of the processed

data by itself.

The method presented in Figure 1 can be generalized for

o processors and data package is delimitated with one of

o areas of matrix D that have uniform fields. Using equation

1 we calculate the number of rows y of n . n similarity

matrix that should be multiplied by the number of remaining

rows to make given portion of data x.

y = ⎣(1 −√ 1 − x) (n − 1)⎦ (1)

If the resources are limited Equation 1 allows us to

compute sequentially only part of the matrix. The

processing results can be joined easily into one final matrix

by aggregating mediate files in proper sequence. It should

be also noticed the approach allows to perform computa-

tions on computer clusters, as well as sequentially. Due

to that the size of processed data that can be computed

and the number of processors that can take part in compu-

tations are unlimited.

3.2 Parallel clustering with K-means

Clustering is a data mining method of unsupervised

learning. It allows to find groups of the most similar objects

in the dataset. The similarity is determined by a measure

that describes distance between points.

One of the typical clustering algorithms is K-means [7].

The algorithm divides the data points into k subsets

(clusters) where each of them joins the closest points (in

sense of used metric). Typically the inverse of Euclidean

distance is used as a similarity metric but any other

measures can be employed here, which allows to capture

particular aspects of data similarities [8]. The k-means

algorithm has some drawbacks: it requires predefined k

parameter – the number of clusters. It produces clusters

that have convex shapes, and is randomly initialized, what

may lead to obtaining different results each time. This

issues can be eliminated with the usage of more

sofisticated algorithms [9] but K-means is a base-line

within clustering algorithms domain and its implementation

allows to estimate computational complexity of the data

analysis problem.

K-means for input data D (in the form of matrix m × n) and

for a given number of k groups (clusters) returns vector R

(of the size m) whose elements describe assignments

between each of m objects and one of k clusters. In our

practical approaches we transform input data D into met-

ric space (typically using Cosine distance) which allows

to operate on m × m matrices. It reduces the size of input

data because in our cases m << n, and allows to use two

different distance measures (one while building metric

space and the second in clustering algorithm) which posi-

tively influence final results.

Typical k-means algorithm is run in following steps:

1. Random initialization of clusters centers w.

w [k, n] = rand ()

2. Calculate distances between each of k clusters and

data points.

r [m, k] = dist (w [k, n], D [m, n])

392 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

3. Partition the data in such a way to minimize distances

between points and clusters.

Each of the data point is assigned to the one group,

represented by nearest cluster center.

p[m, 1] = min (r (m, :))

4. Compute centroids of each of the groups. The centroids

are calculated as averages of most extreme centroids

coordinates values.

c [k, n] = (max [p, k] − min [p, k]) / 2

5. Move each cluster center in direction of computed

centroids.

w = (w − c) / 2

6. Repeat steps 2 – 5 till clusters do not moves.

Because K-means is computations intensive, especially

step 2 (where data are partitioned in such a way as to

minimize distances between points and clusters) and step

3 (where centroids are computed) it has been written in

parallel version in C++ using MPI. To warrant repeatability

of the results we add optional parameter − random

numbers generator seed that determines selection of the

initial clusters. Due to random initialization the algorithm

may not find optimal solution. The improvement is to

perform several test runs and to obtain final results, starting

from points that are averaged positions of the clusters

achieved during test runs. It raises the cost of the

computations proportionally to the number of test runs.

The same improvement can be applied to find optimal

number of k. Performing test runs with different k parameter

allows to estimate its proper value (according to chosen

criterion). Typically the evaluation of the clusters quality

is performed according to internal criteria that analyze

their internal consistency [10].

Due to ununiform distribution of data points in

representation space initial clusters are not randomly

selected from n-dimensional unitary hypercube, because

it creates empty clusters. Instead of it we randomly select

data points which improves the results considerably.

Because the density of large textual graphs (eg. Wikipedia

references) is usually very small (Table 1) most of their

coordinates have zero values. Computing the distances

between all data points and centroids, straightly from the

original formula, requires to repeat many times the same

operation of computing sum squares of centroids

coordinates. In view of the fact it is a crucial part of the

algorithm with complexity O(n) and it is unacceptable,

because it leads to complexity of one iteration O(k . n2).

We introduce an improvement that allows to calculate

distances in O() thus complexity of one iteration

decreases to O(k . m).

