
410                       Journal of Digital Information Management  �  Volume 10   Number  6    �  December  2012

Distributed Weighted Clustering of Evolving Sensor Data Streams with Noise

Journal of Digital

Information Management

Marwan Hassani, Thomas Seidl

Data Management and Data Exploration Group

RWTH Aachen University

Germany

{hassani, Seidl}@cs.rwth-aachen.de

ABSTRACT: Collecting data from sensor nodes is the

ultimate goal of Wireless Sensor Networks. This is

performed by transmitting the sensed measurements to

some data collecting station. In sensor nodes, radio

communication is the dominating consumer of the energy

resources which are usually limited. Summarizing the

sensed data internally on sensor nodes and sending only

the summaries will considerably save energy. Clustering

is an established data mining technique for grouping

objects based on similarity. For sensor networks, k-center

clustering aims at grouping sensor measurements in

groups, each contains similar measurements.

In this paper we propose a novel resource-aware -center

clustering algorithm called: SenClu. Our algorithm

immediately detects new trends in the drifting sensor data

stream and follows them. SenClu powerfully uses a light-

weighted decaying technique that gives lower influence to

old data. As sensor data are usually noisy, our algorithm

is also outlier-aware. In thorough experiments on drifting

synthetic and real world data sets, we show that SenClu

outperforms two state-of-the-art algorithms by producing

higher clustering quality and following trends in the stream,

while consuming nearly the same amount of energy.

Categories and Subject Descriptors: I.3.7 [Computer

Graphics]: Three- Dimensional Graphics and Realism—

Animation; I.3.5 [Computer Graphics]: Computational

Geometry and Object Modeling

General Terms:

Sensor Data, Data Algorithm

Keywords: Data Clustering, Data Processing, Algorithm,

Wireless Sensor Nodes

Received: 25 July 2012, Revised 29 September  2012, Accepted

3 October  2012

1. Introduction

Nowadays, sensor networks are deployed in tens of

applications from everyday scenarios. Particularly in

Wireless Sensor Networks (WSNs), these applications

start from home scenarios like the smart homes to

environmental applications and monitoring tasks in the

health sector [12] , but do not end with military

applications. In all of these applications, monitoring is

the dominating task of WSNs. Collecting useful data from

remote sensor nodes is the ultimate goal of researchers

and domain people who want to monitor some parameters

using the WSN. The collection of all of the sensed data

from all of the nodes within the network directly when

they are sensed results usually in a perfect information

gain about the monitored phenomena. However, not all of

the sensed data are always interesting “enough” to be

sent directly to the gathering station. The resulted

excessive energy consumption when sending all sensed

data to the gathering station encourages us to consider

the previous sentence.

Wireless sensor nodes are spread in many scenarios

over mountains or deserts or under the sea, where a

continuous energy supply is impossible. In such cases,

nodes are powered by batteries with a limited capacity.

Moreover, the cost of changing the battery is in most of

the cases bigger than getting a completely new sensor

node deployed again. Sensor nodes consume energy while

sensing, performing internal computations and during the

communication of data with other nodes or with the central

station. The radio part is the dominating energy consumer.

Thus, minimizing the communication times of sensor

nodes is mainly targeted when optimizing the energy

consumption of a sensor network. By summarizing the

sensed data internally on each sensor node, and then

sending only the summaries of these data, one can



           Journal of Digital Information Management  � Volume  10   Number  6  �  December 2012                  411

considerably reduce the updating frequency between the

sensor node and the data collecting station. Apparently,

this will compromise the information quality of the collected

data. To obtain the maximum out of this trade off, some

aggregation techniques should be carefully used that both

the information gain and the resources usage time are

maximized. In data mining, clustering is a task for

summarizing data such that similar objects are grouped

together while dissimilar ones are separated. In the special

case of sensor networks, clustering of the streaming data

aims at the summarization of similar sensor

measurements. By detecting k representative measurem-

ents in k-center clustering for instance, one ensures good

clustering quality if each representative is assigned to

only very similar measurements. In addition to the

clustering quality which constitutes the final information

gain, one aims at an efficient cluster computation.

1.1 Challenges and Contribution

When designing an energy aware in-sensor-network

clustering algorithm that considers drifting data with

outliers, the following challenges appear:

• Up-to-date Incremental Clustering: The algorithm

must incrementally cluster the stream data points to detect

evolving clusters over the time, while forgetting outdated

data.

