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YALINA Analytical Benchmark Analyses Using
the Deterministic ERANOS Code System

Abstract

This report presents the analytical analyses obtained with the deterministic ERANOS
code system for the YALINA facility within: a) the collaboration between Argonne
National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear
Research (JIPNR) Sosny of Belarus; and b) the IAEA coordinated research projects for
accelerator driven systems (ADS). This activity is conducted as a part of the Russian
Research Reactor Fuel Return (RRRFR) Program and the Global Threat Reduction
Initiative (GTRI) of DOE/NNSA.
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YALINA Analytical Benchmark Analyses Using
the Deterministic ERANOS Code System

l. Introduction

The growing stockpile of nuclear waste constitutes a severe challenge for the mankind for more
than hundred thousand years. To reduce the radiotoxicity of the nuclear waste, the Accelerator
Driven System (ADS) has been proposed [1,2]. One of the most important issues of ADSs
technology is the choice of the appropriate neutron spectrum for the transmutation of Minor
Actinides (MA) and Long Lived Fission Products (LLFP).

An experimental program has been launched by the Joint Institute for Power and Nuclear
Research — SOSNY (JIPNR-SOSNY), National Academy of Sciences of Belarus [3,4] with the
purpose to study the ADS physics and to investigate the transmutation of MA and LLFP using
the YALINA facility.

In order to construct an ADS, calculations methods have to be developed in order to predict the
performance of such systems. The |AEA has taken the initiative to start a set of ADS
benchmarks [5,6]. These benchmarks, are part of the IAEA Coordinated Research Projects
(CRP): “Analytical and Experimental Analysis of Accelerator Driven Systems” and “Low Enriched
Uranium Fuel Utilization in Accelerator Driven Sub-Critical Assembly Systems” [7,8]. The main
purpose is to compare the results from different calculational methods, performed by different
research institutes, with each other and with the experimental data. The benchmarks are based
on the current YALINA facility configurations, which provide the opportunity to verify the
prediction capability of the different calculational methods. The YALINA facility has two
subcritical assemblies: the YALINA-Booster and -Thermal. The two configurations and their
operating conditions define the benchmark specifications and the required calculations with
Cf-252, (d,d), and (d,t) neutron sources.

Il. YALINA Benchmark Specifications of the IAEA Coordinated Research Projects

The subcritical assemblies object of the benchmark are the YALINA-Booster and -Thermal. In
this section, a short description of the two assemblies followed by the required benchmark
calculations are presented.

I.1. YALINA-Booster Facility

The YALINA-Booster has been designed to have both fast and thermal neutron spectra in one
configuration and to achieve neutron flux densities as high as possible in a subcritical
configuration. In addition, the subcritical assembly together with the highly intensive neutron
generator makes the YALINA-Booster assembly interesting for performing ADS kinetics
research [9].

The YALINA-Booster operates with k. < 0.98 under all conditions for safety purposes. The
subcritical assembly is driven by an external neutron source: a Cf-252 neutron source or a
deuteron accelerator with deuterium or tritium targets for neutron production. The YALINA-
Booster shown in Figure 1 couples a fast zone (“booster”) of two U-235 enrichments ( 90%, and



ANL-09-23

36%) in a lead lattice and a thermal zone with 10% enrichment of U-235 (EK-10 fuel rods) in a
polyethylene moderator. The booster zone multiplies the external neutrons through the fission
reactions of Uranium and (n,xn) reactions of lead. The produced neutrons leak to the
surrounding thermal zone. Between the two zones, there is an interface, called the “valve” zone,
consisting of two layers. The inner layer has metallic natural uranium rods and the outer layer
has boron carbide rods for absorbing the thermal neutrons. Such “valve” zone enables fast
neutrons to scatter between the fast and the thermal zone and prevents thermal neutrons from
entering the fast zone from the thermal zone.

The fast booster zone consists of 36 lead subassemblies. The thermal zone consists of 108
polyethylene subassemblies. For structural reasons, the subassemblies are encased into a
stainless steel frame and nine subassemblies are arranged in each frame. The frame thickness
is 4 mm and the total length along the z-axis is 771 mm in the thermal zone and 804 mm in the
fast zone. The central part of the fast zone has highly enriched (90%) metallic uranium fuel rods
inserted in a lead block as shown in Figures 2 and 3.

The YALINA-Booster is radially surrounded by a graphite reflector and axially by borated
polyethylene. The radial reflector and the backside of the thermal zone are covered by organic
glass sheets. There are four axial experimental channels (EC1B, EC2B, EC3B, and EC4B) in
the fast zone, three axial experimental channels in the thermal zone (EC5T, EC6T, and EC7T),
two axial experimental channels (EC8R, located 32 mm below the assembly mid-plane and 520
mm left of the assembly center line, and EC9R, located 356 mm below the assembly mid-plane
and 600 mm right of the assembly center line) and one radial experimental channel in the
reflector zone (EC10R). All experimental channels are shown in Figure 1.

Two YALINA-Booster configurations are considered in the benchmark. The number of EK-10
fuel rods in the two configurations are 1141 and 902. Figures 2 and 3 show the core loading of
these two configurations. The geometrical details used for generating the calculation models are
presented in the XZ and YZ cross-sectional views shown in Figures 4 and 5. Additional
information can be found in Ref. 5.

The subcritical assembly of the YALINA-Booster facility is made of rectangular parallelepiped
sections. The central axis of the assembly is aligned horizontally. The deuteron target can be
situated along the central axis at different distances from the assembly center.
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Il.1.a. The Lead Target

There is a hole with side dimensions of 80x80 mm in the center of the fast zone formed by
cutting out the inner corners of the four central lead blocks. In the axial direction, a lead zone
consisting of 12 blocks with a total length of 645 mm is used and each block has X-Y
dimensions of 78x78 mm. When the deuteron accelerator is used for neutron production, part of
the hole is occupied by the beam tube as shown in Figures 4 and 5.

I1.1.b. The Inner Part of the Fast Zone

The innermost part of the fast zone surrounding the lead target contains 132 fuel rods in a lead
block, which are marked by red color in Figures 2 and 3. The fuel material is metallic uranium
with 90% U-235 enrichment arranged in a square lattice. The fuel rod pitch is 11.143 mm and
the lead block dimension is 78x78 mm. The total length of the lead subassembly is 645 mm. A
detailed description of the fuel rod design is shown in Figure 6.

I1.1.c. The Outer Part of the fast Zone

The fast fuel zone surrounding the 90%-enriched zone consists of 32 lead subassemblies with
563 fuel rods arranged in a square lattice having a 16 mm pitch. The fuel material is ceramic
UO, with 36% U-235 enrichment. The UO, density is 9.694 g/cm®. Each lead subassembly has
25 fuel rods and the fuel rod details are shown in Figure 6. The clad material is stainless steel
alloy 12X18H10T. All fuel rods in the booster zone are inserted into stainless steel tubes with 9
mm outer diameter and 0.7 mm wall thickness. In this zone, four experimental channels, EC1B,
EC2B, EC3B, and EC4B are located as shown in Figures 2 and 3. The first three experimental
channels have stainless steel alloy 12X18H10T liner with 36 mm outer diameter and 1 mm wall
thickness. The experimental channel EC4B has the same liner material but the outer diameter
and the wall thickness are 12 and 1.5 mm, respectively.

I1.1.d. The Absorber Zone

The absorber zone surrounds the fast zone and consists of an inner layer of natural metallic
uranium rods with stainless steel clad. The clad outer diameter is 9 mm with 0.7 mm thickness
as shown in Figure 6. The outer layer of the absorber zone consists of boron carbide (B4C) rods
having 1.38 g/cm® density as shown in Figure 7. The number of metallic natural uranium rods is
108 and the number of B4C rods is 116. The B4C rods use the same lattice of the uranium fuel
rods in the fast zone, which is16 mm pitch. This absorber zone permits fast neutrons to scatter
between the fast and thermal zones, and prevents thermal neutrons from entering the fast zone
from the thermal zone. The result is a fast neutron coupling of the fast and the thermal zones.
The B4C rods are constrained inside the assembly and cannot removed out accidentally, which
prevents undesired reactivity insertion.

Il.1.e. The Thermal Zone
The thermal zone surrounds the absorber zone and consists of 108 polyethylene subassemblies

with 16 holes each for loading the EK-10 fuel rods. The holes are arranged in a square lattice
with 20 mm pitch. The active fuel length is 500 mm and the average amount of U-235 is 7.73 g
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per rod. The total length of EK-10 fuel rods is 590 mm and the outer clad diameter is 10 mm.
Each polyethylene subassembly has a total length of 576 mm obtained by arranging twelve
blocks in the axial direction. The block dimensions are 80x80x48 mm and the polyethylene
density is 0.859 g/cm®. The 20 mm lattice dimension is the optimum value for the neutron
multiplication using the EK-10 fuel with polyethylene moderator in a square lattice. The detailed
description of the EK-10 fuel rod is shown in Figure 8. Three experimental channels, EC5T,
EC6T, and EC7T are inserted into the thermal zone as shown in Figures 2 and 3. Finally, the
thermal zone is surrounded in the radial direction by a 250-mm graphite reflector containing
three experimental channels EC8R, EC9R, and EC10R as shown in Figure 1. In the axial
directions, borated polyethylene shields are used as shown in Figures 4 and 5. In the thermal
zone and close to the fast zone, it is possible to insert three small B,C rods as shown in Figures
2 and 3. During operation these rods are not inserted and, consequently, the holes are filled with
air. The diameter of each hole is 11 mm with an aluminum alloy liner of 0.5 mm thickness.

