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The registered company is Springer International Publishing AG Switzerland (www.birkhauser-science.com)



To
The Goddess of learning Saraswati
and
Shri Mahaganapathi



Preface

The design of algorithms and hardware implementation for signal processing

systems has received considerable attention over the last few decades. The primary

area of application was in digital computation and digital signal processing. These

systems earlier used microprocessors, and, more recently, field programmable gate

arrays (FPGA), graphical processing units (GPU), and application-specific inte-

grated circuits (ASIC) have been used. The technology is evolving continuously to

meet the demands of low power and/or low area and/or computation time.

Several number systems have been explored in the past such as the conventional

binary number system, logarithmic number system, and residue number system

(RNS), and their relative merits have been well appreciated. The residue number

system was applied for digital computation in the early 1960s, and hardware was

built using the technology available at that time. During the 1970s, active research

in this area commenced with application in digital signal processing. The emphasis

was on exploiting the power of RNS in applications where several multiplications

and additions needed to be carried out efficiently using small word length pro-

cessors. The research carried out was documented in an IEEE press publication in

1975. During the 1980s, there was a resurgence in this area with an emphasis on

hardware that did not need ROMs. Extensive research has been carried out since

1980s and several techniques for overcoming certain bottlenecks in sign detection,

scaling, comparison, and forward and reverse conversion.

A compilation of the state of the art was attempted in 2002 in a textbook, and this

was followed by another book in 2007. Since 2002, several new investigations have

been carried out to increase the dynamic range using more moduli, special moduli

which are close to powers of two, and designs that use only combinational logic.

Several new algorithms/theorems for reverse conversion, comparison, scaling, and

error correction/detection have also been investigated. The number of moduli has

been increased, yet the same time focusing on retaining the speed/area advantages.

It is interesting to note that in addition to application in computer arithmetic,

application in digital communication systems has gained a lot of attention. Several

applications in wireless communication, frequency synthesis, and realization of
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transforms such as discrete cosine transform have been explored. The most inter-

esting development has been the application of RNS in cryptography. Some of the

cryptography algorithms used in authentication which need big word lengths

ranging from 1024 bits to 4096 bits using RSA (Rivest Shamir Adleman) algorithm

and with word lengths ranging from 160 bits to 256 bits used in elliptic curve

cryptography have been realized using the residue number systems. Several appli-

cations have been in the implementation of Montgomery algorithm and implemen-

tation of pairing protocols which need thousands of modulo multiplication,

addition, and reduction operations. Recent research has shown that RNS can be

one of the preferred solutions for these applications, and thus it is necessary to

include this topic in the study of RNS-based designs.

This book brings together various topics in the design and implementation of

RNS-based systems. It should be useful for the cryptographic research community,

researchers, and students in the areas of computer arithmetic and digital signal

processing. It can be used for self-study, and numerical examples have been

provided to assist understanding. It can also be prescribed for a one-semester course

in a graduate program.
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an outstanding R&D environment. He would like to express his gratitude to

Dr. Nelaturu Sarat Chandra Babu, Executive Director, CDAC Bangalore, for his
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Sridevi, Srinivas, Mahathi, and his grandchildren Baby Manognyaa and Master

Abhinav for the warmth and cheer they have spread. The author wishes to thank

Danielle Walker, Associate Editor, Birkhäuser Science for arranging the reviews,

her patience in waiting for the final manuscript and assistance for launching the

book to production. Special thanks are also to Agnes Felema. A and the Production

and graphics team at SPi-Global for their most efficiently typesetting, editing and

readying the book for production.
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Chapter 1

Introduction

Digital computation is carried out using binary number system conventionally.

Processors with word lengths up to 64 bits have been quite common. It is well

known that the basic operations such as addition can be carried out using variety of

adders such as carry propagate adder, carry look ahead adders and parallel-prefix

adders with different addition times and area requirements. Several algorithms for

high-speed multiplication and division also are available and are being continu-

ously researched with the design objectives of low power/low area/high speed.

Fixed-point as well as floating-point processors are widely available. Interestingly,

operations such as sign detection, magnitude comparison, and scaling are quite easy

in these systems.

In applications such as cryptography there is a need for processors with word

lengths ranging from 160 bits to 4096 bits. In such requirements, a need is felt for

reducing the computation time by special techniques. Applications in digital signal

processing also continuously look for processors for fast execution of multiply and

accumulate instruction. Several alternative techniques have been investigated for

speeding up multiplication and division. An example is using logarithmic number

systems (LNS) for digital computation. However, using LNS, addition and sub-

traction are difficult.

In binary and decimal number systems, the position of each digit determines the

weight. The leftmost digits have higher weights. The ratio between adjacent digits

can be constant or variable. The latter is called Mixed Radix Number System [1].