• Single Passing, Storage awareness: Due to the limited

processing and storage resources in the sensor node,

the clustering algorithm must perform only a single pass

over the incoming data stream and storage must be

independent on n the size of input stream.

• Minimal Communication: As the energy consumption

of transceiving data between the nodes is usually too big

compared to the computation cost inside the node, the

size of data being sent from the sensor nodes to the base

station must be minimized.

• High Clustering Quality: The algorithm must show a

good approximation to the optimal clustering by reducing

the clustering radius as much as possible.

• Outlier Awareness: The algorithm should not be sensit-

ive to outliers, nevertheless, it must be able to detect

trends in the input stream.

Apparently, not only the two parts of the last aspect are

contradicting each other. The third aspect is met when

additional in-the-node computations are done to reduce

the size of the data to be sent to other node or to the

base station, which opposes the second aspect. On the

other hand the fulfillment of the third and fourth aspect

contradicts again achieving the second one, high-quality

incremental clustering needs to store summaries of old

points and needs additional processing. When consider-

ing the k-center clustering (will be explained later in Sec-

tion 2.1), many attempts in the literature tried to fulfill the

last two aspects, only limited work [4] [6] [9] has

considered the first and the third ones. The EDISKCO

algorithm [10]  was the first algorithm designed to con-

sider the last four aspects together. In spite of its power-

ful performance and efficient usage of energy, EDISKCO

[10] did not mainly address the first aspect. In this paper,

we propose a novel energy efficient -center clustering ap-

proach: SenClu that incrementally groups the data locally

on each sensor node and computes its  representatives.

The algorithm gives more importance to newly received

data for a faster adaptation to the evolving trends in the

stream and more information gain of recent data on the

collecting station. SenClu improves the clustering quality

by using a novel light-weighted decaying technique to give

less importance to old sensed values. It uses also a smart

merging technique for the decayed clusters. The clusters

with the least weight represent decaying data are smartly

treated in SenClu as outliers. This gives a space for group-

ing the new emerging clusters, and thus following the

current trend in the input streams. We sustain the power-

ful features of EDISKCO [10] but show that SenClu pro-

duces considerably better clustering results than

EDISKCO [10]  and another state-of the art competing

algorithm, while consuming nearly the same amount of

energy.

The remainder of this paper is organized as follows: Section

2 reviews previous work related to our clustering and

communicating problem. In Section 3 we pass through

some preliminaries. Section 4 describes our proposed

SenClu algorithm in detail. Section 6 presents the

experimental results. And finally we conclude the paper

in Section 9.

2. Related Work

We will list some previous work done in two strongly

related areas: approaches for sensor data clustering

(particularly k-center clustering) and energy and data aware

routing approaches for sensor networks.

2.1 Stream and k-Center Clustering Algorithms

DenStream [1] was the first stream clustering algorithm

which used the weighing method to give recent data more

influence by weighing the objects down according to their

age. This work was followed by many other algorithms

which used similar techniques (e.g. [5] ). Although some

of them were storage aware, these techniques were

designed to perform the decaying method using enough

processing and energy resources. Our algorithm in

contrast applies a novel decaying and merging techniques

that is light weighted enough to be implemented on the

limited resources of sensor nodes. In the k-center

clustering problem of a group of points P, we are asked to

find k points from P and the smallest radius R such that if

disks with a radius of R were placed on those centers

then every point from  P is covered [9] . The quality of the

k-center clustering algorithms is measured using the

approximation to the optimal clustering. Many clustering

solutions have been presented for the k-center problem.



412                       Journal of Digital Information Management  �  Volume 10   Number  6    �  December  2012

Offline Approaches assume that all of the n input points

are stored in the memory. The “Furthest Point ” Algorithm

[8] and the “Parametric Pruning” [14]  gave a 2-

approximation to the optimal clustering by making O(kn)

distance computations. It is NP-hard to find a (2 − ∈)-

approximation to the optimal clustering of the k-center

problem for any ∈ > 0 [7] .

Online Approaches were developed to cope up with

streaming input, the “Doubling Algorithm” [2]  is a single

pass streaming algorithm which guarantees an 8-factor

approximation to the optimal clustering and uses O (k)

space. Cormode et. al [6] has formulated the “Parallel

Guessing Algorithm” resulting with a (2 + ∈)-approximation

to the optimal clustering. This algorithm uses the first

points in the input stream to make ∆ guesses of the

clustering radius R as (1 +       ), (1 +      ) 2, (1 +       ) 3,... This

will end up by storing O(     log ∆) points. The algorithm is

very sensitive to the first k centers selected from received

points and some of them might even be outliers, which

reduces the clustering quality by using a big guess. The

storage is dependent on ∆ which can be in reality a big

value for the limited storage of sensor nodes. In addition,

the parallel nature of the algorithm does suite the limited

processing ability of sensor nodes even for small values

of ∆.