I1.1.f. The Deuteron Beam Tube

The detailed design of the deuteron beam tube is shown in Figure 9.

Il.2. YALINA-Thermal Facility

The YALINA-Thermal has been designed to have a thermal neutron spectrum and to achieve
neutron flux densities as high as possible in a subcritical configuration. In addition, the subcritical
assembly together with the highly intensive neutron generator makes the YALINA-Thermal
assembly interesting for performing ADS kinetics research [9].

The YALINA-Thermal operates with k. < 0.98 under all conditions for safety reasons. The
assembly is driven by an external neutron source: a Cf-252 neutron source or a deuteron
accelerator with deuterium or fritium targets for neutron production. The deuteron energy is
240 keV impinging on the target located at the center of the subcritical assembly.

The YALINA-Thermal consists of uranium dioxide nuclear fuel rods and polyethylene moderator.
The assembly is surrounded by a graphite reflector in the radial direction. The fuel rods are
arranged horizontally. The front side of the assembly opposite to the beam entrance is covered
by borated polyethylene. The backside is covered by organic glass sheets where the entrance of
the deuteron beam tube is located. Three axial experimental channels (EC1, EC2, and EC3) are
located in the fuel zone and they are parallel to the fuel rods. One axial experimental channel
(EC4) is positioned in the target zone and two axial experimental channels (EC5, EC6) are
included in the reflector zone. One radial experimental channel EC7 is inserted in the reflector
zone at the fuel midplane. The experimental channels are shown in Figure 10.

Three YALINA-Thermal configurations are considered for the benchmark. The number of EK-10
fuel rods are 216, 245 and 280. Figures 11 to 14 show the core loading of the three
configurations. The geometrical details for generating the calculation models are presented in
the XZ and YZ cross-sectional views shown in Figures 15 and 16. Additional information can be
found in Ref. 6.

The subcritical assembly of the YALINA-Thermal facility is made of rectangular parallelepiped
sections. The central axis of the assembly is aligned horizontally. The target can be situated
along the central axis at different distances from the assembly center.
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Il.2.a. Lead Target

There is a hole with side dimensions of 80x80 mm in the assembly center with a stainless steel frame.
A lead zone consisting of 12 blocks with a total length of 576 mm in the axial direction is used, and
each block has X-Y dimensions of 78x78 mm. When the deuteron accelerator is used for neutron
production, part of the hole is occupied by the beam tube as shown in Figures 15 and 16.

I1.2.b. Fuel Assembly

The assembly consists of 20 polyethylene subassemblies with 16 holes each for the loading of 16
EK-10 fuel rods. The holes are arranged in a square lattice with 20 mm pitch as shown in Figures 11
to 14. The active fuel length is 500 mm and the average amount of U-235 is 7.73 g per rod. The total
length of EK-10 fuel rod is 590 mm and the outer and inner clad diameters are 10 and 7 mm
respectively. Each subassembly has a total length of 576 mm obtained by arranging twelve blocks in
the axial direction. The block dimensions are 80x80x48 mm and the polyethylene density is 0.923
g/cm®. The 20 mm lattice dimension is the optimum configuration for neutron multiplication using the
EK-10 fuel with polyethylene moderator in a square lattice. The detailed description of the EK-10 fuel
rods is shown in Figure 8.

Three experimental channels, EC1, EC2, and EC3 are embedded in the fuel zone, while the
experimental channel EC4 is located inside the lead target zone. The fuel zone is surrounded in the
radial direction by a graphite reflector, whose dimensions are shown in Figures 10, 15, and 16. There
are two axial experimental channels, EC5 and EC6, and one radial experimental channel, EC7, in the
graphite reflector. Borated polyethylene blocks are used in the front section of the fuel zone and
organic glass sheets are used at the backside of the assembly and in the front section of the graphite
reflector as shown in Figures 15 and 16.

In the fuel zone and close to the target zone, it is possible to insert three small B,C rods as shown in
Figures 11 to 14. During the operation these rods are not inserted and, consequently, the holes are
filled with air. The diameter of each hole is 11 mm with aluminum alloy linear of 0.5 mm thickness.

lll. Performed Calculations

Several calculations were performed for the YALINA-Booster and —Thermal using different nuclear
data files. The following three sections describe the performed calculations.

111.1. YALINA-Booster

Two subcritical configurations are considered in the YALINA-Booster benchmark. These
configurations have different fuel loadings in the thermal zone: 902 and 1141 EK-10 fuel rods as
shown in Figures 2 and 3 respectively. In both configurations, the booster zone is fully loaded. The
deuterons are accelerated to 240 keV and the target is located at the center of the subcritical
assembly. The neutron source is (d,t), (d,d), or Cf-252 neutrons. The Cf-252 neutron source is located
at (x,y,z) = (0,0,62) mm with the deuteron beam tube still in place. The assembly center corresponds
to the point (x,y,z) = (0,0,0). For each configuration, the following results are obtained (see Ref. 5 for
additional details):

1. Axial distribution of the following nuclear reaction rates:
a. He-3(n,p) reaction rate in the EC6T experimental channel, normalized to one external neutron
source and one He-3 atom. The reaction rate values are calculated using the average neutron

13
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flux, @(E), in cylindrical cells from Z = -250 mm to Z = 250 mm in steps of 50 mm. The cells
description is given in Ref. 5. The detector is not modeled in the calculation.

b. U-235(n,f) reaction rate in the EC2B and EC6T experimental channels, normalized to one
external neutron source and one U-235 atom. In both channels, the reaction rate values are
calculated using the average neutron flux, @(E), in cylindrical cells from Z = -250 mm to Z =
250 mm in steps of 50 mm. The cells description is given in Ref. 5. The U-235 material is not
modeled in the calculation.

c. In-115(n,y) reaction rate in the EC2B, EC5T, EC6T, and EC7T experimental channels,
normalized to one external neutron source and one In-115 atom. Values are to be calculated in
the In-115 samples located from Z = -242 mm to Z = 208 mm in steps of 50 mm. The In-115
samples are explicitly simulated together with their polyethylene holder, without loading any
other isotopes in the holder. The description of the polyethylene holder is given in Ref. 5.

Radial distribution of the In-115(n,y) reaction rate in the EC10R radial experimental channel at the

radial distances of 480, 530, 580, 630, 680 and 730 mm. All reaction rate values are normalized to

one neutron source and one In-115 atom. The samples are simulated together with their

polyethylene holder. The description of the polyethylene holder is given in Ref. 5.

. Au-197(n,y) and Mn-55(n,y) reaction rates in the EC2B, EC6T experimental channels, normalized

to one external neutron source and one isotope atom. The samples are simulated together with

their holder, as done in the previous calculations. The calculation is performed with the holder
containing only Au-197 or Mn-55.

Neutron energy spectra in the EC2B, EC6T and EC8R experimental channels, calculated at Z =0

with the 172 energy groups structure given in Appendix C. The integral of the neutron spectrum

over the total energy range is normalized to 1.0 (J‘d)(E)dE =1.0).

. The neutron flux is calculated as a function of time after a neutron pulse insertion. The pulse
consists of (d,t) or (d,d) neutrons at Z = 0 with 5 ys duration. The neutron flux calculations are
performed for a period of 20 ms with two different detectors:

a. He-3(n,p) detector in the EC6T and EC8R experimental channels without explicit modeling of
the detector. The results are normalized to the maximum value in the EC6T experimental
channel.

b. U-235(n,f) detector in the EC1B, EC2B, and EC3B experimental channels without explicit
modeling of the detector. The results are normalized to the maximum value in the EC1B
experimental channel.

The calculations are done using a 10 us time step from 0 to 1 ms and a 100 ps time step from 1

ms to 20 ms.

. The static and the kinetic neutronic parameters for both configurations:

a. Effective multiplication factor, K.

b. Source multiplication factor, k.

c. Mean neutron generation time, A.

d. Effective delayed neutron fraction, Be.

lll.2. YALINA Thermal

Three different fuel loadings are considered for the YALINA-Thermal benchmark. These loadings have
216, 245 and 280 EK-10 fuel rods and the corresponding U-235 masses are 1.67, 1.89, 2.16 kg,
respectively. The fuel loadings are shown in Figures 11 to 14. The neutron source is (d,t), (d,d), or
Cf-252 neutrons. For each configuration the following results are obtained, as explained in Ref. 6:

. Axial distribution of the following reaction rates:
a. He-3(n,p) reaction rate in the EC1, EC2, and EC3 experimental channels, normalized to one
external neutron source and one He-3 atom. The reaction values are calculated using the
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average neutron flux, @(E), in cylindrical cells from Z = -250 mm to Z = 250 mm in steps of 50
mm. The cells description is given in Ref. 6. The detector is not modeled in the calculation.

b. U-235(n,f) reaction rate in the EC1, EC2, and EC3 experimental channels, normalized to one
external neutron source and one U-235 atom. In all the channels, the reaction rate values are
calculated using the average neutron flux, @(E), in cylindrical cells from Z = -250 mm to Z =
250 mm in steps of 50 mm. The cells description is given in Ref. 6. The U-235 material is not
modeled in the calculation.

c. In-115(n,y) reaction rate in the EC2 experimental channel, normalized to one external neutron
source and one In-115 atom. Reaction rate values are calculated in the In-115 samples located
from Z = -242 mm to Z = 208 mm in steps of 50 mm. The In-115 samples are simulated
together with their polyethylene holder, without loading any other isotopes in the holder. The
description of the polyethylene holder is explained in Ref. 6.