For a given integer X, the MRS digit can be found as

xi ¼
Xai�1

j¼0

Mj

666664
777775mod Mi ð1:1aÞ

© Springer International Publishing Switzerland 2016
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where 0� i< n, n is the number of digits. Note thatMj is the ratio between weights

for the jth and ( j + 1) th digit position and x mod y is the remainder obtained by

dividing x with y. MRNS can represent

M ¼
an�1

j¼0

Mj ð1:1bÞ

unique values. An advantage is that it is easy to perform the inverse procedure to

convert the tuple of digits to the integer value:

X ¼
Xn�1

i¼0

xi
ai�1

j¼0

Mj

 !
ð1:1cÞ

Fixed-point addition is easy since it is equivalent to integer addition. Note that

Q15 format often used in digital signal processing has one sign bit and fifteen

fractional bits. Fixed-point multiplication shall use scaling so as to make the

product in the same format as the inputs. Fixed-point addition of fractional numbers

is more difficult than multiplication since both numbers must be in the same format

and attention must be paid to the possibility of an overflow. The overflow can be

handled by right shifting by one place and setting an exponent flag or by using

double precision to provide headroom allowing growth due to overflow [2].

The floating-point number for example is represented in IEEE 754 standard as [2]

X ¼ �1ð Þs 1:Fð Þ � 2E�127 ð1:2Þ

where F is the mantissa in two’s-complement binary fraction represented by bits

0–22, E is the exponent in excess 127 format and s¼ 0 for positive integers and

s¼ 1 for negative numbers. Note the assumed 1 preceding the mantissa and biased

exponent. As an illustration, consider the floating-point number

0 1000011. 11000. . .00
Sign Exponent Mantissa

The mantissa is 0.75 and exponent is 131. Hence X¼ (1.75)� 2131–127

¼ (1.75)� 24. When floating-point numbers are added, the exponents must be

made equal (known as alignment) and we need to shift right the mantissa of

the smaller operand and increment the exponent till it is equal to that of the large

operand. The multiplication of the properly normalized floating-point numbers

M12
E1 and M22

E2 yields the product given by ME ¼ M1M2ð Þ2E1þE2 . The largest

and smallest numbers that can be represented are �1.2� 1038 and �3.4� 10�38.

In the case of double precision [3, 4], bits 0–51 are mantissa and bits 52–62 are

exponent and bit 63 is the sign bit. The offset in this case is 1023 allowing

exponents from 2�1023 to 2+1024. The largest and smallest numbers that can be

represented are �1.8� 10308 and� 2.2� 10�308.
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In floating-point representation, errors can occur both in addition and

multiplication. However, overflow is very unlikely due to the very wide dynamic

range since more bits are available in the exponent. Floating-point arithmetic is

more expensive and slower.

In logarithmic number system (LNS) [5], we have

X ! z, s, x ¼ logb Xj jð Þ ð1:3aÞ

where b is the base of the logarithm, z when asserted indicates that X¼ 0, s is the
sign of X. In LNS, the input binary numbers are converted into logarithmic form

with a mantissa and characteristic each of appropriate word length to achieve the

desired accuracy. As is well known, multiplication and division are quite simple in

this system needing only addition or subtraction of the given converted inputs

whereas simple operations like addition, subtraction cannot be done easily. Thus

in applications where frequent additions or subtractions are not required, these may

be of utility. The inverse mapping from LNS to linear numbers is given as

X ¼ 1� zð Þ �1ð Þsbx ð1:3bÞ

Note that the addition operation in conventional binary system (X + Y ) is computed

in LNS noting that X¼ bx and Y¼ by as

z ¼ xþ logb 1þ by�xð Þ ð1:4aÞ

The subtraction operation (X�Y ) is performed as

z ¼ xþ logb 1� by�xð Þ ð1:4bÞ

The second term is obtained using an LUT whose size can be very large for n� 20

[3, 6, 7]. The multiplication, division, exponentiation and finding nth root are very

simple. After the processing, the results need to be converted into binary number

system.

The logarithmic system can be seen to be a special case of floating-point system

where the significand (mantissa) is always 1. Hence the exponent can be a mixed

number than an integer. Numbers with the same exponent are equally spaced in

floating-point whereas in sign logarithm system, smaller numbers are denser [3].

LNS reduces the strength of certain arithmetic operations and the bit activity

[5, 8, 9]. The reduction of strength reduces the switching capacitance. The change

of base from 2 to a lesser value reduces the probability of a transition from low to

high. It has been found that about two times reduction in power dissipation is

possible for operations with word size 8–14 bits.

The other system that has been considered is Residue Number system [10–12]

which has received considerable attention in the past few decades. We consider this

topic in great detail in the next few chapters. We, however, present here a historical

review on this area. The origin is attributed to the third century Chinese author Sun
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Tzu (also attributed to Sun Tsu in the first century AD) in the book Suan-Ching. We

reproduce the poem [11]:

We have things of which we do not know the number

If we count them by threes, the remainder is 2

If we count them by fives, the remainder is 3

If we count them by sevens, the remainder is 2

How many things are there?

The answer, 23.

Sun Tzu in First Century AD and Greek Mathematicians Nichomachus and

Hsin-Tai-Wei of Ming Dynasty (1368AD-1643AD) were the first to explore

Residue Number Systems. Sun Tzu has presented the formula for computing the

answer which came to be known later as Chinese Remainder Theorem (CRT). This

is described by Gauss in his book Disquisitiones Arithmeticae [12].
Interestingly, Aryabhata, an Indian mathematician in fifth century A.D., has

described a technique of finding the number corresponding to two given residues

corresponding to two moduli. This was named as Aryabhata Remainder Theorem
[13–16] and is known by the Sanskrit name Saagra-kuttaakaara (residual
pulveriser) which is the well-known Mixed Radix conversion for two moduli RNS.