Distributed Approaches where distributed sites are

considered, each is maintaining a k-center clustering

algorithm on his local input stream. The idea was originally

raised in [6] Here we have m remote sites applying the

parallel guessing algorithm or an online furthest point

algorithm on its local data. The site sends its k-centers

to a central site called coordinator which in turn applies

another k-center clustering algorithm on the  centers. They

proved that if the k × m-center clustering algorithm on the

site side gives an α -approximation and the one on the

coordinator site gives a β -approximation then the resulting

k-center clustering algorithm offers an (α + β ) -approxim-

ation to the optimal clustering of the whole input data. A

similar idea for a light weighted processing was used in

[10] where sensor nodes are considered.

k-Center Clustering with Outliers was first presented

by Charikar et. al [3] in an offline algorithm with a

approximation which drops z outliers. McCutchen et. al

[15] presented an algorithm which gives a (4 + ∈)-approxim-

ation using O(     ) memory space. EDISKCO [10] online z

drops  far and non-dense outliers by achieving (2 + ∈)-

approximation. In contrast, our algorithm: SenClu

considers aged clusters with the least weights as outliers.

2.2 Energy-and-data-aware Routing Approaches in

Wireless Sensor Networks

After collecting their measurements from the physical

environment and processing them, sensor nodes have to

send these data to one or more base stations. By having

the base station(s) within the radio range of each sensor

node, the naïve single-hop communication between each

∈

2

∈

2

∈

2

∈

k

∈

kz

node and the base station is possible but not energy-

efficient and not reliable because of possible resulting

interferences. Figure 1 (Left) illustrates one solution to

this problem. Low Energy Adaptive Clustering (LEACH)

protocol [13] dynamically groups sensor nodes in a small

number of clusters. The randomly chosen representatives

(cluster heads) locally fuse data from their neighboring

and transmit it to the base station, which results of a

factor of 8 improvement compared to direct transmissions.

In the Hybrid Energy-Efficient Distributed HEED Clustering

Approach ý[16] the cluster head selection is mainly based

on residual energy and the neighbor proximity of each

node. In ECLUN [11] , a smarter representative selection

process is performed not only by considering spatial

similarities, but also similarities over some dimensions of

measured data. This considerably increases the stability

of the clusters and the representatives within the network,

which results in an additional saving of the energy (cf.

Figure 1 (Right)). Similar to EDISKCO, our algorithm uses

a networking protocol that extends the lifetime of the

wireless sensor network. The protocol efficiently groups

local sensor nodes that locally send their data to one of

them called coordinator which in turn aggregates these

data and sends it to the far base station. The coordinator

is iteratively changed depending upon the residual energy

which is accurately estimated by our algorithm.

3. Preliminaries

3.1 The k-center Problem

Given a set P of n points P = { p
1
,..., p

n
}, a distance function

d( p
a
, p

b
) ≥ 0 satisfying the triangle inequality and an integer

k < n, the k-center set is C contained in P such that

|C | = k. The -center problem is to find a k-center set  that

minimizes the maximum distance of each point p ∈ P to

its nearest center in C; i.e., the set which minimizes the

quantity max
p ∈ P 

min
c ∈ C 

d( p, c). The well-known -median

clustering problem is the minsum variant of this problem

where we seek to minimize Σ
p ∈ P 

min
c ∈ C 

d( p, c) [9].

3.2 Incremental k-Center Clustering Problem

Let S = {c
1
, c

2
,..., c

k 
, R}, be a current solution of a k-center

clustering algorithm  applied on  input points that are

arriving to the algorithm one by one in a sequence of

updates, where: c
i
; i = 1 ...k are the centers and R is the

radius of all of the clusters. A is an incremental clustering

algorithm if it can always maintain a valid solution over

the low of stream. In other words, whenever a new point

arrives to the algorithm it should either be assigned to

one of the clusters indicating the validity of current

clustering, or it does not fit in any of the current S clusters

then the current  must be changed into another solution

S′ such that this new point is assigned to some cluster in

the new solution S ′. S ′ can differ from S by the centers,

radius or by both of them.