Radial distribution of the In-115(n,y) reaction rate in the EC7 radial experimental channel at the

radial distances of 200, 250, 300, 350, 400, 450, 500, 550 and 600 mm. All reaction rate values

are normalized to one neutron source and one In-115 atom. The samples are simulated together

with their polyethylene holder. The description of the polyethylene holder is explained in Ref. 6.

Au-197(n,y) and Mn-55(n,y) reaction rates in the EC2 experimental channel, normalized to one

external neutron source and one isotope atom. The samples are simulated together with their

holder, as done in the above calculation. The calculation has performed with the holder containing
only Au-197 or Mn-55.

Neutron energy spectra in the EC1, EC2, EC3, EC5, and EC6 experimental channels, calculated

at Z = 0 with the 172 energy groups structure given in Appendix C. The integral of the neutron

spectrum over the total energy range is normalized to 1.0 (Id)(E)dE =1.0).

Neutron flux calculated as a function of time after a neutron pulse insertion. The pulse consists of

(d,t) or (d,d) neutrons at Z = 0 with 5 us duration. The neutron flux calculations are performed for a

period of 20 ms with two different detectors:

a. He-3(n,p) detector in the EC2 and EC5 experimental channels without explicit modeling of the
detector. The results are normalized to the maximum value in the EC2 experimental channel.

b. U-235(n,f) detector in the EC1 experimental channels without explicit modeling of the detector.
The results are normalized to the maximum value in the EC1 experimental channel.

The calculations are done using a 10 ps time step from 0 to 1 ms and a 100 us time step from

1 ms to 20 ms.

The static and the kinetic neutronic parameters for the three configurations:

a. Effective multiplication factor, kg

b. Source multiplication factor, k.

c. Mean neutron generation time, A.

d. Effective delayed neutron fraction, Ber.

Some of the YALINA-Thermal results have been also presented in Ref. 10.

111.3. Additional Calculations

An additional study was performed to calculate the kinetic parameters of the YALINA-Booster and
-Thermal according to the following formulations:

Bef‘f z

Aeff

([ rai €05 (7. EME [ Bivs (E)os (7, E)IEGT Eq. 1

(ot
>”c1> rE)dEj vE) @ (7, E)dEdT Eq. 2

<CDS,F(D

where:

Xq, are the delayed neutron spectra for the group family i = 1,..,NF;
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e P are the delayed neutron fraction for the i'"" group family;
e v(E) is the neutron velocity;
e F is the fission production operator of the Boltzmann equation.

Generally, the kinetic parameters are obtained with homogeneous (source-free) fluxes, ®* and O,
solutions of the equations: AD*=(1/kes)F ®* and AD=(1/kex)F .

In Egs. 1 and 2, ®5 and ®g are inhomogeneous (source-driven) fluxes, adjoint and direct

respectively, solution of the transport equations: Adg =Fdg +vE; and Adg =Fdg +S, where vi; is

the macroscopic cross-section associated to the assembly fission source and S is the external source
driving the subcritical system, (d,t), (d,d) or Cf-252 neutron source.

IV. Computational Tools

Considerable efforts have been made in order to create a deterministic model using the ERANOS
(European Reactor ANalysis Optimized code System) code package [11] for the analysis of the
YALINA configurations. ERANOS, essentially developed for the analysis of fast neutron systems, with
extended capabilities for the slowing down treatment with up to 1968 energy groups, is also used for
the analysis of thermal reactors. Cross-sections have been processed with the ECCO code [12] of
ERANOS using JEF2.2 [13], JEF3.1 [14] and ENDF/B-VI.8 [15] nuclear data. The VARIANT module
[16] of ERANOS has been used to perform reactivity and flux calculations. The kinetic study is carried
out with the KIN3D module [17]. For complementary studies, the 2D S,, code BISTRO [18] of ERANOS
has been also used. All calculations have been performed with the ERANOS version 2.0, except the
VARIANT and KIN3D calculations that have been carried out with the version 2.1 recently available at
ANL.

In the present report, the YALINA-Booster and -Thermal with 1141 and 280 EK-10 fuel rods have
been considered.

V. Cross-Section Processing

The cross-sections have been processed with the ECCO code using the nuclear data from the
JEF2.2, JEF3.1 and ENDF/B-VI.8 libraries. The cell calculations are performed for each zone
assumed to be infinite. The ECCO code utilizes the sub-group method for the treatment of the
resonances and performs cell calculations in homogeneous (0D) and heterogeneous geometry (1D:
cylindrical or slab; 2D: XY or hexagonal) using the collision probability method. In the YALINA
configurations, heterogeneous effects are quite important, as consequence, the cross-sections have
been processed for most zones in XY geometry. The cross-sections are calculated over a fine energy
group structure (up to 1968 energy groups) and collapsed to a broader energy group structure
specified by the user using the cell flux as a weighting function. For the present work, the
condensation has been performed over the 172 group structure according to the benchmark
specifications. However, deterministic calculations for reactivity or neutron flux determination of the
YALINA configurations with 172 energy groups require significant computational resources. As
consequence, the cross-sections have been also processed with a lower number of energy groups.
A 53 energy group structure was derived from the standard 33 group structure used for fast reactor
analysis. Two energy groups have been added at the highest energy to represent the 14 MeV (d,t)
neutron source and the lowest two energy groups of the original 33 group structure have been
replaced by 20 energy groups for a more appropriate treatment of the thermal part of the neutron
spectrum. The 53 and 172 energy group structures are given in Appendix C. After the individual
material cross-sections are condensed using the heterogeneous geometry, a homogeneous cross-

16



ANL-09-23

section is generated over the cell volume. For structural zone, the cell flux is calculated by introducing
a source term given by the neutron leakage from the neighbour zone. The term DB?, where D is the
diffusion coefficient and B is the buckling value, of the ECCO calculation is given by a semi-empirical

2
formula (B2 =g(%) , where h is the zone thickness). This formula has been historically developed for

the treatment of fertile blankets and, as consequence, it could be inappropriate in other cases. In the
absence of appropriate information, in the present study it has been assigned B?=0. However, the
dependence of the results on the value provided for the buckling has been investigated. The results
indicate that the effect of this term is negligible: for instance, the change in reactivity for the YALINA-

2
Booster between the cases B? =§(%) and B?= 0 is about 10 to 20 pcm. The differences decreases

as the number of energy groups increases. Appendix A contains all the geometrical details for the
cross-sections processing used for the deterministic model of the YALINA configurations. A particular
attention has been devoted to the calculation of the thermal cells, as explained in Appendix A.1.

VI. Deterministic Results

Reactivity and flux calculations have been performed in XYZ geometry with the VARIANT code
implemented in the new ERANOS version 2.1, using JEF2.2, JEF3.1, and ENDF/B-VI.8 nuclear data.
In the VARIANT code, the transport equation is derived in terms of an “even” and an “odd” fluxes,
expanded in Legendre’s polynomials and in spherical harmonics for the spatial and angular variables
respectively, as shown in the following equations:

D510 = [05 (.9 + 05 (F-D)]= i (D5 @i Eq. 3

@3, (1,0) = 205 (,0) - @5 (7.-0) = X0, (DK, @0, Eq. 4
jn

VARIANT uses the nodal variational method. This implies that the solutions of the equation are
integrated over the mesh volumes and they are obtained by the minimization of a function, that
contains the total cross-section, X;, at the denominator. Due to these features, the VARIANT code
does not work properly with fine meshes. Moreover, difficulties are encountered in presence of void
regions, characterized by low values of %,. Therefore, the void zones of the original YALINA
configurations were homogenized with other neighbor zones as shown in Appendix A.

The VARIANT method is also the basis of the time-dependent ERANOS calculation modules,
implemented in the KIN3D code, used for the kinetic studies presented in this report.