The improvement is based on compute and store squares

of all distances of all k centroids at the beginning of each

algorithm iteration. Then in phase where points are

assigned to clusters the distances between points and

centroids are computed using Formula 2.

n
m

|C − P| = √ C 2 − P 2 − 2 (C ο P)

where C is centroid, P is a data point and ο is dot product.

Square of a centroid distance C 2 is computed at the very

beginning of iteration, the number of neighboring points of

given P 2 point is given and C ο P has average complexity

O().

Parallel K-means has been made with dividing the data

points between processors equally and performing

computations locally for the same clusters in each

process. This approach requires to exchange local inform-

ation between processors to obtain global values. Due to

thatmain algorithmloop is executed synchronically.

Howether it does not lead to idle times within main loop

because computations are equally divided between all

processors.

All the processors in the algorithm are equal except the

initial and the final phase where one of them sets up seed

for the random numbers generator for all others with the

MPI Bcast function. After the algorithm finishes, the one

processor using MPI Reduce collects local assignments

of the points to the clusters and stores whole clusters in

separate files on a disc. At the end of assignment phase

the MPI Allreduce function is executed to test the global

stop condition. To compute new centroids as a means of

each clusters in estimation phase MPI Allreduce is used.

It computes global sum of the points in each cluster and

the number of points in these cluster.

3.3 Eigenvectors and Eigenvalues

One of the areas of applied algebra is data analysis with

linear transformations. Most of these approaches is based

on calculation of eigenvectors and eigenvalues [11] of data

matrix D. These calculations are related to solving

characteristic equation of input data det (D − λ I) = 0, where

I is identity matrix and solutions to this equation are the

eigenvalues λ
i
.

Eigen analysis finds applications in spectral clustering

where data partitioning is related to the second highest

eigenvalue [12] or creates eigenspace where typical

clustering is performed [2]. Using eigenvectors, high

dimensional input data can be reduced and presented in

less dimensional space. If reduced space is 2,3 -

dimensional it is possible to make visualizations of the

data. One of the most well known methods to do that is

Principal Component Analysis PCA [13] where projection

of the initial data is performed into reduced space by a

given number of the highest eigenvectors.

Solving characteristic equation is a tough mathematical

problem. Also their implementations are hard to be

implemented as parallel. Due to the characteristic of our

data (that are high dimensional and sparse) it is possible

to apply iterative Lanczos algorithm [14] implemented in

library arpack++ [15]. The algorithm calculates

sequentially eigen pairs starting from the one with highest

corresponding absolute eigenvalue.

In this case performing eigen analysis is made

n
m

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 393

sequentially. Using computed earlier clusters we are able

to partition the data whose computations of eigens are

computed on single processor for a separate group of the

data. Due to that we are able to perform locally parallel

data analysis and we are able to make visualization within

subspaces formed by clusters. Sequential computations

of eigenvectors do not allow to make global analysis of

the data thus it is impossible for now to create eigenspace

where spectral clustering is performed.

4. Results of Scalability

The main goal of the experiments we made here was an

evaluation of scalability of the computations in a function

of the data size and used processors. The size of the

data used in the experiment has been shown in Table 1.

The scalability results of computing distance matrix in

function of available processors have been shown in Table

2. The achieved results for SimpleWiki suggest the

existence of some sequential factor. The implementation

excludes such case, and the reason is in sequential

access to the disc while storing results of computations.

Also it is influenced by a non-uniform data distribution in

source data – the number of referencesbetween articles

is not uniform and it varies in each data package. The

lack of the results for 2-8 processors for Polish Wikipedia

is caused by the size of the input data, which did not

allow to compute them in reasonable time while fewer

than 16 processors were used.

Wikipedia Time according to processors number Size of the data file

 2 4 8 16 32

Simple 15 m 26 s 9 m 32 s 6 m 27 s 5 m 19 s 3 m 25 s 1.4 GB

Polish - - - 225 m 50 s 154 m 59 s 265 GB

Table 2. Scalability of computing distance matrix in function of available processors

In Tables 3 and 4 we show the time results achieved by

our k-means clustering algorithm in function of available

processors and for different k parameters for Simple En-

glish Wikipedia and Polish Wikipedia respectively. What

can be seen the clustering process is almost linear as

well for k parameter as for the growing number of used

processors. The small deviations from linearity are caused

by the costs of communications between processors and

final aggregation of ununiform distributed data within single

process.