Extension to moduli sets with common factors has been recently described [17].

In an RNS using mutually prime integers m1, m2, m3, . . .., mj as moduli, the

dynamic rangeM is the product of the moduli,M¼m1 �m2 �m3 . . . mj. The numbers

between 0 and M�1 can be uniquely represented by the residues. Alternatively,

numbers between�M/2 to M
2
� 1

� �
whenM is even and� M�1

2

� �
to M�1

2

� �
whenM is

odd can be represented. A large number can thus be represented by several smaller

numbers called residues obtained as the remainders when the given number is

divided by the moduli. Thus, instead of big word length operations, we can perform

several small word length operations on these residues. The modulo addition,

modulo subtraction and modulo multiplication operations can thus be performed

quite efficiently.

As an illustration, using the moduli set {3, 5, 7}, any number between 0 and 104

can be uniquely represented by the residues. The number 52 corresponds to the

residue set (1, 2, 3) in this moduli set. The residue is the remainder obtained by the

division operation X/mi. Evidently, the residues ri are such that 0� ri� (mi�1).

The front-end of an RNS-based processor (see Figure 1.1) is a binary to RNS

converter known as forward converter whose k output words corresponding to k
moduli mk will be processed by k parallel processors in the Residue Processor

blocks to yield k output words. The last stage in the RNS-based processor converts

these k words to a conventional binary number. This process known as reverse
conversion is very important and needs to be hardware-efficient and time-efficient,

since it may be often needed also to perform functions such as comparison, sign

detection and scaling. The various RNS processors need smaller word length and

hence the multiplication, addition and multiplications can be done faster. Of course,

these are all modulo operations. The modulo processors do not have any
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inter-dependency and hence speed can be achieved for performing operations such

as convolution, FIR filtering, and IIR filtering (not needing in-between scaling).

The division or scaling by an arbitrary number, sign detection, and comparison are

of course time-consuming in residue number systems.

Each MRS digit or RNS modulus can be represented in several ways: binary

(d log2Mje wires with binary logic), index (d log2Mje wires with binary logic), one-

hot (Mj wires with two-valued logic) [18] and Mj-ary (one wire with multi-valued

logic). Binary representation is most compact in storage, but one-hot coding allows

faster logic and lower power consumption. In addition to electronics, optical and

quantum RNS implementations have been suggested [19, 20].

The first two books on Residue number systems appeared in 1967 [21, 22].

Several attempts have been made to build digital computers and other hardware

using Residue number Systems. Fundamental work on topics like Error correction

has been performed in early seventies. However, there was renewed interest in

applying RNS to DSP applications in 1977. An IEEE press book collection of

papers [23] focused on this area in 1986 documenting key papers in this area. There

was resurgence in 1988 regarding use of special moduli sets. Since then the research

interest has increased and a book appeared in 2002 [24] and another in 2007 [25].

Several topics have been addressed such as Binary to Residue conversion, Residue

to binary conversion, scaling, sign detection, modulo multiplication, overflow

detection, and basic operations such as addition. Since four decades, designers

have been exploring the use of RNS to various applications in communication

systems, such as Digital signal Processing with emphasis on low power, low area

and programmability. Special RNS such as Quadratic RNS and polynomial RNS

have been studied with a view to reduce computational requirements in filtering.

RNS to Binary converter

Residue 
Processor

Residue 
Processor

Residue 
Processor

Residue 
Processor

Binary to RNS 
converter

Modulus m1

Binary to RNS
converter

Modulus mk-1

Binary to RNS
converter

Modulus mk

Binary to RNS 
converter

Modulus m2

Input Binary

Binary output

Figure 1.1 A typical RNS-based processor
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More recently, it is very interesting that the power of RNS has been explored to

solve problems in cryptography involving very large integers of bit lengths varying

from 160 bits to 4096 bits. Attempts also have been made to combine RNS with

logarithmic number system known as Logarithmic RNS.

The organization of the book is as follows. In Chapter 2, the topic of modulo

addition and subtraction is considered for generalmoduli aswell powers-of-two related

moduli. Several advances made in designing hardware using diminished-1arithmetic

are discussed. The topic of forward conversion is considered in Chapter 3 in

detail for general as well as special moduli. These use several interesting properties

of residues of powers of two of the moduli. New techniques for sharing hardware for

multiple moduli are also considered. In Chapter 4, modulo multiplication and

modulo squaring using Booth-recoding and not using Booth-recoding is described

for general moduli as well moduli of the type 2n�1 and especially 2n+ 1. Both the

diminished-1 and normal representations are considered for design of multipliers

mod (2n+ 1). Multi-modulus architectures are also considered to share the hardware

amongst various moduli. In Chapter 5, the well-investigated topic of reverse con-

version for three, four, five and more number of moduli is considered. Several

recently described techniques using Core function, quotient function, Mixed-Radix

CRT,NewCRTs, and diagonal function have been considered in addition to thewell-

known Mixed Radix Conversion and CRT. Area and time requirements are

highlighted to serve as benchmarks for evaluating future designs. In Chapter 6, the

important topics of scaling, base extension, magnitude comparison and sign detec-

tion are considered. The use of core function for scaling is also described.

