
 Journal of Digital Information Management � Volume 12 Number 2 � April 2014 133

Analysis of Information Management and Scheduling Technology in Hadoop

Ma Weihua, Zhang Hong, Li Qianmu, Xia Bin
School of Computer Science and Technology
Nanjing University of Science and Engineering
Nanjing 210094, China
kryolith.xiabin@gmail.com

Journal of Digital
Information Management

ABSTRACT: Development of big data computing has
brought many changes to society and social life is
constantly digitized. ‘How to handle vast amounts of data’
has become a more and more fashionable topic. Hadoop
is a distributed computing software framework, which
includes HDFS and MapReduce distributed computing
method, make distributed processing huge amounts of
data possible. Then job scheduler determines the efficiency
of Hadoop clusters and user experience. Under the
premise of familiar with the mechanism of Hadoop’s running
tasks, make a full analysis of the existing Hadoop task
scheduling algorithm, such as FIFO-Scheduler, Capacity
–Scheduler, FairShare-Scheduler and LATE-Scheduler,
found that the existing scheduling algorithms do not
perceive the performance of the computing node, so that
it cannot assign different tasks depending on the machine
performance in heterogeneous Hadoop cluster.

Subject Categories and Descriptors
H.2.8 [Database Applications]: Data Mining; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval

General Terms: Data Mining, Data Clusters, Hadoop

Keywords: Cloud Computing, Hadoop, Task Scheduling, Map
Reduce

Received: 11 November 2013, Revised 13 February 2014,
Accepted 26 February 2014

1. Introduction

Hadoop is a distributed computing software framework

sponsored by a famous open source software foundation
Apache. This software is developed using Java program
language. Users can develop distributed computing
software, fully using the power of clusters to do high-speed
calculation and storage, without knowing the details of
the technology [1].

Data need to be read in the process that compute nodes
execute the Map task. However, a non-local task must
be localized firstly, which need consume some network
resources and local disk bandwidth. Thus, network
bandwidth of Data node and operations of disk IO can be
reduced effectively if only migration of data of task
MapReduce is reduced. While for the task itself, data
localization would not be needed if they are exactly local.
Obviously, this step for a task with a lot of data, still need
a certain amount of time. So it’s wise to improve the rata
of Map task’s input data localization to reduce single
execution time of task Map.

The first paragraph introduces the framework of Hadoop
and its job scheduler. The second paragraph analyzes
the Hadoop task scheduling algorithms like IFO-
Scheduler, Capacity–Scheduler, FairShare-Scheduler and
LATE-Scheduler, concluding that there exist some
problems in these scheduling algorithms. At last, we
generalize the problems that exist in the scheduling
algorithms assigning tasks in heterogeneous Hadoop
cluster.

2. The Framework of Hadoop and Work Distributing

Inspired by Google’s Mapreduce and GFS, Hadoop

134 Journal of Digital Information Management � Volume 12 Number 2 � April 2014

succeeds in developing a distributing file system HDFS
(Hadoop Distributed File System) and the realization of
the open source of Mapreduce. With the wide use of
Hadoop, open source community has developed the
distributing database HBase, big data analysis tool Pig,
Hive and so on [2]. In order to analyze the whole clusters’
data, they develop the Chukwa and Zookeeper, which are
the coordination components of the whole Hadoop. These
components make up the Hadoop Cloud Platform
Ecosystem. The composition structure is shown as Figure
1.

Firstly, HDFS is a distributing file system, which is erected Figure 1. The schematic diagram of
the composition structure of Hadoop

over the local computer’s file system. It can provide dis-
tributing file storage, especially suitable for huge data stor-
age and the condition when you save once and read for
many times. HDFS saves files by providing backup, so
its reliability is high. HDFS use Master-slave structure;
the managing node is called NameNode. The controlled
node is called DataNode. The node that monitors
NameNode is called Secondary NameNode.AS is shown
in Figure 2, DataNode is responsible for storage. It can
save, modify or delete the files locally based on the in-
structions of the NameNode. As a back end, Secondary
NameNode tests the status of the NameNode regularly.

