Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol
Abstract
Hygroscopic properties of secondary organic aerosol (SOA) formed by photooxidation of different concentrations (10–27 or 220–270 ppb) of α-pinene precursor were investigated at different relative humidities (RH) using a hygroscopicity tandem differential mobility analyzer (HTDMA, RH = 95–97%) and using the mobile version of the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, RH = 98–99.3%). In addition, the cloud condensation nuclei (CCN) activity was measured applying two CCN counters (CCNC). An apparent single-hygroscopicity parameter, κ, of ∼0.09, ∼0.07–0.13, and ∼0.02–0.04 was derived from CCNC, HTDMA and LACIS data, respectively, assuming the surface tension of pure
- This article is part of the themed collections: Physical chemistry of aerosols and Highlighting Canadian research in PCCP