3.3 Weighted k-Center Clustering

A weighted k-center clustering algorithm A uses the

following structure to save information about a clustering



           Journal of Digital Information Management  � Volume  10   Number  6  �  December 2012                  413

C:{c
1
, w

1
, t

u1
, c

2
, w

2
, t

u2
,...,c

k
, w

k
, t

uk
, R}. Where w

i
 is the wei-

ght of cluster i, c
i
 is its center and t

ui
 is the last time when

the cluster  was updated by a point from the stream input.

Let t
now 

be the current time, the weight of cluster i is

calculated as follows:

• [w
i 
= 2− λ                 ] if the cluster i was not updated by the

current stream input point (at time t
now

).

• [w
i 
= 2−  λ                   + 1] if the cluster [i was updated by the cu-

rrent stream input point (at time t
now

).

Where 0 ≤ λ ≤ represents the decaying factor. Larger val-

ues of λ result in a faster decaying of old members of the

current cluster, while smaller values represent more con-

tribution of old members in the calculation of the weight of

the current cluster.

(t
now

− t
ui
)

(t
now

− t
ui
)

Figure 1. Left: An example of a routing protocol: A) All sensor

nodes use a big sending power to send their data to the base

station. B) Sensor nodes use lower sending power to send

data locally to a local node which aggregates and sends them

to the base station. Right: An example how ECLUN [11] per-

forms the grouping of nodes and the selection of representa-

tives additionally according to similarity w.r.t. some attributes

3.4 The Distributed Clustering

In distributed clustering we track each sensor node data

locally, process it then combine the results in a central

node or a coordinator. The target is to minimize the

communication and share the resources. We define the

distributed clustering problem. Let 1, 2,...,d be distributed

sites, each site i applies a clustering algorithm A
i
 on its

stream input of data X
i
 and produces a solution S

i
. It is

required to perform a global clustering of all X
i
; i = 1, 2,...,d

input streams distributed over the sites. One efficient

solution to do that is to have a central site which collects

the union U
i = 1 

S
i
 and answers the querying or monitoring

requests of the whole input streams. It is also possible

that a further clustering algorithm B at the coordinator to

be applied on U
i = 1 

S
i
. In the distributed k-center clustering

problem, we will consider in this paper, the solution of A
i

at each site i is S
i
 = {c

i1
, c

i2
,..., c

ik 
, R} and on the

coordinator side, we perform another k-center clustering

algorithm over the whole k centers coming from the whole

d sites, i.e.,

U
i = 1

{c
i1
, c

i2
,..., c

ik
}. When applying incremental

clustering algorithms, continuous updates with the new

solutions must be sent from the sites to the coordinator.

Figure 2 illustrates an example where the coordinator

applies another k-center clustering over the  centers sent

from the sites.

d

d

d

Figure 2. An example of a distributed k-center clustering for

k = 3 clusters of data coming from d = 4 sites, the coordinator

applies another k-center clustering over the k _ d centers

sent from the sites.

3.5 The Problem of Weighted -center Clustering with

Outliers

Sensor data are usually noisy. If a clustering algorithm is

not outlier-aware the results will become extremely

sensitive to the noise. This sensitivity has two effects: (a)

on the clustering quality which appears in Figure 2 for

example in site 3 where the cluster on the left has a bigger

clustering radius (worse clustering quality) because of

not considering one point too far from the center as an

outlier. And (b) on the energy consumption in the distributed

model since outliers cause current solutions to be invalid

and result in additional updates with the coordinator.

Formally in the weighted k-center clustering problem with

outliers we group m out of the n input points into the k

clusters by dropping maximally z = m − n points. The decis-

ion of labeling those z or less points as outliers is done

according to their small weights compared to other

clusters. Noisy data form less dense clusters that receive

updates less frequently, the weight of such clusters will

soon decrease.

4. The SenClu Algorithm

In this section we present SenClu. Each local sensor node

receives its input stream through its sensors, produces a

weighted k-center clustering solution to it by considering

the existence of outliers and sends this solution to the

coordinator. The coordinator performs another clustering

algorithm to the solutions coming from the sites. A server

part of the algorithm manages iteratively assigning

coordinators and receiving data from them. Therefore,

similar to EDISKCO [10] , the input streams are processed

at each node locally, and a global clustering of all sensors

data is performed globally in the coordinator. SenClu uses

a heap structure h for storing maximally k + z weighted

clusters. Each member c
j
; j = 1, 2,..., (k + z) in this heap

represents a cluster, where:  c
j
. center represents the center

of this cluster, c
j
. weight: the weight, and c

j
. up_time: the

last time when c
j
 was updated. The members in this heap

are arranged in a descending order according to c
j
. weight.