Secondly, Hadoop realize the calculation structure of
MapReduce. Users can write their own MapReduce
programs to realize distributing calculation. In the structure
of MapReduce Google has published, the main controlled
nod Master is called JobTracker Node, which is responsible
for the managing work of the computing nodes in the whole
clusters. Working nodes worker is called TaskTracker
Node. Every TaskTracker is in charge of several slots.
Every computing slot runs a task.

Assuming that in Hadoop clusters, there are altogether n
computing nodes named TaskTracker. Define them

Figure 2. The structure of HDFS system

as node [] = {node
1
, node

2
,..., node

n
. Every computing node

is equipped with several Map computing slots and Reduce
computing slots. These computing slots are equipped with
a series of resources, such as CPU, memory and disk.
That is, Slot = {cpu, mem, disk,...}.

After the work users have submitted enters into the queue
waiting to be distributed, JobTracker will initialize it and
divide it into several Map tasks and several Reduce tasks,
that is, Job = {t

m
, t

m
,---, t

m
, t

m
, t

m
, ---, t

m
},in which t

m

represents Map’s subtasks and t
r

 represents Reduce’s
subtasks.

TaskTracker reports its current conditions to JobTracker
in a fixed cycle. If there is a task running on the Node
presently, TaskTracker will report the progress rate and
then JobTracker updates the state of the task. If there is
an available slot on TaskTracker, it will ask for tasks from
JobTracker through heartbeat packet. JobTracker assigns
tasks using task scheduler. In fact, task scheduler is
choosing a suitable job from the work queue based on
some rules and then choosing some tasks from the job
to give them computing resources. The mathematical
model of task assignment is shown as formula (1).

TCP RPC HTTP Data
Node

Block Storage

Block Storage

Block Storage

Name Node

Image EditLog

Secondary
NameNode

Client

k

ii k1 2 21

 Journal of Digital Information Management � Volume 12 Number 2 � April 2014 135

Figure 3. The schematic diagram of Hadoop’s task assignment

Figure 4 . Capacity Scheduler

of the priority level of the tasks; task of higher priority
level came in front of the queue.

The biggest advantage of the FIFO scheduling algorithm
is that it realizes very simple and computational load on
JobTracker is relatively small. When the number of clusters
is very large, its requirement to the computer power of
JobTracker is not high and it doesn’t need to take up too
much memory resources. And if the number of Hadoop
cluster machine reaches a certain magnitude, JobTracker
is the bottleneck of the entire cluster. So for large clusters
is that FIFO would be a good scheduling algorithm.

It is precisely because it realizes very simple, so its
shortcomings is very much. For example: no analysis of
the compute nodes, leading to not be able to assign tasks
according to the compute nodes; no analysis of the nature
of the job, in total disregard of the nature of the job in the
process of assigning tasks, likely to cause unreasonable
job assignment. If you have a large job, you need to
perform a long time. However, these jobs do not urgent.
FIFO scheduling algorithms assign this type of job, the
job may lead to long-term occupation of the cluster system
but some urgent short job cannot be able to get the
computing resources. Encountered such a problem may
easily affect the user experience.

Job Queue Manager

Waiting running finished

TaskTracker TaskTracker TaskTracker

JobTracker Task Assignment

Job Queue

SlotSlotSlotSlotSlotSlotSlotSlotSlot

Assign (taskTracker) = {t, slot
1
, slot

2
,...slot

x
 | x

< availableSlot}

The schematic diagram of Hadoop’s task assignment is
shown as Figure 3. When TaskTracker receives the task
messages that JobTracker sends, it will add these tasks
into execution queue and then submit to task execution
object to do them.

3. The Leading Scheduling Algorithms and Analysis
of Their Features

3.1 FIFO-Scheduler
In Hadoop, ‘First in first out scheduling algorithm’ is used
as the acquiescent scheduling algorithm. When Hadoop
clusters are not equipped with any scheduling module,
JobTracker acquiescently calls First in first out scheduling
module to assign tasks.

‘First in first out scheduling algorithm’ sorts the tasks in
the ready queue according to the deadline of the tasks.
JobTracker gives priority to the scheduling of the task in
the head of the queue until the end of the task before the
next mission in turn. In subsequent versions of Hadoop,
to be able to consider the priority of the task, it considers
the task priority in the FIFO scheduling algorithm. When
sorting the tasks, it gives the priority to the comparison

 (1)

136 Journal of Digital Information Management � Volume 12 Number 2 � April 2014

3.2 Capacity-Scheduler
Capacity-Scheduler is a scheduling algorithm launched
by yahoo. To be able to make full use of the cluster
computing resources, Capacity Task Scheduler divide the
whole Hadoop cluster into several job waiting queues.