In Chapter 7, we consider specialized Residue number systems such as Qua-

dratic Residue Number systems (QRNS) and its variations. Polynomial Residue

number systems and Logarithmic Residue Number systems are also considered.

The topic of error detection, correction and fault tolerance has been discussed in

Chapter 8. In Chapter 9, we deal with applications of RNS to FIR and IIR Filter

design, communication systems, frequency synthesis, DFT and 1-D and 2-D DCT

in detail. This chapter highlights the tremendous attention paid by researchers to

numerous applications including CDMA, Frequency hopping, etc. Fault tolerance

techniques applicable for FIR filters are also described. In Chapter 10, we cover

extensively applications of RNS in cryptography perhaps for the first time in any

book. Modulo multiplication and exponentiation using various techniques, modulo

reduction techniques, multiplication of large operands, application to ECC and

pairing protocols are covered extensively. Extensive bibliography and examples

are provided in each chapter.
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Chapter 2

Modulo Addition and Subtraction

In this Chapter, the basic operations of modulo addition and subtraction

are considered. Both the cases of general moduli and specific moduli of

the form 2n�1 and 2n + 1 are considered in detail. The case with moduli of the

form 2n + 1 can benefit from the use of diminished-1 arithmetic. Multi-operand

modulo addition also is discussed.

2.1 Adders for General Moduli

The modulo addition of two operands A and B can be implemented using the

architectures of Figure 2.1a and b [1, 2]. Essentially, first A+B is computed and

then m is subtracted from the result to find whether the result is larger than m or not.

(Note that TC stands for two’s complement.) Then using a 2:1 multiplexer, either

(A+B) or (A+B�m) is selected. Thus, the computation time is that of one n-bit
addition, one (n+ 1)-bit addition and delay of a multiplexer. On the other hand, in

the architecture of Figure 2.2b, both (A+B) and (A+B�m) are computed in

parallel and one of the outputs is selected using a 2:1 multiplexer depending on

the sign of (A+B�m). Note that a carry-save adder (CSA) stage is needed for

computing (A+B�m) which is followed by a carry propagate adder (CPA). Thus,

the area is more than that of Figure 2.2a, but the addition time is less. The area A and

computation time Δ for both the techniques can be found for n-bit operands

assuming that a CPA is used as

© Springer International Publishing Switzerland 2016
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Acascade ¼ 2nþ 1ð ÞAFA þ nA2:1MUX þ nAINV , Δcascade ¼ 2nþ 1ð ÞΔFA þ Δ2:1MUX þ ΔINV

AParallel ¼ 3nþ 2ð ÞAFA þ nA2:1MUX þ nAINV, Δparallel ¼ nþ 2ð ÞΔFA þ Δ2:1MUX þ ΔINV

ð2:1Þ

where ΔFA, Δ2:1MUX, and ΔINV are the delays and AFA, A2:1MUX and AINV are the

areas of a full-adder, 2:1 Multiplexer and an inverter, respectively. On the other

(A+B) mod m

TC of m

A B

A+B

A

A+B-m

TC of m

Adder

Adder

2:1 MUX

A+B

a b

A+B-m

Adder CSA

2:1 MUX

(A+B) mod m

Adder

B

Figure 2.1 Modulo adder architectures: (a) sequential (b) parallel

X Y
n n

SAC

CPG

MUX

CLA for

1

Cout

CLAS

B

P G p g

A b a

n
R

Figure 2.2 Modular adder

due to Hiasat (adapted from

[6] ©IEEE2002)
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hand, by using VLSI adders with regular layout e.g. Brent�Kung adder [3], the area

and delay requirements will be as follows:

Acascade ¼ 2n log2nþ 1ð ÞAFA þ nA2:1MUX þ nAINV , Δcascade ¼ 2 log2nþ 1ð ÞΔFA þ ΔINV,

AParallel ¼ nþ 1þ log2nþ log2 nþ 1ð Þ þ 2ð ÞAFA þ nA2:1MUX þ nAINV,

Δparallel ¼ log2nþ 1ð Þ þ 2ð ÞΔFA þ Δ2:1MUX þ ΔINV

ð2:2Þ

Subtraction is similar to the addition operation wherein (A�B) and (A�B+m)
are computed sequentially or in parallel following architectures similar to

Figure 2.1a and b.

Multi-operand modulo addition has been considered by several authors. Alia and

Martinelli [4] have suggested the mod m addition of several operands using a CSA

tree trying to keep the partial results at the output of each CSA stage within the

range (0, 2n) by adding a proper value. The three-input addition in a CSA yields n-
bit sum and carry vectors S and C. S is always in the range {0, 2n}. The computation

of (2C + S)m is carried out as (2C + S)m¼ L+H + 2TC+ TS¼ L+H + T+ km where

k> 0 is an integer. Note that L¼ 2(C�TC) and H¼ S�TS were TS¼ sn�12
n�1 and

TC¼ cn�12
n�1 + cn�22

n�2. Thus, using sn�1, cn�1, cn�2 bits, T can be obtained using

a 7:1 MUX and added to L, H. Note that L is obtained from C by one bit left shift

and H is obtained as (n�1)-bit LSB word of S.
All the operands can be added using a CSA tree and the final result

UF¼ 2CF + SF is reduced using a modular reduction unit which finds UF, UF�m,
UF�2m and UF�3m using two CLAs and based on the sign bits of the last three

words, one of the answers is selected.