While evaluating the results of eigen analysis we can

consider only scalability according to the problem size,

because as a basic computation block we use its se-

quential implementation. As we can see in the results

presented in Table 5 there exists some sequential factor

that does not depend on the number of outcoming pairs

vector-value. It is caused by conversion of the input data

to Compressed Sparse Column SCC format that is required

by arpack++ library. The results we present for two

datasets – the first is a cluster of n = 981 elements formed

within Polish Wikipedia. The second is full simple En-

glish Wikipedia.

5. Eigen space visualizations and clustering quality

One of the applications of spectral analysis is visualiza-

tion of the data. Presenting the input data in a reduced

subspace allows to obtain rough view of the dataset.

10 3 m 31 s 1 m 47 s 59 s 29 s 17 s 11 s 14

20 7 m 36 s 3 m 47 s 2 m 1 m 33 s 20 s 16

40 49 m 51 s 25 m 11 s 13 m 25 s 6 m 20 s 3 m 13 s 1 m 51 s 54

80 49 m 45 s 24 m 49 s 13 m 11 s 6 m 11 s 3 m 11 s 1 m 52 s 27

160 96 m 58 s 50 m 5 s 26 m 13 s 13 m 4 s 6 m 43 s 3 m 38 s 26

Number of clusters (k) Time according to the number of processors Number of iterations

 1 2 4 8 16 32

Number of clusters (k) Time according to the number of processors Number of iterations

 4 8 16 32

10 45 m 3 s 23 m 18 s 12 m 21 s 6 m 43 s 35

20 65 m 11 s 34 m 39 s 17 m 34 s 9 m 44 s 28

40 164 m 3 s 90 m 36 s 46 m 31 s 24 m 57 s 39

80 498 m 16 s 258 m 8 s 139 m 12 s 72 m 21 s 59

 160 1847 m 7 s 1023 m 36 s 564 m 36 s 311 m 1 s 107

Table 3. Scalability of clustering Simple English Wikipedia.

Table 4. Scalability of clustering Polish Wikipedia

394 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

n Type of input Size of input data Time [s] according to number of pairs x

 matrix format 1 2 4 8 16 32

 981 list of neighborhoods 132 kB 0.055 0.075 0.089 0.118 0.151 0.352

 full similarity matrix 3.7 MB 0.35 0.41 0.50 0.68 0.85 1.69

 61822 list of neighborhoods 8.9 MB 5.9 6.5 7.3 9.7 10.9 20.4

(Simple Wikipedia) full similarity matrix 1.4 GB 183 188 219 315 333 524

Table 5. Scalability of computing x most significant eigenvalues and eigenvectors pairs

Clustering quality, especially textual data may be mea-

sured according to the external criteria [16]. One of the

popular measures is Purity that is calculated by counting

the number of correctly assigned data points and dividing

it by N (total their number), when each cluster c is as-

signed to the class ω that is most frequent in the cluster.

It can be described with the Formula 3.

Purity (Ω, C) = Σ
1
n

k

max | ω
k
∩ c

j
|

j
(3)

To be able use this measure we need to possess referential

set Ω. In our application we useWikipedia category system

and for each cluster we select the category that binds

together most of its elements.

The results of presented here experiments have been made

on Polish Wikipedia data set. At the beginning we

compute clusters with k-means clustering and k = 10. The

results have been shown in Table 6. Respective times to

obtain these results can be found in Table 4. What can be

seen in the results, there have been formed nine relatively

small clusters with high Purity and one very big cluster

where all other articles, that couldn’t be separated from

others have been put. Next we may run again clustering

with highest k parameter (which would lead to highest

partitioning). Alternatively we may process the data within

formed clusters separately what will produce hierarchical

structure.

To make visualizations from among clusters presented in

Table 6 we choose the cluster with number eight. It

contains articles that fall into general subject biology that

is well defined generic Wikipedia category. The cluster

has small density so additional groups of data should be

easily extracted.

In Figure 2 we show visualization of the Biology cluster

represented with cosine similarity and projected into 2

dimensional space using two highest principal

components. What can be seen, the data points tends to

lay along straight lines. We evaluate the semantic

interpretation of the points along lines manually and it

shown some semantic similarity of the objects laying along

the same lines. The object tends to group elements such

as birds, reptiles, amphibians but Purity of such

partitioning is low. There is much noise and it would be

hard to make such semantic interpretation automatically.

It is caused by the fact that the data representation based

on links is a relatively weak approach for capturing text

semantic. The second reason is the visualization which

is performed in 2D. Note it is very big limitation that

represents a complex category like a Biology using only

two axes, even if they correspond to linear combinations

of most distinctive features (what indeed performs PCA).