The top k members represent the clusters, while the rest

which could be maximally z represent the outlier clusters.



414                       Journal of Digital Information Management  �  Volume 10   Number  6    �  December  2012

Arranging the clusters according to the weights needs to

be done only once after each reclustering. Once the

members are arranged, only the updated cluster needs

to be rearranged such that it is in the correct place of the

list. All non-updated clusters decay with the same factor

together. We define the following functions on h:

(a) maintain (h): applied after each reclustering or birth of

a new cluster such that for all 1 ≤  j, q ≤ k + z we have q > j

only if c
q
. weight ≥ c

j
. weight. Whenever a point is inserted

in a cluster, maintain (h) simply performs a decaying step

for all clusters weight: c
i
. weight = 2−λ 

× c
i
. weight for all

1 ≤  i ≤ k + z, and then in the next step increases only the

weight of the cluster where the input point was inserted

by . The decaying step will leave the order of the heap

correct, after the increasing step, one scan step is needed

to insert the updated cluster in its correct place in the

arranged list. The previous step is performed to avoid the

complicated mathematics associated with calculating:

w
i 
= 2− λ            + 1 in general, which most sensor node

processors cannot afford.

(b) size (h): returns the number of the members in h which

can be any value between 0 and  k + z.

(c) get (h, j): returns the member j from the heap.

(d) delete (h, j): deletes the member j from the heap and

directly maintains the heap.

(e) insert (h, p): inserts an input point j from the stream in

j, (see Algorithm 1). It scans the members of h beginning

with the high-weighted ones. When a cluster is found where

Algorithm 1.

(t
now

− t
ui
)

p is not further than R from its center, all the cluster are

aged by 2−λ, and only the found cluster’s weight is

incremented by 1, and p is forgotten. If p was further than

R from all available cluster centers and there were less

than k + z members in h, then a new cluster is established

with p is its center. Otherwise check if the least weighted

cluster k + z has less weight than w
win

 (the minimum

weight), if yes, delete it and insert the new point in a new

cluster and return its position. Otherwise, an error is

returned for not having a place to add p.

4.1 On The Node Local Side

Each node  i receives an input stream X(i) and runs the

SenCluNode algorithm (see Algorithm 2) and sends updates

to the coordinator with k center outlier-and- weight-aware

clustering representation of X(i) in addition to the

corresponding radius R
i
. Please mind that during the

initialization phase (not shown in Algorithm 2 for

readability), the node increases the radius without sending

updates to the coordinator until n input points are received.

Then the running phase of SenCluNode starts. SenCluNode

is explained in details in Algorithm 2.

4.2 On The Coordinator Side

The coordinator side algorithm is explained in

SenCluCoordinator (cf. Algorithm 3). Lines 15-20 explain

the communication messages between the server and

the coordinator for managing the selection of the next

coordinator according to the residual energy that each

node still possesses. The coordinator keeps a special

space for saving summary about the energy consumption

of each node i. The total number of centers that were



           Journal of Digital Information Management  � Volume  10   Number  6  �  December 2012                  415

sent from a node i and the total number of radius increase

requests sent from a node during this phase are saved

under num_Centers
i
 and num_Requests

i 
respectively. These

are important for the server to calculate the total energy

consumption of each node including the coordinator during

this phase. The server sends from time to time

consumption update requests to the coordinator which in

turn replies to them. The server uses an energy model

similar to the one in [10] According to the residual energy

of each node and the coordinator, the server makes a

decision of changing the current coordinator by sending

chg_coordinator message to it, with the id of the next

coordinator.

Algorithm 2.

5. Experiments

We have evaluated the performance of SenClu using

extensive experiments on both synthetic and real data.

As competitors, we have chosen two state-of-the-art

algorithms: EDISKCO [10] and Global-PG [6] (we refer to

it as PG in the experiments). Both competitors represent

single-pass distributed k-center clustering algorithm on

the node sides which also applies the furthest point

algorithm on the coordinator side. In order to have fair

results, we have implemented our suggested node-

coordinator-server model also on the Global-PG. We have

implemented simulations of the three algorithms in Java.



416                       Journal of Digital Information Management  �  Volume 10   Number  6    �  December  2012

We have chosen one synthetic dataset and two real world

datasets; we give a small description of each:

5.1 Synthetic data set: RandomWalk (RW)1

A synthetic data set based on the random walk model.