Elleithi and Bayoumi [5] have presented a θ(1) algorithm for multi-operand

modulo addition which needs a constant time of five steps. In this technique, the two

operands A and B are written in redundant form as A1, A2 and B1, B2, respectively.

The first three are added in a CSA stage which will yield sum and carry vectors.

These two vectors temp1 and temp2 and B2 are added in another CSA which will

yield sum and carry vectors temp3 and temp4. In the third step, to temp3 and temp4

vectors, a correction term (2n�m) or 2(2n�m) is added in another CSA stage

depending on either one or both carry bits of temp1 and temp2 are 1 to result in

the sum and carry vectors temp5 and temp6. Depending on the carry bit, in the next

step (2n�m) is added to yield final result in carry save form as temp7 and temp8.

There will be no overflow thereafter.

Hiasat [6] has described a modulo adder architecture based on a CSA and

multiplexing the carry generate and propagate signals before being driven to the

carry computation unit. In this design, the output carry is predicted that could result

from computation of A+B+Zwhere Z¼ 2n�m. If the predicted carry is 1, an adder
proceeds in computing the sum A+B+Z. Otherwise, it computes the sum A+B.
Note that the calculation of Sum and Carry bits in case of bit zi being 1 or 0 is quite
simple as can be seen for both these cases:

2.1 Adders for General Moduli 11



si ¼ ai � bi, ciþ1 ¼ aibi and ŝ i ¼ ai � bi, ĉ iþ1 ¼ ai þ bi

Thus, half-adder like cells which give both the outputs are used. Note that si, ci+1,
ŝ i, ĉ iþ1 serve as inputs to carry propagate and generate unit which has outputs Pi,

Gi, pi, gi corresponding to both the cases. Based on the computation of cout using a

CLA, a multiplexer is used to select one of these pairs to compute all the carries and

the final sum. The block diagram of this adder is shown in Figure 2.2 where SAC is

sum and carry unit, CPG is carry propagate generate unit, and CLA is carry look

ahead unit for computing Cout. Then using a MUX, either P, G or p, g are selected to

be added using CLA summation unit (CLAS). The CLAS unit computes all the

carries and performs the summation Pi � ci to produce the output R. This design
leads to lower area and delay than the designs in Refs. [1, 5].

Adders for moduli (2n�1) and (2n+ 1) have received considerable attention in

literature which will be considered next.

2.2 Modulo (2n�1) Adders

Efstathiou, Nikolos and Kalamatinos [7] have described a mod (2n�1) adder. In this

design, the carry that results from addition assuming carry input is zero is taken into

account in reformulating the equations to compute the sum. Consider a mod 7 adder

with inputs A and B. With the usual definition of generate and propagate signals, it

can be easily seen that for a conventional adder we have

c0 ¼ G0 þ P0c�1 ð2:3aÞ
c1 ¼ G1 þ P1c0 ð2:3bÞ

c2 ¼ G2 þ P2G1 þ P2P1g0 ð2:3cÞ

Substituting c�1 in (2.3a) with c2 due to the end-around carry operation of a mod

(2n�1) adder, we have

c0 ¼ G0 þ P0G2 þ P0P2G1 þ G0P2P1G0 ¼ G0 þ P0G2 þ P0P2G1 ð2:4Þ
c1 ¼ G1 þ P1G0 þ P1P0G2 ð2:5aÞ
c2 ¼ G2 þ P2G1 þ P2P1Go ð2:5bÞ

An implementation of mod 7 adder with double representation of zero

(i.e. output¼ 7 or zero) is shown in Figure 2.3a where si ¼ Pi � ci�1. A simple

modification can be carried out as shown in Figure 2.3b to realize a single zero.

Note that the output can be 2n�1, if both the inputs are complements of each other.

Hence, this condition can be used by computing P¼P0P1P2. . .Pn�1 and modifying

the equations as

12 2 Modulo Addition and Subtraction
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Figure 2.3 (a) Mod 7 adder with double representation of zero (b) with single representation of

zero (adapted from [7] ©IEEE1994)
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si ¼
�
Pi þ P

� � ci�1 for 0 � i � n� 1: ð2:6Þ

The architectures of Figure 2.3, although they are elegant, they lack regularity.

Instead of using single level CLA, when the operands are large, multiple levels can

also be used.

Another approach is to consider the carry propagation in binary addition as a

prefix problem. Various types of parallel-prefix adders e.g. (a) Ladner�Fischer [8],

(b) Kogge-Stone [9], (c) Brent�Kung [3] and (d) Knowles [10] are available in

literature. Among these, type (a) requires less area but has unlimited fan out

compared to type (b). But designs based on (b) are faster.

Zimmerman [11] has suggested using an additional level for adding end-around-

carry for realizing a mod (2n�1) adder (see Figure 2.4a) which needs extra

hardware and more over, this carry has a large fan out thus making it slower.

Kalampoukas et al. [12] have considered modulo (2n�1) adders using parallel-

prefix adders. The idea of carry recirculation at each prefix level as shown in

Figure 2.4b has been employed. Here, no extra level of adders will be required,

thus having minimum logic depth. In addition, the fan out requirement of the carry

output is also removed. These architectures are very fast while consuming large

area.