Figure 2. Visualization of similarity matrix for 8 Polish

Wikipedia cluster

Cluster Subject matter Purity Articles number(n) Number of references (m) Cluster Density [%]

 1 Variety 0.1 713373 19139451 0.0038

 2 Poland 0.82 125 12945 82.8

 3 Accounts 1 6 19 52.7

 4 Planetoids 0.69 2278 82083 1.58

 5 Ireland 0.91 43 1677 90.6

 6 Computers 0.88 53 2213 78.7

 7 People 0.61 53489 2256391 0.078

 8 Biology 0.79 22555 376728 0.074

 9 Alliances 0.91 116 13144 97.6

 10 Railways 0.93 425 175978 97.4

Table 6. Clustering results

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 395

6. Applications

6.1 SOM Visualization

Hierarchical systems of categories allow to effectively

navigate over large datasets. The hierarchy allows to

present data on different abstraction levels thus it is the

one of most functional ways for organizing them. The main

problem with the hierarchies is that if we process the

complex data they tend to form more complicated

structures than tree-like. The other issue is there can be

more than one suitable structure for organizing the data

especially if we want to see different aspects of the data.

The categories are initially considered as tree-like

structures that form hierarchies that organize the data

using their generalizations represented as abstract

concepts. As some concepts can be related to more than

one parent the relations between categories form a graph.

Thus its presentation with folder-like approach as it is

used in eg. file systems misses many aspects of the

data. Additional issues related to the cycles should be

also considered here. To solve these problems for

presentation of Wikipedia categories we use Self

Organizing Maps [17] that allow to present topological

similarities of the processed data. The SOM approach

and its extension in the form of hierarchical and growing

self organizing maps [18] has been used for documents

organization [19], eg. in the WEBSOM [20].

Self organizing map (SOM) allows to present topological

relations between categories that come from the same

conceptual level. To efficiently calculate the SOM as a

starting values of the weights we use eigen vectors

calculated for space visualization (section 5) The SOM

presentation takes into consideration distances between

categories. The distances are used to represent the

similarities between categories. In Figure 3 we present a

top Self Organizing Map for categories from the highest

Simple Wikipedia hierarchy level. As different categories

may activate the same neurons in Figure 3 instead of

inserting around each of the neuron labels we mark them

with colors specified to the categories.

The place where the category label is displayed has been

delimited with the center of the shape formed from the

neurons activation for a particular category. The centroid

has been calculated according the formula 4.

m
k
 =

1
(4)

 | S
i
| Σ
x
i
∈ S

i

x
j

where m
k
 denotes position of the centroid for k category

and Si is the values of neuron activations related to that

category.

The resulting map describes here common-feature simi-

larities between categories that can be easily changed

introducing different ways for calculating the distance. Eg.

we can strengthen particular features and in this way ob-

tain different visualizations that show other aspects of the

similarity of the categories [21]. Beside visualizations the

SOM method allows also to narrow the number of pro-

cessed objects. The main idea is to narrow the search

results (presented on SOM) by introducing additional fea-

tures obtained by the interaction with the user [22], what

is the our plan for the future visualizations development.

6.2 Clustering search results

The parallel version of k-means algorithm evaluated in

section 3.2 we used in our prototype system

namedWikiClusterSearch. It automatically organizes the

results of searching Wikipedia for a given keyword. In the

system, user may specify a searched phrase and the

articles containing it are organized into clusters in the fly.

It allows to present directions in which user may continue

his or her search. Our initial implementation has been

created for Polish Wikipedia. WikiClusterSearch (WCS)

Figure 3. SOM for top level categories

396 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

has demonstrated the proposed approach can be used to

obtain a good quality hierarchy of clusters. The system is

available on line under http://kask.eti.pg.gda.pl Universal

Search.

WikiClusterSearch is written in C# in .NET 3.5

environment. Client side uses the advantage of ASP.MVC

2.0 technology combined with jQuery JavaScript library.

The system is built in modular architecture, each one is

responsible for performing a different task. Main modules

are presented in Figure 4. Modular architecture allows to

encapsulate functionalities and test different approaches

to system key elements:

– Data acquisition – the module is responsible for providing

the data. The data may be used from off line version of

Wikipedia when local databases are used. This approach

ensure high efficiency of data processing as they can be

accessible immediately. The drawback of this approach

is the data may be in actual. The other approach is to use

on-line data that are for each user query obtained from

the Internet. This may cause efficiency problems while

queries that index large amount of articles are processed.