VI.1. Multiplication Factor

The impact of the number of energy groups, the angular flux expansion order, and the anisotropic
scattering expansion order on the calculated ke values has been investigated for the YALINA-Booster
and —Thermal. Concerning the number of energy groups used, the obtained results in Tables 1 and 2
show that increasing the energy group number from 53 to 172 results in a negligible impact on the
calculated reactivity values. The obtained effect is less than 50 pcm for the YALINA-Booster and
-Thermal, depending on the used nuclear data files. Therefore, it is concluded that the 53 energy
group structure is adequate for the analyses of the current configurations.
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Table 1. Calculated ke (Reactivity) with VARIANT for the YALINA-Booster

N“mbgr of Energy JEF2.2 JEF3.1 ENDF/B-VI.8
roups
53 @ 0.96235 (-3912 pcm) | 0.95983 (-4185 pcm) | 0.95895 (-4281 pem)
172@ 0.96246 (-3900 pcm) | 0.95998 (-4169 pcm) | 0.95915 (-4259 pcm)

@ Results obtained in SP3Pg approximation: full P; angular flux expansion with simplified spherical
harmonics; anisotropic scattering order 0

Table 2. Calculated ket (Reactivity) with VARIANT for the YALINA-Thermal

N”mbgr of Energy JEF2.2 JEF3.1 ENDF/B-VI.8
roups
53 @ 0.91002 (-9888 pcm) | 0.94170 (-6191 pcm) | 0.93994 (-6390 pcm)

(- )
172 @ 0.91042 (-9840 pcm) | 0.94180 (-6180 pcm) | 0.94004 (-6379 pcm)
53 ®) 0.91276 (-9558 pcm) | 0.94476 (-5847 pcm) | 0.94294 (-6051 pcm)
172 ® 0.91341 (-9480 pcm) | 0.94514 (-5804 pcm) | 0.94333 (-6008 pcm)

@ Results obtained in SP3Pg approximation: full P; angular flux expansion with simplified spherical
harmonics; anisotropic scattering order 0

®) Results obtained in SPsP; approximation: full Ps angular flux expansion with simplified spherical
harmonics; anisotropic scattering order 1

Tables 3 and 4 show the calculated reactivity values with different angular flux expansion or
anisotropic scattering order approximations. The use of the 53 energy group structure is used for
obtaining these results.

In Table 3, the first four sets of calculations (A, B, C, and D) used heterogeneous cell calculations for
obtaining the zone average cross-section for each zone of the YALINA-Booster geometrical model.
The fifth calculational set (F) was obtained by applying a correction factor to the fourth calculation set
since the current computational resources do not permit the use of the heterogeneous cell calculations
for SP3P3; zone average cross-sections. The correction factor was obtained by performing SP;P, and
SP;P; simulations using homogenous cell calculations based on the number densities of each isotope
averaged over the volume of the cell. In Table 4 ,similar approach was performed for the YALINA-
Thermal. The first five calculational sets utilized heterogeneous cell calculations for getting average
cross-sections sets for the different zones and the sixth calculation set obtained by using a correction
factor.

The obtained results for the two assemblies suggest that the angular expansion of the flux and the
anisotropic scattering should be increased to the orders 5 and 3 respectively or more. The PsP;
calculation is not possible with the current computer resources. Therefore, the results for the desired
approximation orders have been obtained by separate investigations for angular flux and the
anisotropic scattering orders. This kind of analysis is commonly performed when deterministic codes
are used.
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Table 3. Calculated ke (Reactivity) with VARIANT for the YALINA-Booster

Calculation JEF2.2 JEF3.1 ENDF/B-VI.8
A: SP;® 0.96235 (-3912 pcm) | 0.95983 (-4185 pcm) | 0.95895 (-4281 pcm)
B: PsP, 0.96388 (-3747 pcm) | 0.96089 (-4070 pcm) | 0.96002 (-4165 pcm)
C: PsP, 0.96516 (-3610 pcm) | 0.96211 (-3938 pcm) | 0.96123 (-4033 pcm)
D: SP,P; 0.96877 (-3224 pcm) | 0.96620 (-3498 pcm) | 0.96537 (-3587 pcm)
F©: SP,4P, 0.97329 (-2744 pcm) | 0.97069 (-3019 pcm) | 0.96989 (-3104 pcm)

@ Angular flux expansion (SPs: full P3 angular flux expansion with simplified spherical harmonics, Ps: angular

flux expansion order 3);

® Anisotropic scattering order;
© Simplified geometrical model is used

Table 4. Calculated K¢ (Reactivity) with VARIANT for the YALINA-Thermal

Calculation JEF2.2 JEF3.1 ENDF/B-VI.8
A: SP;® Py® | 0.91002 (-9888 pcm) | 0.94170 (-6191 pcm) | 0.93994 (-6390 pcm)
B: PsP, 0.91634 (-9130 pcm) | 0.94421 (-5909 pcm) | 0.94242 (-6110 pcm)
C: PsPo 0.91897 (-8818 pcm) | 0.94611 (-5696 pcm) | 0.94431 (-5897 pcm)
D: SP;P; 0.91276 (-9558 pcm) | 0.94476 (-5847 pcm) | 0.94294 (-6051 pcm)
E: P3P, 0.92107 (-8569 pcm) | 0.94923 (-5349 pcm) | 0.94739 (-5553 pcm)
F©: SP4P, 0.91533 (-9250 pcm) | 0.94758 (-5532 pcm) | 0.94570 (-5742 pcm)

@ Angular flux expansion (SPs: full P3 angular flux expansion with simplified spherical harmonics, P,: angular

flux expansion order n);

Anlsotroplc scattering order;
© Simplified geometrical model is used

The reactivity change due to increasing the angular flux expansion is obtained with Py anisotropic
scattering; similarly, the correction due higher anisotropic scattering order is obtained with SP3
expansion for the neutron flux. From the results of Tables 3 and 4, for instance, the reactivity results
assuming PsP3; approximation are given in Tables 5 and 6. In the case of the YALINA-Booster, a quite
good agreement in the reactivity values is observed for the three different nuclear data libraries, the
obtained results vary within a range of ~400 pcm. Regarding the YALINA-Thermal, JEF3.1 and
ENDF/B-VI1.8 provide comparable results, but JEF2.2 gives a lower reactivity value of ~3000 pcm. The
calculated reactivity differences from different data libraries will be discussed further in the next

Section.
Table 5. Final ket (Reactivity) with VARIANT for the YALINA-Booster
Calculation JEF2.2 JEF3.1 ENDF/B-VI.8
SP3P1 0.96877 (-3224 pcm) 0.96620 (-3498 pcm) 0.96537 (-3587 pcm)
Correction @ P5Po - SP3Pg 302 pcm 247 pcm 248 pcm
Correction @ SP3P3 - SP;P;4 480 pcm 479 pcm 483 pcm
PsPs; 0.97616 (-2442 pcm) 0.97303 (-2772 pcm) 0.97223 (-2856 pcm)

® See values given in Table 3
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Table 6. Final ke (Reactivity) with VARIANT for the YALINA-Thermal

Calculation JEF2.2 JEF3.1 ENDF/B-VI.8
PP, 0.92107 (-8569 pcm) | 0.94923 (-5349 pcm) | 0.94739 (-5553 pcm)
Correction @ PsP, - PsPg 312 pcm 213 pcm 213 pcm
Correction @: SP,P; - SP4P, 308 pcm 315 pcm 309 pcm
PsP, 0.92636 (-7949 pcm) | 0.95401 (-4821 pcm) | 0.95210 (-5031 pcm)

@ See values given in Table 4

Vl.1.a. Perturbation Calculation

Perturbation calculations were performed to examine the reactivity differences obtained from the use
of different nuclear data libraries. Since the ERANOS perturbation modules are only available in two
dimensional geometry, an RZ model has been developed for the YALINA-Booster and -Thermal as
shown in Appendix B.

The reactivity values obtained for the RZ model with the BISTRO code using S;P1 approximation are
presented in Tables 7 and 8 for the YALINA-Booster and —Thermal, respectively. Using the same
library, the difference between the BISTRO and VARIANT reactivity results shown in Tables 5 and 6
compared to Tables 7 and 8 are essentially due to the omission of the YALINA experimental channels
from the RZ model. These channels are included in the three dimensional model of the VARIANT
calculations.

Table 7. Calculated ke (Reactivity [pcm]) with RZ BISTRO Model for the YALINA-Booster
Model-Calculation JEF2.2 JEF3.1 ENDF/B-VI.8

RZ-S4P4 0.980579 (-1980.6 pcm) | 0.974383 (-2629.0 pcm) | 0.973531 (-2718.9 pcm)

Table 8. Calculated ket (Reactivity [pcm]) with RZ BISTRO Model for the YALINA-Thermal
Model-Calculation JEF2.2 JEF3.1 ENDF/B-VI.8

RZ-S4P; 0.941637 (-6198.0 pcm) | 0.958009 (-4383.2 pcm) | 0.955992 (-4603.4 pcm)

Table 9 gives the perturbation components of the observed BISTRO reactivity change due to the use
of different nuclear data libraries for the YALINA-Booster. Isotopes that produce Ap of less than
0.05 pcm are not listed in the table. It can be seen that the total reactivity change is +670 pcm for the
(JEF2.2 - JEF3.1) results and -90 pcm for (ENDF/B-VI.8 - JEF3.1). The difference is consistent with
the Table 7 results. U-235, Pb, C, Al, U-238 isotopes are the main contributors to the Ap for the
(JEF2.2 - JEF3.1) case. U-238, H and Pb isotopes are the main contributors to the Ap for
(ENDF/B-VI.8 - JEF3.1) case. However, it is important to notice that the perturbation components
have different signs, which reduce the net reactivity difference.
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Ap (JEF2.2 — JEF3.1)

Ap (ENDF/B-VI.8 — JEF3.1)