When each Hadoop user submits the job, JobTracker will
submit it to the specified queue according to the job
properties set up by users. If it has no specified queue,
Job Tracker will store the job in the default queue. In each
job queue, Capacity-Scheduler ranks the jobs by FIFO
scheduling algorithm, that is to say, the order of job
execution in the queue is based on the submission time.
While among queues, the amount of computing resources
that each queue can own is determined by configuration
information in configuration profiles.

Capacity Task Scheduler supports multiple queues sharing
computing resources of the whole Hadoop cluster. All the
queues protect the jobs submitted by users. Resources
settings to these queues start according to configuration
information when computing power scheduler switches
on. When jobs are submitted, Capacity Task Scheduler
puts them in the default queue according to configuration
information. The running process of the scheduling
algorithm is shown in Figure 4.

To make full use of computing resources of the whole
cluster, when resources that the queues assigned are
not used, Capacity Scheduler will assign them to other
queues. When resources are occupied by other queues,
scheduler will assign these resources that are occupied
back if the queue takes on heavier loads.

To reflect the priority of the job, Capacity Task Scheduler
provides configuration items. If Hadoop cluster
administrator deploys mapred.capacity - scheduler. queue.
queue-Name.supports - priority, priority of the job can be
set when submitting the job, which will be an important
basis during job dispatching.

Capacity-Scheduler divides the whole Hadoop clusters
into several sub-cluster systems. Every line logically
corresponds to a sub-cluster system. In every sub-cluster
system computing resources can be distributed
dynamically. What arouses the most attention in capacity-
Scheduler is that this scheduling model provides support
for large memory work. When some work need large
memory, there is almost no way to distribute computing
resources for common scheduling algorithms. Capacity-
Scheduler is able to integrate the memory resources of
several computer slots and distribute the task, based on
users’ need. Capacity-Scheduler has many advantages
that FIFO doesn’t have. For example, it supports several
lines, which can distribute the works to different lines
according to whoever submits the works and wait to
enforce them. What’s more, it can guarantee every line
obtaining clusters’ resource, in which every job is able to
obtain these computing resources. Last but not least, it
supports dynamic resource distribution, the priority of jobs

and memory-intensive jobs.

However, Capacity Scheduler takes data localization into
final consideration. The tasks that allocated in this way
have low data localization, requiring downloading data in
other HDFS nodes when executing Map tasks. In large-
scale data center, broadband network has reached its
limits. Downloading data fragmentation from other nodes
puts great pressure on network undoubtedly as well as
disks of local computing nodes, which extends executing
time of the jobs.

Capacity Scheduler puts forward a motion that supports
large memory work. However, its supporting way is just
an elementary attempt. If users need to submit large
memory work, they need to surmise how much memory
the job needs before they submit it. However, these users
are not sensitive to the memory the job needs in usual
circumstances. Therefore, it is not a feasible way to let
users surmise memory. As to the support for large memory
jobs, a feasible way is to make the machine surmise the
needed memory. In open-source community, there are
already some contributors putting forward a feasible
scheduling module to surmise the needed memory in a
task.

3.3 FairShare-Scheduler
FairShare-Scheduler is a combination of the company’s
data processing services Facebook to develop. In
Facebook company requires frequent data mining, due to
the different processing logic, algorithms for task
scheduling requirements is not the same. For example,
Hive and other tasks required response time is short, you
must promptly return result; while some background data
processing need not timely return the results of the
business, such as cluster idle period can be processed.
So, FairShare-Scheduler will be in the division of the entire
computing cluster into multiple resource pools (Pool),
each holding a certain resource pool of computing
resources, resource pools to accommodate some of these
jobs, and take different depending on the configuration
information scheduling policy, while also being able to
share various resources dynamically pool resources.