Due to that we use here local cache that is periodically

cleaned up.

– Data preprocessing – the module is responsible for

crating computational representation of the articles. In

current implementation we used joint representation based

on words and article references. As this step is crucial for

obtaining good results of automatic categorization in future

we plan to extend it with usage more advanced methods

of extracting characteristic text features.

– Data clustering – the module provides algorithms for

grouping the data. In our current implementation we used

k-means algorithm that is performed in the space reduced

with selecting the most significant eigenvectors. In future

we plan to test density based approach [23] and clustering

with passing the messages [24].

– Cluster labeling module allows to implement a method

for adding the labels to clusters. Here we can apply many

approaches eg. usage most frequent words in a cluster.

In our implementation we employ the fact that we operate

on Wikipedia articles and we use more frequent category

that binds together articles in a cluster.

In Figure 5 we present an example of system user

interface. It shows clusters formed by WCS system for

articles retrieved from PolishWikipedia for a query ’jdro’

(kernel). As it can be seen clusters create different

conceptual directions in which user may continue his or

her search.

7. Discussion and Future Directions

Effective analysis of the large textual data is a basis for

automatic text classification. The experiments presented

here aim to research opportunities to use advances in

clustering process from the usage of larger computational

power.

Figure 4. System architecture

Good scalability of clustering shows that the K-means

algorithm can be made parallely and this process can be

sped up with adding more processors. In future we plan

to experiment with different similarity measures to obtain

partitioning of the data according to selected (with the

similarity measure) aspects of the data [8]. The k-means

algorithm even calculated in eigenspace has many

drawbacks so we plan to replace it with other more effective

approaches like improved DBSCAN [25] and clustering

with passing messages [24]. We think they will rise

additional issues that should be solved to parallelize these

algorithms.

In the results of our experiments we do not find straight

relation between k and the number of k-means iterations.

It is probably caused by high diversity of data density and

random initialization of algorithm. In case of k-means round-

robin approach for data partitioning was sufficient to

balance the computations.

The situation in partitioning data differs while we compute

distance matrix – partitioning the data into blocks does

not allow to eliminate heterogeneity of data density. Some

solutions can be introduced here eg. modifications of

round-robin partitioning of data blocks that takes into

account data densities. In the experiments we find the

existence of some fixed sequential factors caused by

sequential access to the disc storage. It appeared even

when each process wrote to different files. Probably this

could be changed in configurations of computational

cluster.

For larger data sets eigen analysis should be parallelized

to allow to obtain global view of the data. We also find

other approaches for multidimensional scaling that use

sequential computing of eigens [26]. This approach also

requires to set up a parameter that constructs computation

subspaces. Local Linear Embedding requires k nearest

neighbors as an algorithm parameter while we have to

define the number of k clusters.

 Journal of Digital Information Management � Volume 10 Number 6 � December 2012 397

Thus these approaches are conceptually similar. In future

we plan to make parallel implementation of computation

eigenvalues and eigenvectors to be able to make global

data analysis. The challenge here will be to warrant effective

access to the data on a disc storage and reduce

interprocessor communication costs. We also want to

compare our parallel implementations with

implementations on GPU.

The effective implementation of basic operations for

information retrieval:

– calculating the similarity

– clustering

– computing eigenvectors and values

have been used in our systems aiming at improving

searching information inWikipedia. The initial

implementation shows the SOM can be used as additional

component for graphical presenting category structure.

The clustering allowed to improve looking trough search

results especially when the number of retrieved items were

high.

The system presented in section 6.2 clusters only search

results retrieved with a specified keyword. We also plan

to perform experiments on large scale clustering – it is on

the whole Wikipedia. Here instead of performing clustering

within limited dataset (with specified by the user keywords)

we compute whole Wikipedia. The experiments using well

tuned clustering algorithm will allow to improve category

system of Wikipedia finding missing and identify wrong

assignments articles to categories.

8. Acknowledgments

This work has been supported by the National Center for

Research and Development (NCBiR) under research Grant

No. SP/I/1/77065/10 SYNAT: “Establishment of the

universal, open, hosting and communication, repository

platform for network resources of knowledge to be used

Figure 5. Example of user interface

by science, education and open knowledge society”. The

author would like also to thank Adam Gaca for his

contribution to the application development.

References

[1] Berkhin, P. (2006). A survey of clustering data mining

techniques, Grouping Multidimensional Data, p. 25–71.