Isotope | Capture |Fission|Leakage|Elastic|Inelastic [N,xN| Total | Isotope |Capture |Fission|Leakage|Elastic|Inelastic|N,xN| Total
U235 | 113.4 [262.7] 21 |-01] -09 | - [377.3] U235 | 63 | 347 | -02 |-0.2 - - 281
U238 | -456 |-143| -165 | -09 | -6.3 [-4.1]-87.7| U238 | -40.0 |-12.4| 6.4 | -0.6 | -45.8 [-0.3]-105.4
Fe54 | -493 | - 1.1 - -05 | - [-48.7] Fe54 | -1.8 - -35 [-03] -05 | - |-6.1
Fe56 | -3.3 - 549 | 10| 161 | - [68.7] Fe56 | -157 | - 196 |-04| 50 | - | 84
Fe57 | -5.7 - -04 |-05| 15 | - |-81] Fe57 | 06 - 65 |-07] 21 | - |-87
Fe58 | 0.1 - 12 [-01] -01 | - [-12] Fe58 | 0.7 - 16 [-01] -01 | - [-1.1
Cr50 | 1.0 - 0.4 |-01 - - | o5] cr50 | -0.2 - - - - - |-02
Cr52 | -2.6 - 382 [ 36| 26 | - [41.9] Cr52 7.7 - 144 [ 13| 47 | - [28.1
Cr53 | 114 | - 37 |09 | 04 | - [-70] Cr53 | -0.2 - - - - - |-02
Cr54 | 0.1 - -06 |-01] -01 | - |-06] Ni58 | -0.3 - - 04| 08 | - | 0.1
Ni58 | 0.5 - 06 |-04| 08 | - | 15| Ni60 0.6 - 07 |01 ] 01 - 115
Ni60 | 0.9 - 0.8 - 0.1 - 18] B10 -0.6 - - - - - | -06
Ni61 | -0.2 - 0.1 - - - |-01] Pb207 | -198 | - 468 | 1.0 | 44 [-2.1]30.3
Ni62 | -0.1 - - - - - |-0.1] Pb208 | -0.3 - | 229 ]-08| 57 [-2.0]-20.3
B10 | -1.1 - 0.2 - - - |-009] A27 1.5 - -1.0 |-0.1 - - |04
B11 - - 0.1 |-01 - - - P31 -0.3 - 0.2 - - - |-02
P31 | -0.1 - 0.7 - - - |07 ]sb121 | 24 - 0.1 - - - | 25
Sb121| 1.4 - 1.0 - 01 | - [ 23] Sb123 | 1.3 - - - - - 113
Sb123| -1.1 - 0.8 - 02 | - [-05] As75 | -0.1 - - - - - |-0.1
H® | -7.8 - 18.6 | 5.4 - - [16.2] Mn55 | -0.1 - 0.1 - - - -
c® | 21 - |-1111]-15] -06 | - |-1155] Na23 - - -0.1 - - - | -0.1
Pb -5.7 - [3175[154] -141 [-3.1[310.1] 016 | -0.1 - 01 |[-0.1 - - | -0.1
Ca 0.8 - - - - - | 08] H®O -9.6 - | -62.0 [-29.3] - - |-100.9
Cu -0.5 - 0.1 - - - | -04 C - - - -0.2 - - |-03
Mg 1.3 - | -113]09] -08 | - [-10.0| graphite| - - 0.1 |-0.1 - - |-0.1
Ti -0.1 - - 01| -01 | - [-02] Mo 2.2 - 0.1 - 01 | - |22
Si - - 0.1 - - - | 01 Ca 0.8 - - - - - 108
[¢) 1.7 - 57 | 1.0 - - | 5.0 Mg 1.4 - 92 [16] 21 | - |[-115
Al 96.2 - 346 | 46 | -203 | - [1151] Ti - - -0.4 - 01 | - [-06
Mn | -89 - 04 [01] 05 | - |80 S 0.2 - -0.1 - 0.1 - 103
Zn 1.1 - 0.1 - 0.1 - | 1.3 | Pb204,
Total | 69.6 |248.5| 3401 | 29.2| -25.8 |-7.2|670.4\Pb20e @ 194 | - | 483 108 ) 03 1-0.8/67.9
Zn 4.6 - 16 |-01] -01 | - | 27
Total | -59.0 | 22.3 | 14.8 [-31.8| -30.0 [-5.3]-89.0

@ For JEF2.2 the isotope
For JEF3.1 the isotope
® For JEF2.2 the isotope
For JEF3.1 the isotope

“bdH” is used for each hydrogenated material;
“HCHZ2” is used for polyethylene; “HH20O” for water; “H1” for other hydrogenated materials.
“C” is used for the graphite reflector;

“Cgra” is used for the graphite reflector.

© For ENDF/B-VI.8 the isotope “POLY” is used for polyethylene; “H20L” for water; “H1” for other hydrogenated materials;
For JEF3.1 the isotope “HCHZ2” is used for polyethylene; “HH2O” for water; “H1” for other hydrogenated materials.
@ In ENDF/B-VI.8 the isotope Pb-204 is absent: the Pb-206 density is Pb-204 + Pb-206.

Table 10 shows the perturbation components for the observed BISTRO reactivity change when
different data libraries are used for the case of the YALINA-Thermal. Isotopes not presented in the
table contribute to the Ap for less than 0.05 pcm!

The total reactivity variation is of the order of -1800 pcm for the (JEF2.2 — JEF3.1) results and of -210
pcm for (ENDF/B-VI.8 — JEF3.1). The results provided in Table 10 show that U-238 and H are the
main contributors to the Ap (ENDF/B-VI.8 — JEF3.1), while the Ap (JEF2.2 — JEF3.1) is essentially
caused by the carbon. This study demonstrates that the carbon is inadequate to represent the
graphite reflector and consequently it is decided to avoid the use of the JEF2.2 library for the
calculations of the YALINA-Thermal.
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Table 10. Perturbation Components [pcm] for the YALINA-Thermal

Ap (JEF2.2 — JEF3.1) Ap (ENDF/B-VI.8 — JEF3.1)
Isotope | Capture |Fission|Leakage|Elastic|Inelastic|N,xN| Total |Isotope|Capture |Fission|Leakage|Elastic|Inelastic|N,xN| Total
U235 | 25.0 |334.2| -1.1 - -01 | - [358.0[U235| -1.0 | 256 | -0.3 - - - | 243
U238 | -57.5 | -11.8 | -10.5 | -0.2 | -19.2 [-3.8]-103.0| U238 | -43.1 | -9.8 | -5.0 - | -46.7 ]-0.3]-104.8
Fe54 | -7.5 - - - 03 | - | -78 | Fe54 | -0.2 - -0.2 - 02 | - |-06
Fe56 | -1.5 - 18 | 04 | 23 - | 30 |Fe56 | -1.5 - 0.9 - 1.1 - |05
Fe57 | -0.7 - 0.2 - 02 | - | -08 |Fe57| 0.2 - - - 02 | - |-01
Fe58 - - -0.2 - - - | -02 | Fe58 | 0.1 - -0.1 - - - |-0.1
Cr50 | -0.1 - -0.1 - - - | -01|cCr52| 1.2 - 0.8 - 1.1 - | 3.1
Cr52 | -0.4 - 1.7 | 02| 03 - | 19 | Ni58 | -0.1 - - - 0.2 - | 0.1
Cr53 | -2.0 - - - 02 | - | -2.2 | Ni60 - - - - 0.1 - | 0.1
Cr54 - - - - - - | -0.1 |Pb207| -0.6 - 24 | 01 ] -01 [-0.3] 1.5
Ni58 | -0.1 - -0.2 - 0.2 - | -0.2 |Pb208| - - -13 |-01] 31 [-02] 15
Ni60 - - - - 0.1 - | 01 | A27 | 37 - 14 |-0.1 - - |23
B10 | -0.9 - - - - - | -09 | P31 | -0.1 - - - - - -
P31 - - 0.1 - - - | 0.1 |Sb121]| 0.6 - - - - - | 06
Sb121| 0.5 - 0.1 - - - | 05 [Sb123| -0.3 - - - - - |-03
Sb123| -0.3 - - - - - | -0.3 | As75 - - - - - - -
H® | 3.1 - 96 |485 - - | 612 | 016 - - 0.2 |-0.1 - - | 0.1
c® ] 29 - |-2137.0/ -39 | 1.1 | - 214500 H® | 165 | - | -84.4 |-259] - - 1267
Total | 79.3 [322.4]-2186.1|47.1 | -55.7 |-4.6]-1797.5] C@ | -0.1 - 0.3 |-0.1 - - |02
Total | -50.1 | 15.8 | -97.9 |-30.1| -46.9 |-1.0/-210.2

@ For JEF2.2 the isotope “bdH” is used for each hydrogenated material;
For JEF3.1 the isotope “HCH2” is used for polyethylene; “HH20” for water; “H1” for other hydrogenated materials.

®) For JEF2.2 the isotope “C” is used for the graphite reflector;
For JEF3.1 the isotope “cgra” is used for the graphite reflector.

© For ENDF/B-VI.8 the isotope “POLY” is used for polyethylene; “H20L” for water; “H1” for other hydrogenated materials: H1
gives 0 contribution;
For JEF3.1 the isotope “HCHZ2” is used for polyethylene; “HH20” for water; “H1” for other hydrogenated materials: H1 gives
0 contribution.