FairShare-Scheduler according to the configuration
information will divide the entire cluster resources into
multiple resource pools, jobs submitted by the user will
get these resource pools of computing resources, and
then dispatch scheduling policy based on these resource
pools, and perform these operations [3].

FairShare-Scheduler compared to other scheduling
algorithms has many advantages [4]:

1. It can be very fast even in the shared cluster running
short jobs. Unlike the FIFO by certain operating exclusively
cluster.

2. In a shared cluster production environment to give a
job to provide adequate assurance that the experimental
nature of the job is run separately.

 Journal of Digital Information Management � Volume 12 Number 2 � April 2014 137

3. The Support for resource preemption can make the
task of high priority precedence; support delay scheduling
can improve the localization rate data.

4. The fair scheduler provides management interface that
can display real-time scheduling information on the web.

The new version still does not support large memory
scheduler job scheduling and capacity as early as the
types of jobs have support. Due attention is fair scheduling
algorithm fair share of slots, and slots in a heterogeneous
cluster ability differences, the surface is fair, but in terms
of computing power slot is not fair to see, which led to fair
scheduling algorithm performance on heterogeneous
clusters is very poor [5].

3.4 LATE-Scheduler
Since Hadoop was considered to run in isomorphic
clusters when designing, it’s simpler to forecast progress
in the implementation of tasks belonging to the same job
in isomorphic cluster [6]. For example, if a task is running
behind the same type of task by 20%, JobTracker will
sign the task as a backward task and open a backup
task [7]. While, progress in the implementation of tasks
varies due to different hardware configuration in
heterogeneous clusters. So that lots of backup tasks are
generated in system and system resources are wasted.

LATE (Longest Approximate Time to End) is a scheduli-
ng algorithm for heterogeneous clusters proposed by
University of California, Berkeley, which can solve
speculation and execution of backup tasks effectively in
heterogeneous clusters. LATE sorts tasks based on
response time of tasks in the job and response speed of
computing nodes then picks up backup tasks needing
speculative execution from them. There are also some
thresholds to limit backup task growth, avoiding too many
speculative tasks.

LATE-Scheduler sets the following three parameters:

SpeculativeCap: The largest quantity of parallel running
backup tasks in Hadoop system; (The recommended
value is 10% of the total calculated slot.)

SlowNodeThreshold: Mark node speed threshold. Slow
nodes, whose scheduling score is below the threshold,
will not start backup tasks;

SlowTaskThreshold: Mark whether the threshold for the
task starting speculative tasks automatically. When task
progress is below average progress of the same type
tasks, out of that threshold, scheduler will start backup
tasks automatically.

TimeLeft: Tasks’ remaining time. Calculation method,
see equation (2).

ProgressRate = ProgressScore / t

TimeLeft = (1 − ProgressScore) / ProgressRate

In equation (2), ProgressScore is the value of the progress
of the task. ProgressRate is task execution rate.

LATE scheduling policy is performing the following
operations when a node asks JobTracker for assignment,
while quantity of all speculative tasks in system is smaller
than SpeculativeCap:

If attribute of the node is great and it performs tasks very
quickly, scilicet node score is higher than, request made
by the node will be ignored;

Sort currently running tasks (not including running backup
tasks) according to estimated remaining completion time.

Choose a task that cost most time, its current progress
below SlowTaskThreshold, then execute speculative task
for it.

LATE-Scheduler considers heterogeneity of nodes when
choosing nodes to execute backup tasks.
SlowNodeThreshold is set in LATE-Scheduler to distinguish
nodes’ speed. So that resources of Cluster System can
be used effectively when choosing nodes to execute
backup tasks. Whereas, general scheduling algorithm in
Hadoop, not considering heterogeneity of nodes, may
execute backup tasks in very slow execution nodes, and
then tasks execution speed of the machine is slower.
Such an allocation strategy cannot only fail to improve
performance, but also reduce the throughput of the system
and waste computing resources of the system.

Whereas, there are also some limitations of LATE. LATE-
Scheduler divides tasks into three stages with equal ratio
when classifying Reduce tasks. For many tasks, the three
sub-process consume different time. In that case, LATE
judging tasks execution speed goes wrong.

Furthermore, LATE-Scheduler remains to be improved
about methods to distinguish fast nodes and slow nodes.
Considering heterogeneity of system and that each
computing node has different resources (like CPU,
Memory), it is possible that some nodes execute Map
tasks fast but execute Reduce tasks very slowly.