The increments between two consecutive values are

independent and identically distributed. Each increment:

t
i + 1

 is produced by randomly adding or subtracting from t
i

a uniformly random value from the interval [1, 10]. We

generated  19 diffierent data sets each for one node, each

contains 42,000 measures. Subsequently, to produce a

natural outliers  effect, we replaced randomly selected

values (4.5% of the dataset size) with noise values,

uniformly at random in the interval [min, max] of the dataset.

5.2 Real Dataset: I9 Sensor Dataset1

We have collected a real data from a sensor network. We

deployed  TelosB motes in our department area. All motes

were programmed to collect temperature samples each

seconds and send them directly to a sink connected to a

computer. The data was collected for more than days

between the 10th and the 23rd of April 2009 and forming

measures of each node. The minimum difference between

raw measures is . The nodes were not always able to

communicate perfectly with the sink due to collisions or

loss of signal, this appeared in of the total data. Instead

of each measure that did not reach the sink, we introduced

a noise data. In a different way of adding outliers to that of

Algorithm 3.

1dataset is available under http://dme.rwth-aachen.de/SenClu

RW, a uniformly at random value from the interval was

selected and then uniformly at a random either added to

or deducted from , the resulting value was inserted instead

of the lost measure.

Real Dataset: Physiological Sensor Dataset This data

was presented in ICML 2004 as a challenge for information

extraction from streaming sensor data. The training data

set consists of approximately 10,000 hours of this data

containing: userID, gender, sessionID, sessionTime,

annotation, characteristic 1, characteristic and sensor

[1...9] We have extracted the firrst 24,000 readings of

sensor2 by userID. We have chosen the data of 12 different

userIDs with the same gender, each representing a node.

We did not add outliers to this dataset as they naturally

exist in such datasets.

We have used the following four criteria to evaluate SenClu

w.r.t. EDISKCO and the PG algorithm:

(a) Silhouette Coefficient: We use this measure to

evaluate the clustering quality on the nodes side. It reflects

how appropriate the mapping of data objects is to clusters.

It subtracts the average distance of objects to their

representative from the average distance of objects to their

second closest cluster and then divides the results over

the bigger average. When calculating the average of these

values for all objects in all clusters, the final value will

range from −1 to +1. Where −1 will reflect the worst

clustering and +1 a perfect one. For the streaming case,



           Journal of Digital Information Management  � Volume  10   Number  6  �  December 2012                  417

we have used a sliding window over the stream input and

then performed the calculation of the Silhouette coefficient

at the end of each window for all the objects within it.

(b) Global Clustering Radius: Another measure to reflect

the clustering quality, this time on the coordinator side. In

k-center clustering, better clustering uses smaller radius

to cover all of the input points.

(c) Maximum Clustering Radius: A third measure that

shows also the worst case of the clustering accuracy. It

measures the maximum radius of the clusters over all

nodes; this value will decide later the global clustering

radius (when a reclustering signal is sent to the

coordinator).

(d) Energy Consumption: Evaluated through the average

energy consumption of the one sensor node in the network

in Joule based on the detailed cost model suggested in

[10] and the datasheets of TelosB mote, TI MSP430

microcontroller and the CC2420 radio chip in addition to

the TinyOS 2.0.2 operating system installed on the motes.

5.1 Experimental Setup and Results

For all experiments, we selected the parameters for

SenClu and EDISKCO for all datasets as: k  = 15, z =     =  4,

∈= 0.5.For SenClu only we selected: w
min 

= 0.5, and λ as:

(0.005 in RW dataset) and (0.018 in I9 dataset) and (0.01in

(a)            (b)

Figure 3. The clustering quality using the Random Walk Synthetic Dataset over different

parts of the input stream data  (a) the Silhouette Coefficient, (b) The global radius R
global

(a)            (b)

Figure 4 The clustering quality using the I9 Real Sensor Dataset over different parts

of the input measurements (a) Silhouette Coefficients, (b) The global radius R
global