@ «C” is not used in graphite reflector. For the graphite reflector “cgra” and “graphl” are used for JEF3.1 and ENDF/B-VI1.8
respectively: the graphite gives O contribution.

VI.2. Source Multiplication Factor, ks

Calculations have been performed to determine the source multiplication factor, ks, of the YALINA-
Booster and -Thermal configurations. Two formulations for the ks have been considered:

(Fog)

ke = Eq. 5
> <A®S>_<Pn,xn®8>
and
. (F®S>+<Pnyan>s> ca.6
(AD)
where:

®s is the inhomogeneous (source-driven) flux, solution of the transport equation
ADg =FDg + Py (Ds +S;

A is the loss term (absorption + leakage) of the Boltzmann operator;

F is the fission production term;

Pn.xn is the (n,xn) production term;

S is the external source driving the subcritical system.
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For similarity with the multiplication factor, an inhomogeneous reactivity can be defined: pg :1_%'
S

The ks has been calculated for the three external sources considered by the YALINA benchmark: the
(d,t), (d,d) and Cf-252 sources. For this purpose, the external sources had to be represented in the
deterministic model. The (d,t) and (d,d) sources have been modeled as mono-energetic (14.1 MeV
and 2.45MeV respectively) and uniformly distributed in an opportune volume at the assembly center of
both YALINA configurations. Point neutron source cannot be represented explicitly in deterministic
calculational models. The JEF3.1 energy spectrum of the Cf-252 source is used in the calculations,
which is shown in Appendix D. The use of the Cf-252 fission spectrum from the JEF2.2 or the
ENDF/B-VI.8 nuclear data files results in negligible differences relative to the spectrum from JEF3.1.
The Cf-252 source has been distributed in an opportune volume located at the assembly center similar
to the (d,t) and (d,d) neutron sources in the YALINA-Thermal and at Z = 6.2 cm in the YALINA-
Booster, assuming that Z = 0 corresponds to the assembly midplane. The ks calculations have been
performed using the JEF2.2, JEF3.1 and ENDF/B-VI.8 data libraries for the YALINA-Booster and
JEF3.1 and ENDF/B-VI.8 for the YALINA-Thermal.

As in the case of the multiplication factor, the impact on the calculated ks values due to the number of
energy groups, the angular flux expansion and the anisotropic scattering orders has been
investigated. The results of the neutron balance and the corresponding ks calculated with both Egs. 5
and 6 have been presented in Tables 11 to 13 for the YALINA-Booster and in Tables 14 and 15 for the
YALINA-Thermal.

Tables 11 to 15 give the calculated neutron balance per neutron source for the YALINA-Booster and
-Thermal using different nuclear data files with different group structure sets and approximations. The
approximations were imposed by the available computer resources for performing the calculations.
For the same flux and cross-sections approximations, increasing the energy group number from 53 to
172 results in negligible change in the calculated ps values. This change is about 10 pcm except for
the YALINA-Thermal with (d,t) neutron source, where the effect is of the range of 100 pcm. In fact, the
slowing down of the 14 MeV neutrons requires fine group structure for accurately presenting the
neutron spectrum. For the same energy group structure, increasing the anisotropic scattering order
results in less effect on the ks values compared to the obtained effect for the multiplication factor.

The results presented in Tables 11 to 15 were used to obtain ks with PsP, approximation using 172
energy groups. For this purpose, as already done for the multiplication factor, the results with
53-energy group structure have been corrected as indicated in Tables 16 and 17 for the YALINA-
Booster and -Thermal respectively. The obtained results are compiled in Tables 18 and 19.

For (d,t) neutron source, the highest ks values are obtained in the YALINA-Booster and the lowest
values are instead obtained in the YALINA-Thermal. The ks value is lower than the ke value for the
YALINA-Thermal as shown in Tables 5 and 6. Because the neutron leakage per fission neutron is
increased and the number of fission reaction per source neutron is decreased as shown in Tables 14
and 15, which explains the lower ks values. Equations. 5 and 6 do practically yield the same values for
ks as the kg of the assembly approach criticality.
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Table 11.: Neutron Balance per Neutron Source and ks for the YALINA-Booster
Using JEF2.2 Nuclear Data Files

(d,t) Source
53gr | Leakage |Absorption| (n,xn) ';'::'rz: ks (ps [pcm]) " ks (ps [pcm]) @
SP;Pq 4.515 69.294 0.520 72.288 0.98635 (-1384 pcm) | 0.98644 (-1374 pcm)
PsPo 4.253 67.227 0.525 70.171 0.98894 (-1118 pcm) | 0.98902 (-1110 pcm)
PsPo 4.676 73.513 0.515 76.706 0.98755 (-1261 pcm) | 0.98763 (-1252 pcm)
SPsP4 4.890 84.470 0.535 87.826 0.98875 (-1137 pcm) | 0.98882 (-1131 pcm)
172gr | Leakage |Absorption (n,xn) l;,l:j:z: ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 4.714 72.403 0.580 75.538 0.98694 (-1324 pcm) | 0.98703 (-1314 pcm)
(d,d) Source
53gr | Leakage |Absorption| (n,xn) ';'jjl'rz: ks (ps [pcm]) ™ ks (ps [pcm]) @
SP;P, 2.843 43.823 0.025 45.644 0.97861 (-2186 pcm) | 0.97862 (-2185 pcm)
P3Py 2.890 45.590 0.025 47.456 0.97939 (-2105 pcm) | 0.97940 (-2104 pcm)
PsPg 2.999 47.277 0.020 49.252 0.98001 (-2040 pcm) | 0.98002 (-2039 pcm)
SPsP;4 3.076 53.275 0.025 55.324 0.98220 (-1812 pcm) | 0.98221 (-1811 pcm)
172gr| Leakage |Absorption| (n,xn) ';'jj:_g: ks (ps [pcm]) ks (ps [pcm]) @
SP;Pq 2.854 44.022 0.025 45.854 0.97870 (-2176 pcm) | 0.97871 (-2175 pcm)
Cf-252 Source

53gr | Leakage |Absorption (n,xn) g'::;g: ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 2.753 42.743 0.020 44.471 0.97789 (-2261 pcm) | 0.97790 (-2260 pcm)
PsPg 2.808 44.626 0.030 46.408 0.97898 (-2147 pcm) | 0.97899 (-2146 pcm)
PsPo 2.910 46.207 0.020 48.090 0.97949 (-2094 pcm) | 0.97950 (-2093 pcm)
SPsP;4 2.984 52.032 0.030 53.986 0.98181 (-1853 pcm) | 0.98182 (-1852 pcm)
172gr| Leakage |Absorption (n,xn) ';'33:,22 ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 2.759 42.871 0.030 44.604 0.97816 (-2233 pcm) | 0.97818 (-2231 pcm)

) Formulation according to Eq. 5; ) Formulation according to Eq. 6.
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Table 12. Neutron Balance per Neutron Source and ks for the YALINA-Booster
Using JEF3.1 Nuclear Data Files

(d,t) Source
53gr | Leakage |Absorption| (n,xn) ';'::'rz: ks (ps [pcm]) " ks (ps [pcm]) @
SP;Pq 3.579 64.661 0.570 66.668 0.98519 (-1503 pcm) | 0.98532 (-1490 pcm)
PsPo 3.342 62.102 0.570 64.073 0.98765 (-1251 pcm) | 0.98776 (-1240 pcm)
PsPo 3.644 67.336 0.565 69.447 0.98626 (-1393 pcm) | 0.98637 (-1382 pcm)
SPsP4 3.731 77.444 0.585 79.590 0.98760 (-1255 pcm) | 0.98769 (-1246 pcm)
172gr | Leakage |Absorption (n,xn) l;,l:j:z: ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 3.675 66.374 0.600 68.447 0.98557 (-1465 pcm) | 0.98569 (-1452 pcm)
(d,d) Source
53gr | Leakage |Absorption| (n,xn) ';'jjl'rz: ks (ps [pcm]) " ks (ps [pcm]) @
SP;P, 2.184 39.689 0.020 40.850 0.97605 (-2454 pcm) | 0.97606 (-2453 pcm)
P3Py 2.191 40.702 0.020 41.870 0.97660 (-2396 pcm) | 0.97661 (-2395 pcm)
PsPg 2.264 42.022 0.025 43.262 0.97744 (-2309 pcm) | 0.97745 (-2307 pcm)
SPsP;4 2.280 47.530 0.030 48.783 0.97997 (-2044 pcm) | 0.97999 (-2042 pcm)
172gr| Leakage |Absorption| (n,xn) ';'jj:_g: ks (ps [pcm]) ks (ps [pcm]) @
SP;Pq 2.198 39.963 0.020 41.139 0.97621 (-2437 pcm) | 0.97622 (-2436 pcm)
Cf-252 Source
53gr | Leakage |Absorption (n,xn) g'::;g: ks (ps [pcm]) M ks (ps [pcm]) @
SP3Py 2.106 38.609 0.020 39.689 0.97529 (-2533 pcm) | 0.97531 (-2532 pcm)
PsPg 2.118 39.706 0.030 40.798 0.97617 (-2441 pcm) | 0.97618 (-2440 pcm)
PsPo 2.186 40.939 0.020 42.098 0.97665 (-2391 pcm) | 0.97666 (-2390 pcm)
SPsP;4 2.201 46.277 0.030 47.448 0.97936 (-2107 pcm) | 0.97937 (-2106 pcm)
172gr| Leakage |Absorption (n,xn) ';'33:,22 ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 2.114 38.782 0.020 39.871 0.97540 (-2522 pcm) | 0.97541 (-2521 pcm)