The area and delay requirements of adders can be estimated using the unit-gate

model [13]. In this model, all gates are considered as a unit, whereas only exclusive-

OR gate counts for two elementary gates. The model, however, ignores fan-in and

fan-out. Hence, validation needs to be carried out by using static simulations. The

area and delay requirements of mod (2n�1) adder described in [12] are 3nlogn + 4n
and 2logn+ 3 assuming this model.

Efstathiou et al. [14] have also considered design using select-prefix blocks with

the difference that the adder is divided into several small length adder blocks by

proper interconnection of propagate and generate signals of the blocks. A select-

prefix architecture for mod (2n�1) adder is presented in Figure 2.5. Note that d,
f and g indicate the word lengths of the three sections. It can be seen that

cin, 0 ¼ BG2 þ BP2BG1 þ BP2BP1BG0

cin, 1 ¼ cout, 0 ¼ BG0 þ BP0BG2 þ BP0BP2BG1

cin, 2 ¼ cout, 1 ¼ BG1 þ BP1BG0 þ BP1BP0BG2

where BGi and BPi are block generate and propagate signals outputs of each block.

Tyagi [13] has given an algorithm for selecting the lengths of the various adder

blocks suitably with the aim of minimization of adder delay. Note that designs

based on parallel-prefix adders are fastest but are more complex. On the other hand,

CLA-based adder architecture is area effective. Select prefix-architectures achieve

delay closer to parallel prefix adders and have complexity close to the best adders.

Patel et al. [15] have suggested fast parallel-prefix architectures for modulo

(2n�1) addition with a single representation of zero. In these, the sum is

computed with a carry in of “1”. Later, a conditional decrement operation is

14 2 Modulo Addition and Subtraction



performed. However, by cyclically feeding back the carry generate and carry

propagate signals at each prefix level in the adder, the authors show that

significant improvement in latency is possible over existing designs.

prefix structure

Cout

Cin

a 1 b 1 a 0 b 0a n
-1

b n
-1

s n
-1

s n
-2

s 1 s 0

a n
-2

b n
-2a

b

C*0C*1

C7

C*3 C*2

b7 a7 b6 a6 b5 a5 b4 a4 b3 a3 b0 a0b2 a2 b1 a1

S7 S6 S5 S4 S3 S2 S1 S0

C*6 C*5 C*4

C*-1

Figure 2.4 Modulo (2n�1) adder architectures due to (a) Zimmermann and (b) modulo (28�1)

adder due to Kalampoukas et al. ((a) adapted from [11] ©IEEE1999 and (b) adapted from [12]

©IEEE2000)
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2.3 Modulo (2n+ 1) Adders

Diminished-1 arithmetic is important for handling moduli of the form 2n+ 1. This

is because of the reason that this modulus channel needs one bit more word

length than other channels using moduli 2n and 2n�1. A solution given by

Liebowitz [16] is to represent the numbers still by n bits only. The diminished-1

number corresponding to normal number A in the range 1 to 2n is represented as

d(A)¼A�1. If A¼ 0, a separate channel with one bit which is 1 is used. Another

way of representing A in diminished-1 arithmetic is (Az, Ad) where Az¼ 1, Ad¼ 0

when A¼ 2n, Az¼ 0, Ad¼A�1 otherwise. Due to this representation, some rules

need to be built to perform operations in this arithmetic which are summarized

below. Following the above notation, we can derive the following properties [17]:

(a) A+B¼C corresponds to

d Aþ Bð Þ ¼ d Að Þ þ d Bð Þ þ 1ð Þ mod 2n þ 1ð Þ ð2:7Þ

(b) Similarly, we have

d A� Bð Þ ¼ d Að Þ þ d Bð Þ þ 1
� �

mod 2n þ 1ð Þ ð2:8Þ

(c) It follows further that

d
Xn

k¼1
Ak

� �
¼ d A1ð Þ þ d A2ð Þ þ d A3ð Þ þ . . . þ d Akð Þ þ n� 1ð Þ mod 2n þ 1ð Þ

ð2:9Þ

Next,

d 2kA
� � ¼ d Aþ Aþ Aþ . . .þ Að Þ ¼ 2kd Að Þ þ 2k � 1

� �
mod 2n þ 1ð Þ:

or

2kd Að Þ ¼ d 2kA
� �� 2k þ 1

� �
mod 2n þ 1ð Þ ð2:10Þ

BG2

BLOCK 2
Adder (d+f+g-1:f+g)

BLOCK 1
Adder (f+g-1:g)

Cin,2 Cin,1 Cin,0

BG1

BP1BP2

BG0

BP0

BLOCK 0
Adder (g-1:0)

Figure 2.5 Modulo 2d+f+g�1 adder design using three blocks (adapted from [14] ©IEEE2003)
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In order to simplify the notation, we denote a diminished-1 number using an

asterisk e.g. d(A)¼A*¼A�1.