[2] Ng, A., Jordan, M., Weiss, Y. (2002). On spectral

clustering: Analysis and an algorithm, Advances in neural

information processing systems, 2, 849–856.

[3] Szyma´nski, J. (2011). Categorization of wikipedia

articles with spectral clustering, In: Proceedings of IDEAL,

Lecture Notes In Computer Science, 2, 849–856.

[4] Pestov, V. (2000). On the geometry of similarity search:

Dimensionality curse and concentration of measure,

Information Processing Letters, 73 (1-2) 47–51.

[5] Lee, J., Verleysen, M. (2007). Nonlinear dimensionality

reduction. Springer Verlag.

[6] Strehl, A., Ghosh, J., Mooney, R. (2000). Impact of

similarity measures on web-page clustering, in Workshop

on Artificial Intelligence for Web Search (AAAI 2000), p.

58–64.

[7] Hartigan, J., Wong, M. (1979). A k-means clustering

algorithm, Journal of the Royal Statistical Society C, 28

(1) 100–108.

[8] Szymanski, J., Duch, W. (2010). Dynamic Semantic

Visual Information Management, In: Proceedings of the

9th International Conference on Information and

Management Sciences, p. 107–117.

[9] Xu, R., Wunsch, D., Books, I. (2009). 24 x 7, Clustering.

IEEE Press.

[10] Halkidi, M., Batistakis, Y., Vazirgiannis, M. (2002).

Cluster validity methods: part I, ACM Sigmod Record, 31

(2) 40–45.

´

398 Journal of Digital Information Management � Volume 10 Number 6 � December 2012

[11] Aldrich, J. (2006). Eigenvalue, eigenfunction,

eigenvector, and related terms, Earliest Known Uses of

Some of the Words of Mathematics.

[12] Verma, D., Meila, M. (2003). A comparison of spectral

clustering algorithms, University of Washington, Tech.

Rep. UW-CSE-03-05-01..

[13] Jolliffe, I. (2002). Principal component analysis.

Springer verlag.

[14] Cullum, J., Willoughby, R. (2002). Lanczos Algorithms

for Large Symmetric Eigenvalue Computations: Theory.

Society for Industrial Mathematic.

[15] Gomes, F., Danny, C. (1997). ARPACK++: A C++

Implementation of ARPACK Eigenvalue Package (Draft

Version).

[16] Eldridge, S., Ashby, D., Bennett, C., Wakelin, M.,

Feder, G. (2008). Internal and external validity of cluster

randomised trials: systematic review of recent trials, British

Medical Journal, 336 (7649) 876.

[17] Kohonen, T., Somervuo, P. (1998). Self-organizing

maps of symbol strings, Neurocomputing, 21 (1-3) 19–

30.

[18] Dittenbach, M., Merkl, D., Rauber, A. (2000). The

growing hierarchical self-organizing map, In: Proceedings

of the IEEE-INNS-ENNS International Joint Conference

on Neural Networks. IEEE, 6, 5–19.

[19] Dittenbach, M., Merkl, D., Rauber, A. (2001).

Hierarchical clustering of document archives with the

growing hierarchical self-organizing map, In: Proceedings

of the Artificial Neural Networks Conference ICANN 2001,

p. 500–505.

[20] Kaski, S., Honkela, T., Lagus, K., Kohonen, T. (1998).

Websom-self-organizing maps of document collections1,

Neurocomputing, 21 (1-3) 101–117.

[21] Duch, W., Szymanski, J. (2008). Semantic web:

Asking the right questions, In: Proceedings of the 7th

International Conference on Information and Management

Sciences. California Polytechnic State University Press,

p. 1–8.

[22] Deptua, M., Szyma´nski, J., Krawczyk, H. (2012).

Interactive information search in big data collections,

Studies in Computational Intelligence Springer (in print).

[23] Wang, C., Duo, C. (2007). An improved density-based

dbscan clustering algorithm, Journal of Guangxi Normal

University Natural Science Edition, 25 (4) 104.

[24] Frey, B., Dueck, D. (2007). Clustering by passing

messages between data points, Science, 315 (5814) 972.

[25] Birant, D., Kut, A. (2007). St-dbscan: An algorithm

for clustering spatial-temporal data, Data & Knowledge

Engineering, 60 (1) 208–221.

[26] Roweis, S., Saul, L. (2000). Nonlinear dimensionality

reduction by locally linear embedding, Science, 290 (5500)

2323–2326.

´