) Formulation according to Eq. 5; ) Formulation according to Eq. 6.
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Table 13. Neutron Balance per Neutron Source and ks for the YALINA-Booster
Using ENDF/B-VI.8 Nuclear Data Files

(d,t) Source
53gr | Leakage |Absorption| (n,xn) ';'5’3:22 ks (ps [pcm]) " ks (ps [pcm]) @
SP;P, 3.495 63.209 0.545 65.157 0.98485 (-1538 pcm) | 0.98497 (-1526 pcm)
P3Py 3.276 60.935 0.550 62.852 0.98728 (-1288 pcm) | 0.98739 (-1277 pcm)
PsPg 3.554 65.755 0.545 67.800 0.98598 (-1422 pcm) | 0.98609 (-1411 pcm)
SPsP; 3.633 75.507 0.555 77.581 0.98722 (-1294 pcm) | 0.98731 (-1285 pcm)
172gr| Leakage |Absorption| (n,xn) ';':3:_22 ks (ps [pcm]) ks (ps [pcm]) @
SP;Pq 3.601 65.110 0.580 67.129 0.98530 (-1492 pcm) | 0.98542 (-1479 pcm)
(d,d) Source
53gr | Leakage |Absorption| (n,xn) ';':j'rz: ks (ps [pcm]) " ks (ps [pcm]) @
SP;Pg 2.157 39.264 0.020 40.401 0.97584 (-2476 pcm) | 0.97585 (-2475 pcm)
PsPo 2.164 40.248 0.020 41.391 0.97639 (-2419 pcm) | 0.97640 (-2417 pcm)
PsPo 2.234 41.529 0.020 42.742 0.97710 (-2344 pcm) | 0.97711 (-2342 pcm)
SPsP4 2.248 46.943 0.025 48.167 0.97967 (-2075 pcm) | 0.97968 (-2074 pcm)
172gr | Leakage |Absorption (n,xn) l;,l:j:z: ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 2.174 39.570 0.020 40.723 0.97602 (-2457 pcm) | 0.97603 (-2456 pcm)
Cf-252 Source
53gr | Leakage |Absorption (n,xn) l;,l:j:z: ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 2.079 38.175 0.020 39.231 0.97507 (-2557 pcm) | 0.97508 (-2556 pcm)
PsPg 2.091 39.256 0.020 40.324 0.97571 (-2489 pcm) | 0.97572 (-2488 pcm)
PsPo 2.156 40.439 0.020 41.570 0.97641 (-2416 pcm) | 0.97642 (-2415 pcm)
SPsP;4 2.170 45.683 0.020 46.825 0.97895 (-2151 pcm) | 0.97895 (-2150 pcm)
172gr| Leakage |Absorption (n,xn) ';':3:,22 ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 2.091 38.400 0.020 39.467 0.97520 (-2543 pcm) | 0.97522 (-2541 pcm)

) Formulation according to Eq. 5; ) Formulation according to Eq. 6.
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Table 14. Neutron Balance per Neutron Source and ks for the YALINA-Thermal
Using JEF3.1 Nuclear Data Files

(d,t) Source

53gr | Leakage |Absorption| (n,xn) ';'5’3:22 ks (ps [pcm]) " ks (ps [pcm]) @

SP;P, 2.698 13.531 0.070 15.158 0.93806 (-6603 pcm) | 0.93832 (-6573 pcm)
P3Py 2.787 14.196 0.070 15.911 0.94077 (-6296 pcm) | 0.94101 (-6269 pcm)
PsPg 2.890 14.837 0.075 16.654 0.94345 (-5994 pcm) | 0.94369 (-5967 pcm)
SPsP; 2.774 14.331 0.080 16.023 0.94118 (-6249 pcm) | 0.94146 (-6218 pcm)
P3P, 2.930 15.532 0.085 17.380 0.94579 (-5732 pcm) | 0.94604 (-5704 pcm)
172gr| Leakage |Absorption| (n,xn) ';':3:_22 ks (ps [pcm]) ks (ps [pcm]) @

SP;Pq 2.674 13.355 0.075 14.952 0.93719 (-6702 pcm) | 0.93748 (-6668 pcm)
SPsP4 2.759 14.224 0.085 15.896 0.94072 (-6302 pcm) | 0.94101 (-6268 pcm)

(d,d) Source

53gr | Leakage |Absorption| (n,xn) ';':j'rz: ks (ps [pcm]) " ks (ps [pcm]) @

SP;Pg 3.477 18.994 0.000 21.468 0.95534 (-4675 pcm) | 0.95534 (-4675 pcm)
PsPo 3.571 19.727 0.000 22.294 0.95692 (-4502 pcm) | 0.95692 (-4502 pcm)
PsPo 3.651 20.226 0.000 22.872 0.95796 (-4389 pcm) | 0.95796 (-4389 pcm)
SPsP4 3.617 20.389 0.005 23.001 0.95838 (-4343 pcm) | 0.95839 (-4342 pcm)
P3P+ 3.830 22.036 0.005 24.861 0.96136 (-4020 pcm) | 0.96136 (-4019 pcm)
172gr | Leakage |Absorption (n,xn) l;,l:j:z: ks (ps [pcm]) M ks (ps [pcm]) @

SP;Pq 3.493 19.098 0.000 21.587 0.95558 (-4649 pcm) | 0.95558 (-4649 pcm)
SPsP;4 3.650 20.629 0.005 23.275 0.95885 (-4292 pcm) | 0.95886 (-4291 pcm)

Cf-252 Source

53gr | Leakage |Absorption (n,xn) l;,l:j:z: ks (ps [pcm]) M ks (ps [pcm]) @

SP;Pq 3.636 20.100 0.004 22.732 0.95786 (-4400 pcm) | 0.95786 (-4399 pcm)
PsPg 3.741 20.910 0.005 23.647 0.95945 (-4226 pcm) | 0.95946 (-4225 pcm)
PsPo 3.837 21.512 0.005 24.344 0.96056 (-4106 pcm) | 0.96057 (-4105 pcm)
SPsP;4 3.798 21.653 0.004 24.446 0.96067 (-4094 pcm) | 0.96068 (-4093 pcm)
P3P, 4.034 23.460 0.005 26.489 0.96362 (-3776 pcm) | 0.96362 (-3775 pcm)
172gr| Leakage |Absorption (n,xn) ';':3:,22 ks (ps [pcm]) M ks (ps [pcm]) @

SP;Pg 3.640 20.124 0.000 22.759 0.95775 (-4412 pcm) | 0.95775 (-4412 pcm)
SPsP;4 3.818 21.801 0.000 24.614 0.96079 (-4081 pcm) | 0.96079 (-4081 pcm)

" Formulation according to Eq. 5; ) Formulation according to Eq. 6.
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Table 15. Neutron Balance per Neutron Source and ks for the YALINA-Thermal
Using ENDF/B-VI.8 Nuclear Data Files

(d,t) Source
53gr | Leakage |Absorption| (n,xn) ';'5’3:22 ks (ps [pcm]) " ks (ps [pcm]) @
SP;P, 2.606 13.000 0.065 14.538 0.93551 (-6894 pcm) | 0.93578 (-6863 pcm)
P3Py 2.689 13.625 0.065 15.245 0.93826 (-6581 pcm) | 0.93850 (-6553 pcm)
PsPg 2.783 14.210 0.070 15.924 0.94094 (-6277 pcm) | 0.94118 (-6249 pcm)
SPsP; 2.672 13.725 0.080 15.319 0.93887 (-6511 pcm) | 0.93917 (-6477 pcm)
P3P, 2.808 14.806 0.075 16.538 0.94287 (-6059 pcm) | 0.94312 (-6032 pcm)
172gr| Leakage |Absorption| (n,xn) ';':3:_22 ks (ps [pcm]) ks (ps [pcm]) @
SP;Pq 2.579 12.811 0.075 14.317 0.93482 (-6973 pcm) | 0.93514 (-6936 pcm)
SPsP4 2.652 13.594 0.080 15.164 0.93798 (-6612 pcm) | 0.93829 (-6577 pcm)
(d,d) Source
53gr | Leakage |Absorption| (n,xn) ';':j'rz: ks (ps [pcm]) " ks (ps [pcm]) @
SP;Pg 3.375 18.410 0.000 20.781 0.95394 (-4828 pcm) | 0.95394 (-4828 pcm)
PsPo 3.460 19.086 0.000 21.542 0.95549 (-4658 pcm) | 0.95549 (-4658 pcm)
PsPo 3.533 19.546 0.005 22.076 0.95672 (-4523 pcm) | 0.95673 (-4522 pcm)
SPsP4 3.502 19.718 0.005 22.216 0.95699 (-4495 pcm) | 0.95699 (-4494 pcm)
P3P+ 3.696 21.237 0.005 23.929 0.95992 (-4175 pcm) | 0.95993 (-4174 pcm)
172gr | Leakage |Absorption (n,xn) l;,l:j:z: ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pq 3.388 18.500 0.000 20.885 0.95417 (-4803 pcm) | 0.95417 (-4803 pcm)
SPsP;4 3.532 19.934 0.000 22.462 0.95723 (-4468 pcm) | 0.95723 (-4468 pcm)
Cf-252 Source