4

k

Physiological Dataset). For EDISKCO only: the number

of the most dense clusters to be sent to the coordinator

after each cluster increase: l = = 4. The maximum allo-

wed number of input points after which the node can send

a solution to the coordinator: n = 100, and the maximum

allowed number of outliers in total: o =10%n. For the Global-

PG we have selected the number of points collected at

the beginning to perform the parallel guessing equals to

our n = 400and also ∈= 0.5. We performed the evaluations

on a 3.00 Ghz core Duo 4 GB RAM machine. For all algo-

rithms we set the initial radius as R
min 

(P) = min
p, q∈ p ≠ q

d ( p, q) for each dataset  P separately. Figure 3(a) shows

that SenClu achieves considerably higher Silhouette

coefficient values than both EDISKCO and PG over almost

the entire data stream of the RW dataset. This high

clustering quality of SenClu is due to its novel weighing

technique that allow new emerging trends to influence

the clustering result, and thus grouped in the correct

cluster. Also on the clustering performed on the coordinator

side, Figure 3(b) shows that SenClu has always smaller

global radius than EDISKCO which constitutes a better

clustering. PG has considerably worse performance than

SenClu and EDISKCO on the coordinator side (mind the

logarithmic scaling in Figure 3(a)). Also in Figure 4(a) we

can see that SenClu has a better clustering performance

on the node side than both competitors over the whole

data measurements of the I9 Sensor Dataset. Figure 4(b)

shows again that the decaying nature and the smart

4

k



418                       Journal of Digital Information Management  �  Volume 10   Number  6    �  December  2012

(a)            (b)

Figure 5. The clustering quality using the Real Physiological Sensor Dataset over different

parts of the input stream data (a) Silhouette Coefficients, (b) The global radius R
global

Figure 6. The clustering quality using the Random Walk Synthetic Dataset

over different parts of the input stream data illustrated with the maximal radius

Figure 7. The clustering quality using the I9 Real Sensor Dataset over

different parts of the input stream data illustrated with the maximal radius

merging technique that SenClu has, result in a smaller

radius on the coordinator side and thus better overall

clustering results than both PG and EDISKCO. Figure

5(a) shows on another real dataset (Physiological Sensor

Dataset) that SenClu always has a better clustering quality

than both competitors on the node side. Because PG is

more sensitive to noise than SenClu and EDISKCO, it is

performing considerably worse than others on this relatively

noisy dataset. Figure 5(b) is showing that on the node

side, SenClu is having most of the time the same global

radius as EDISKCO. Only for a short time, SenClu is having

a bigger radius than EDISKCO. shows that SenClu

consumes a bit more energy on average than both

EDISKCO and PG when applied on RW dataset. This

can be explained by the random nature of the Random

Walk dataset that results in different new trends in the

data, which SenClu tries to follow. This results in multiple

updates to the coordinator of new created clusters. This

is not the case for EDISKCO and PG where a very lazy

update of newly emerging clusters saves some energy

while extremely affects the clustering quality (cf. Figure

3(a) and 3(b)). This effect does not appear when using

natural real datasets. We can see from Table 1 that on I9

Sensor Dataset, SenClu consumes less than twoJoules

more than EDISKCO, and absorbs considerably less

energy than PG. When using the Physiological Sensor

Dataset, SenClu consumes less energy than both

competitors.

Figure 6, Figure 7 and Figure 8 show the clustering quality



           Journal of Digital Information Management  � Volume  10   Number  6  �  December 2012                  419

of the three algorithms using the maximal radius measure

for the RW, I9 and the Physiological datasets respectively.

The maximal radius reflects the biggest clustering radius

over all nodes. Similar to the global radius; the bigger the

value of the maximal radius, the worse the quality of the

clustering algorithm. From Figures 6, 7 and 8, one can

see that the PG clustering algorithm has considerably

worse results than both EDISKCO and SenClu. It can be

noticed also that for all of datasets SenClu has always a

better or at least equal clustering quality as EDISKCO.

Table 1. Average energy consumption in Joule of

a single node in the network by the end of each

dataset when using SenClu, EDISKCO and PG

Figure 8. The clustering quality using the Real

Physiological Sensor Dataset over different parts of

the input stream data illustrated with the maximal radius

6. Conclusions and Future Work

In this work we present our novel energy efficient weighted

k-center clustering solution. We presented our algorithm:

SenClu as a single-pass algorithm that immediately

detects new trends in the drifting sensor data stream and

follows them. The light-weighted decaying technique which

we used to enhance the clustering quality, gives lower

influence to old data. As sensor data are usually noisy,

SenClu is also outlier-aware. In thorough experiments on

drifting synthetic and real world data sets, we showed

that SenClu outperforms two state-of-the-art algorithms

by producing higher clustering quality and following trends

in the stream, while consuming nearly the same amount

of energy. In future work, we aim at a further improvement

of the clustering quality. One possible way for that is the

usage of a new data structure and a dedicated distance

function for the weighted -center clustering in the

distributed case. Additionally, we would like to discuss

the possibility of tracking clusters which are available in

some subspace of the data. Some existing techniques

already try to achieve that on static data. But it will be

definitely interesting to check the possibility of including

the streaming case.