Several mod (2n+ 1) adders have been proposed in literature. In the case of

diminished-1 numbers, mod (2n+ 1) addition can be formulated as [11]

S� 1 ¼ S* ¼ A*þ B*þ 1ð Þ mod 2n þ 1ð Þ
¼ A*þ B*ð Þmod 2nð Þ if A*þ B*ð Þ
� 2n and A*þ B*þ 1ð Þ otherwise ð2:11Þ

where A* and B* are diminished-1 numbers and S¼A +B. The addition of 1 can be
carried out by inverting the carry bit Cout and adding in a parallel-prefix adder with

Cin ¼ Cout (see Figure 2.6):

A*þ B*þ 1ð Þmod 2n þ 1ð Þ ¼ A*þ B*þ Cout

� �
mod 2nð Þ ð2:12Þ

In the case of normal numbers as well [11], we have

Sþ 1 ¼ Aþ Bþ 1ð Þmod 2n þ 1ð Þ ¼ Aþ Bþ Cout

� �
mod 2nð Þ ð2:13Þ

where S¼A +B with the property that (S + 1) is computed. In the design of

multipliers, this technique will be useful.

Note that diminished-1 adders have a problem of correctly interpreting the zero

output since it may represent a valid zero (addition with a result of 1) or a real zero

output (addition with a result zero) [14]. Consider the two examples of modulo

bn-1 bn-2

an-1 an-2

b1 b0

a1 a0

Prefix Computation

Gn-1 Gn-2,Pn-2c*-1

c*n-2 c*1 c*0c*n-3

G1,P1 G0,P0

Sn-1 Sn-2 S1 S0

Figure 2.6 Modulo

2n þ 1ð Þ adder architecture
for diminished-1 arithmetic

(adapted from [18]

©IEEE2002)
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9 addition (a) A¼ 6 and B¼ 4 and (b) C¼ 5 and B¼ 4 using diminished-1

representation:

A* 101 C* 100

B* 011 B* 011
————— —————

Cout 1 000 Cout 0 111

Cout 0 Cout 1

--------------- ----------------

000 Correct result 000 result indicating zero

Note that real zero occurs when the inputs are complimentary. Hence,

this condition needs to be detected using logical AND of the exclusive-OR of

ai and bi. The EXOR gates will be already present in the front-end CSA stage.

Vergos, Efstathiou and Nikolos have presented two mod (2n+ 1) adder architec-

tures [18] for diminished-1 numbers. The first one leads to CLA implementation

and was derived by associating the re-entering carry equation with those producing

the carries of the modulo addition similar to that for mod (2n�1) described earlier

[12]. In this architecture, both one and two level CLAs have been considered. The

second architecture uses parallel-prefix adders and also was derived by

re-circulation of the carries in each level of parallel-prefix structure. This architec-

ture avoids the problem of fan-out and the additional level needed in Zimmerman’s
technique shown in Figure 2.6.

Efstathiou, Vergos and Nikolos [14] extended the above ideas by using select-

prefix blocks which are faster than the previous ones for designing mod (2n� 1)

adders for diminished-1 operands. Here, the lengths of the blocks can be selected

appropriately as well as the number of the blocks. The derivation is similar to that

for mod (2n�1) adders with the difference that the equations contain block carry

propagate, and block generate signals instead of bit level propagate and generate

signals. In these, an additional level is used to add the carry after the prefix

computation. A structure using two stages is presented in Figure 2.7. Note that in

this case

cin, 0 ¼ BG1 þ BP1BG0ð Þ0
cin, 1 ¼ cout, 0 ¼ BG0 þ BP0BG

0
1

These designs need lesser area than designs using parallel-prefix adders while they

are slower than CLA-based designs.

Efstathiou, Vergos and Nikolos [19] have described fast parallel-prefix modulo

(2n+ 1) adders for two (n+ 1)-bit numbers which use two stages. The first stage

computes X þ Y þ 2n � 1j j
2nþ1 which has (n+ 2) bits. If MSB of the result is zero,

then 2n+ 1 is added mod 2n+1 and the n LSBs yield the result. For computing

M ¼ X þ Y þ 2n � 1, a CSA is used followed by a (n+ 1)-bit adder. The authors

use parallel-prefix with fast carry increment (PPFCI) architecture and also a totally

18 2 Modulo Addition and Subtraction



parallel-prefix architecture. In the former, an additional stage for re-entering carry

is used, whereas in the latter case, carry recirculation is done at every prefix level.

The architecture of Hiasat [6] can be extended to the case of modulus (2n+ 1) in

which case we have Z¼ 2n�1 and the formulae used are as follows:

R ¼ X þ Y þ Zj j2n if X þ Y þ Z � 2nþ1 and R ¼ X þ Y þ Zj j2n þ 1 otherwise:

Note that, in this case, the added bit zi is always 1 in all bit positions.

Vergos and Efstathiou [20] proposed an adder that caters for both weighted and

diminished-1 operands. They point out that a diminished-1 adder can be used

to realize a weighted adder by having a front-end inverted EAC CSA stage. Herein,

A+B is computed where A and B are (n+ 1)-bit numbers using a diminished-1

adder. In this design, the computation carried out is

Aþ Bj j2nþ1
¼ An þ Bn þ Dþ 1j j2nþ1

þ 1
���

���
2nþ1

¼ Y þ U þ 1j j2nþ1
ð2:14Þ

where Y and U are the sum and carry vector outputs of a CSA stage computing

An+Bn+D:

carry Y ¼ yn�2yn�3:::::::yoyn�1

sum U ¼ un�1un�2:::::::u1uo

whereD ¼ 2n � 4þ 2cnþ1 þ sn . Note that An, Bn are the words formed by the n-bit
LSBs of A and B, respectively, and sn, cn+1 are the sum and carry of addition of 1-bit

words an and bn. It may be seen that D is the n-bit vector 11111:::1cnþ1sn .
An example will be illustrative. Consider n¼ 4 and the addition of A¼ 16 and

B¼ 11. Evidently an¼ 1, bn¼ 0, An¼ 0 and Bn¼ 11 and D¼ 01110 yielding

(16 + 11)17¼ ((0 + 11 + 14 + 1)17 + 1)17¼ 10. Note that the periodic property of res-

idues mod (2n + 1) is used. The sum of the n th bits is complimented and added to

get D and a correction term is added to take into account the mod (2n+ 1) operation.