4. Questions about Scheduling Algorithm Assigning
tasks in Heterogeneous Hadoop Clusters

Following are two questions in heterogeneous Hadoop
clusters:

1. Due to the different hardware configurations and different
computing power, existing task scheduling algorithms are
built under the premise of homogeneous clusters and they
take quantity of computing slots in computing nodes when
assigning tasks. LATE is the only one to consider
heterogeneous clusters, but it is only used to detect
backward tasks in heterogeneous clusters and allocation
results obtained are not very satisfactory. While, Hardware
Configuration determines computing ability. Sorts of factors

 (2)

138 Journal of Digital Information Management � Volume 12 Number 2 � April 2014

affecting tasks operation progress, like speed of IO disk,
are not taken into consideration.

2. Configuration information differentiation of clusters
causes a change in data storage strategy. Due to the
differentiation of clusters, configuration information of each
data node in HDFS is different. Data block each node can
store changes according to total data capacity, so it has
great impact on localization ratio of the data.

5. Conclusion

Hadoop job scheduling determines the efficiency of
Hadoop clusters and user experience. However, the current
scheduling algorithms of Hadoop do not consider cluster
heterogeneity. Job scheduling for heterogeneous Hadoop
clusters efficiently has been a challenge. Under the
premise of familiar with the mechanism of Hadoop’s running
tasks, make a full analysis of the existing Hadoop task
scheduling algorithm, such like FIFO-Scheduler, Capacity
–Scheduler, FairShare-Scheduler and LATE-Scheduler: is
a little simple and cannot complete allocation that grows
more complicated; Capacity –Scheduler divides jobs into
several queues though, it also use FIFO-Scheduler
internally. For jobs in the same queue, problems in FIFO-
Scheduler still exist in Capacity –Scheduler; FairShare-
Scheduler considers sharing cluster computing capability
equally, while the equity is just limited to sharing computing
slots fairly. Different slots own different computing capability,
which is not fair at all;

LATE-Scheduler starts with solving backward tasks, to a
certain extent probing backward tasks, but not that ideally
in actual use.

We found that the existing scheduling algorithms do not
perceive the performance of the computing node, so that
it cannot assign different tasks depending on the machine
performance in heterogeneous Hadoop cluster.

Acknowledgments

This work has been funded by College Natural Science

Foundation of Jiangsu Province (11KJB520002), Jiangsu
973 Scientific Project (BK2011023, BK2011022), the
National Natural Science Foundation of China (61272419,
60903027), China postdoctoral Foundation(2012M521089),
Jiangsu Postdoctoral Foundation(1201044C), Jiangsu
Natural Science Foundation(BK2011370), Research Union
Innovation Fund of Jiangsu Province (BY2012022).

References

[1] Rasooli, A., Down, D. (2011). An adaptive scheduling
algorithm for dynamic heterogeneous Hadoop systems.
Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research. IBM Corp.,
p. 30-44.

[2] Li Qianmu, Li Jia. (2012). Rough Outlier Detection
Based Security Risk Analysis Methodology. China
Communications. 5 (7) 14-21.

[3] Fair Scheduler Guide [OL] http://hadoop.apache.org/
common/docs/current/fair_scheduler.html.

[4] Moseley, B., Dasgupta, A., Kumar, R, et al. (2011).
On scheduling in map-reduce and flow-shops. In:
Proceedings of the 23rd ACM symposium on Parallelism
in algorithms and architectures. ACM, p. 289-298.

[5] Xia, Y., Wang, L., Zhao, Q, et al. (2011). Research on
Job Scheduling Algorithm in Hadoop. Journal of
Computational Information Systems, 7 (16) 5769-5775.

[6] Li Qianmu, Zhang Hong. (2012). Information Security
Risk Assessment Technology of Cyberspace: a Review.
Information- an International Interdisciplinary Journal. 15
(11) 4677-4684.

[7] N. Goranin, A. Cenys. (2009). Genetic algorithm based
Internet worm propagation strategy modeling under
pressure of countermeasures. Journal of Engineering
Science and Technology Review. 2, p. 43-47.