7. Acknowledgments

This research was funded in part by the cluster of

excellence on Ultra-high speed Mobile Information and

Communication (UMIC) of the DFG (German Research

Foundation grant EXC 89).

References

[1] Cao, F., Ester, M., Qian W.,and Zhou, A. (2006).

Density-based clustering over an evolving data stream with

noise. In SDM’06, p. 326-337.

[2]  Charikar, M., Chekuri, C., Feder, T., Motwani, R. (1997).

Incremental clustering and dynamic information retrieval.

In: Proc. ACM STOC’07, p. 626-635.

[3] Charikar, M., Khuller, S., Mount, D. M., Narasimhan,

G. (2001). Algorithms for facility location problems with

outliers. In: Proc. SODA’01, p. 642-651.

[4] Charikar, M., O’Callaghan, L., Panigrahy, R. (2003).

Better streaming algorithms for clustering problems. In:

Proc. ACM STOC’03, p. 30-39.

[5] Chen, Y., Tu, L. (2007) Density-based clustering for

real-time stream data. In: Proc. KDD’07, p. 133-142.

[6] Cormode, G., Muthukrishnan, S., Zhuang, W. (2007).

Conquering the divide: Continuous clustering of distributed

data streams. In: Proc. IEEE ICDE‘07, p. 1036-1045.

[7] Feder, T., Greene, D. (1988). Optimal algorithms for

approximate clustering. In: Proc. ACM STOC’88, p. 434-

444.

[8] Gonzalez, T. F. (1985). Clustering to minimize the

maximum intercluster distance. Theoretical Computer

Science, 38 (2-3) 293-306.

[9] Guha, S. (2009). Tight results for clustering and

summarizing data streams. In: Proc. ICDT’09, p. 268-

275.

[10] Hassani, M., Müller, E., Seidl, T. (2009). EDISKCO:

Energy efficient Distributed In-sensor-network k-center

Clustering with Outliers. In: Proc. SensorKDD’09, p. 39-

48.

[11] Hassani, M., Müller, E., Spaus, P., Faqolli, A.,

Palpanas, T., Seidl, T. (2010). Self-organizing energy aware

clustering of nodes in sensor networks using relevant

attributes. In: Proc. SensorKDD’10, p. 87-96.

[12] Hassani, M., Seidl, T. (2011). Towards a mobile health

context prediction: Sequential pattern mining in multiple

streams. In: Proc. of IEEE MDM ‘11, 2, 55-57.

[13] Heinzelman, W. R., Chandrakasan, A., Balakrishnan,

H. (2000). Energy-efficient communication protocol for

wireless microsensor networks. In: Proc. HICSS’00.

[14] Hochbaum, D., Shmoys, D. (1985). A best possible

approximation algorithm for the k-centre problem. Math.

of Operations Research,10, p. 180-184.

[15] Matthew Mccutchen, R., Khuller, S. (2008). Streaming

algorithms for k-center clustering with outliers and with

anonymity. In: Proc. Workshop APPROX / RANDOM’08,

p. 165-178.



420                       Journal of Digital Information Management  �  Volume 10   Number  6    �  December  2012

[16] Younis, O, Fahmy, S. (2004). Heed: A hybrid, energy-

efficient, distributed clustering approach for ad hoc sensor

networks, IEEE Transactions on Mobile Computing, 3,

366-379.

Marwan Hassani received an equivalence Master degree in Computer Science from RWTH

Aachen University in Germany in December 2008. Marwan has received his bachelor degree

from Aleppo University, Syria in July 2004. Currently he is a PhD student at RWTH Aachen

University. His research interests include data exploration techniques, such as stream data

mining, in particular energy-efficient sensor clustering algorithms and advances stream clustering

algorithms.

Thomas Seidl is a professor for computer science and head of the data management and data

exploration group at RWTH Aachen University, Germany. His research interests include data

mining and database technology for multimedia and spatio-temporal databases in engineering,

communication and life science applications. Prof. Seidl received his Diplom (MSc) in 1992 from

TU Muenchen and his PhD (1997) and venia legendi (2001) from LMU Muenchen.

Author biographies