BG1

BP1

BG0

BP0Cin,1 Cn-0

BLOCK 1
Adder (d+f-1:f)

BLOCK 0
Adder (f-1:0)

Figure 2.7 Diminished-1 modulo (2d+f + 1) adder using two blocks (adapted from [14]

©IEEE2004)
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The mod (2n+ 1) adder for weighted representation needs a diminished-1 adder and

an inverted end-around-carry stage. The full adders of this CSA stage perform

(An+Bn+D) mod (2n+ 1) addition. Some of the FAs have one input “1” and can

thus be simplified. The outputs of this stage Y and U are fed to a diminished-1 adder

to obtain (Y+U + 1) mod 2n. The architecture is presented in Figure 2.8. It can be

seen that every diminished-1 adder can be used to perform weighted binary addition

using an inverted EAC CSA stage in the front-end.

a1 b1 a0          b0

FA+FA+ FA+ FA+FA+FA+ FA+ FA+

an-1 bn-1 an-2 bn-2 an-3 bn-3 an-4 bn-4 a3  b3 a2 b2

an bn an   bn

Sn Sn-1 Sn-2 S2 S1 S0

Diminished-1 adder
(any architecture)

Figure 2.8 Modulo (2n + 1) adder for weighted operands built using a diminished-1 adder

(adapted from [20] ©IEEE2008)
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In another technique due to Vergos and Bakalis [21], first A* and B* are

computed such that A*+B*¼A+B�1 using a translator. Then, a diminished-1

adder can sum A* and B* such that

Aþ Bj j2nþ1

���
���
2n

¼ A*þ B*j j2n þ cout ð2:15Þ

where cout is the carry of the n-bit adder computing A* +B*. However, Vergos and
Bakalis do not present the details of obtaining A* and B* using the translator. Note

that in this method, the inputs are� (2n�1).

Lin and Sheu [22] have suggested the use of two parallel adders to find A* +B*
and A* +B* + 1 so that the carry of the former adder can be used to select the correct

result using a multiplexer. Note that Lin and Sheu [22] have also suggested

partitioning the n-bit circular carry selection (CCS) modular adder to m number

of r-bit blocks similar to the select-prefix block type of design considered earlier.

These need circular carry selection addition blocks and circular carry generators.

Juang et al. [23] have given a corrected version of this type of mod (2n+ 1) adder

shown in Figure 2.9a and b. Note that this design uses a dual sum carry look ahead

adder (DS-CLA). These designs are most efficient among all the mod (2n+ 1)

adders regarding area, time and power.

Juang et al. [24] have suggested considering (n + 1) bits for inputs A and B. The
weighted modulo (2n+ 1) sum of A and B can be expressed as

Aþ Bj j2nþ1

���
���
2n

¼ Aþ B� 2n þ 1ð Þj j2n if (A+B)> 2n

¼ Aþ B� 2n þ 1ð Þj j2n þ 1 otherwise ð2:16Þ

Thus, weighted modulo (2n + 1) addition can be obtained by subtracting the sum of

A and B by (2n + 1) and using a diminished-1 adder to get the final modulo sum by

making the inverted EAC as carry-in.

Denoting Y0 andU0 as the carry and sum vectors of the summation A +B�(2n+ 1),

where A and B are (n+ 1)-bit words, we have

AþB� 2nþ1ð Þj j2n ¼
Xn�2

i¼0

2i 2y0iþu0i
� �þ2n�1

�
2anþ2bnþan�1þbn�1þ1

� �
�����

�����
2n

ð2:17Þ

where

y0i ¼ ai _ bi, u0i ¼ ai � bi :

As an illustration, consider A¼ 16, B¼ 15 and n¼ 4. We have

Aþ B� 2n þ 1ð Þj j2n ¼ 16þ 15� 17j j16 ¼ 14

and for A¼ 6, B¼ 7,
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B*

DS – CLA
Adder

MUX

A*

n n

n n

n

Cn-1

Sn-1,0 ...S0,0{ }* * Sn-1,1...S0,1{ }* *

Sn-1...S0{ }* *

b3a3
* * * * * * * * * *

*

b2a2 b1a1 b0a0 p0 p1

p2

Modified
part

p3

s3 s2 s1 s0

p2 p1

c3

MUX MUX MUX MUX

a

b

*

* * * *

* *

Figure 2.9 (a) Block diagram of CCS diminished-1 modulo (2n+ 1) adder and (b) Logic circuit of
CCS diminished-1 modulo (24 + 1) adder ((a) adapted from [22] ©IEEE2008, (b) adapted from

[23] ©IEEE2009)
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