53gr | Leakage |Absorption (n,xn) l;,l:j:z: ks (ps [pcm]) M ks (ps [pcm]) @
SP3Py 3.530 19.493 0.004 22.019 0.95656 (-4541 pcm) | 0.95657 (-4541 pcm)
PsPg 3.625 20.244 0.004 22.865 0.95809 (-4374 pcm) | 0.95810 (-4373 pcm)
PsPo 3.714 20.797 0.004 23.507 0.95919 (-4255 pcm) | 0.95919 (-4254 pcm)
SPsP;4 3.677 20.948 0.004 23.621 0.95937 (-4235 pcm) | 0.95937 (-4235 pcm)
P3P, 3.894 22.623 0.004 25.513 0.96226 (-3923 pcm) | 0.96226 (-3922 pcm)
172gr| Leakage |Absorption (n,xn) ';':3:,22 ks (ps [pcm]) M ks (ps [pcm]) @
SP;Pg 3.533 19.515 0.010 22.044 0.95686 (-4509 pcm) | 0.95688 (-4507 pcm)
SP;P, 3.696 21.085 0.000 23.777 0.95947 (-4224 pcm) | 0.95947 (-4224 pcm)

" Formulation according to Eq. 5; ) Formulation according to Eq. 6.
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. JEF2.2 JEF3.1 ENDF/B-VI.8
Source| Calculation Parameters W) 7 ) ) ) 7
ps [pcm] "“Ips [pcm] *|ps [pcm] "|ps [pcm] “|ps [Pcm] " |ps [pcm]
53gr - SP3P; -1137 -1131 -1255 -1246 -1294 -1285
(d,) 172gr SP3Py — 53gr SP3P, 60 61 38 38 46 46
53gr PsPq — 53gr SP3P, 123 122 110 108 116 115
172gr PsP, -954 -948 -1107 -1100 -1132 -1124
Calculated: 53gr - SP;P, -1812 -1811 -2044 -2042 -2075 -2074
(d,d) 172gr SP3Py — 53gr SP3P, 10 10 17 17 19 19
53gr PsPy — 53gr SP3P, 146 146 145 146 133 133
172gr PsP, -1656 -1655 -1881 -1880 -1923 -1922
Calculated: 53gr - SP;P, -1853 -1852 -2107 -2106 -2151 -2150
Cf-252 172gr SP3Py — 53gr SP3P, 28 29 11 11 14 14
53gr PsPq — 53gr SP3P, 167 167 142 142 141 141
172gr PsP, -1658 -1656 -1954 -1953 -1995 -1994
) Formulation according to Eq. 5; ® Formulation according to Eq. 6.
Table 17. ps Results for the YALINA-Thermal
Source | Calculation Parameters JE)F3'1 7 END(::)IB'VI'S 2]
Ps [pcm] | ps [pcm] ™| ps [pcm] " | ps [pcm]
53gr - P3P, -5732 -5704 -6059 -6032
(At 172gr SP3P, — 53gr SP3P; -53 -50 -101 -100
53gr PsPo — 53gr P3Py 302 302 304 303
172gr PsP, -5482 -5453 -5856 -5828
Calculated: 53gr - P3P -4020 -4019 -4175 -4174
(d,d) 172gr SP3P4 — 53gr SP;P; 51 51 27 26
’ 53gr PsPy — 53gr PsPo 113 113 135 136
172gr PsP, -3855 -3854 -4014 -4013
53gr - P3P, -3776 -3775 -3923 -3922
Cf-252 172gr SP;3P4 — 53gr SP;P; 12 12 11 10
53gr PsPo — 53gr P3Pg 120 120 119 119
172gr PsP, -3643 -3643 -3793 -3793

Y Formulation according to Eq. 5; ) Formulation according to Eq. 6.

Table 18.: ks (ps) for the YALINA-Booster calculated with 172 Energy Group Set and PsP
Approximations
Using Different Nuclear Data Files

Source JEF2.2 JEF3.1 ENDF/B-VI.8
ks (ps) " ks (ps) ® ks (ps) " ks (ps) ® ks (ps) " ks (ps) ®
(d,t) 0.99055 0.99061 0.98905 0.98912 0.98881 0.98889
’ (-954 pcm) (-948 pcm) (-1107 pcm) (-1100 pcm) (-1132 pcm) (-1124 pcm)
(d,d) 0.98371 0.98372 0.98153 0.98155 0.98113 0.98114
’ (-1656 pcm) (-1655 pcm) (-1881 pcm) (-1880 pcm) (-1923 pcm) (-1922 pcm)
Cf-252 0.98369 0.98371 0.98083 0.98084 0.98044 0.98045
(-1658 pcm) (-1656 pcm) (-1954 pcm) (-1953 pcm) (-1995 pcm) (-1994 pcm)

™ Formulation according to Eq. 5; ¥ Formulation according to Eq. 6.
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Table 19. ks (ps) for the YALINA-Thermal calculated with 172 Energy Group Set and PsP4
Approximations
Using Different Nuclear Data Files

JEF3.1 ENDF/B-VI.8
Source ™ @ ™ @
ks (Ps) ks (Ps) ks (Ps) ks (Ps)
(d,t) 0.94803 0.94829 0.94468 0.94493
’ (-5482 pcm) (-5453 pcm) (-5856 pcm) (-5828 pcm)
(d,d) 0.96288 0.96289 0.96141 0.96142
’ (-3855 pcm) (-3854 pcm) (-4014 pcm) (-4013 pcm)
Cf-252 0.96485 0.96485 0.96346 0.96346
(-3643 pcm) (-3643 pcm) (-3793 pcm) (-3793 pcm)

) Formulation according to Eq. 5; ® Formulation according to Eq. 6.

V1.3. Kinetic Parameters

The KIN3D module implemented in the ERANOS version 2.1 has been used to determine the kinetic
parameters B and Ae using the three dimensional geometrical model according to Egs. 1 and 2. In
the present study, the unweighted kinetic parameters have been also calculated by setting ®* = 1 in
Egs. 1 and 2. First, the kinetic parameters have been determined using only neutron fluxes calculated
in absence of the source term and obtained with the JEF2.2, JEF3.1 and ENDF/B-VI.8 data libraries
for the YALINA-Booster and JEF3.1 and ENDF/B-VI.8 for the YALINA-Thermal.

The delayed neutron data were taken from ENDF/B nuclear data files. These data are given in
Appendix E, which include the decay constants, the delayed neutron number per fission reaction (B"),
and the delayed neutron spectrum. ERANOS inputs require to provide the total spectra of the delayed
neutrons, while ENDF/B data provide delayed neutron spectrum by family group per each isotope. As
consequence, the spectra presented in Tables 37 and 38 of Appendix E are obtained by combining
the U-235 and U-238 delayed neutron spectra with the respective fission reaction fraction in the
YALINA configurations under consideration.

The obtained results for the kinetic parameters are presented in Tables 20 to 23 for the YALINA-

Booster and -Thermal. For comparison, the values obtained in RZ geometry with the S, code BISTRO
of ERANQOS, are also presented. Decimals are reported only for distinguishing the results.

Table 20. Calculated B¢ Values for the YALINA-Booster

Nuclear Data Library JEF2.2 JEF3.1 ENDF/B-VI.8
B® [pcm] - RZ 695.4 695.6 695.6

Ber™ [pcm] - KIN3D 752.8 753.3 753.4
Ber”) [pcm] - RZ 751.1 752.1 752.2

@ Unweighted;
®) Weighted by the homogeneous adjoint flux.
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Nuclear Data Library JEF3.1 ENDF/B-VI.8
B® [pcm] - RZ 692.1 692.0

Ber™ [pcm] - KIN3D 779.1 779.2
Ber™ [pcm] - RZ 775.2 775.3

@ Unweighted;
) Weighted by the homogeneous adjoint flux.

Table 22. Calculated N« Values for the YALINA-Booster

Nuclear Data Library JEF2.2 JEF3.1 ENDF/B-VI.8
A® [us] - RZ 62.6 70.2 70.3
Neit™ [us] - KIN3D 47.4 50.4 50.3
Neit™ [us] - RZ 45.9 47.9 47.7
@ Unweighted;
®) Weighted by the homogeneous adjoint flux.
Table 23. Calculated A Values for the YALINA-Thermal
Nuclear Data Library JEF3.1 ENDF/B-VI.8
A® [us] - RZ 206.3 207.7
Neit™ [us] - KIN3D 87.0 87.5
Neit™ [us] - RZ 79.0 79.4

@ Unweighted;
®) Weighted by the homogeneous adjoint flux.

The obtained results of Tables 20 to 23 show the following conclusions:
e The use of the three libraries JEF2.2, JEF3.1 and ENDFB-VI.8 produce similar results for the
calculated kinetic parameter values;
e As expected, the RZ model is able to provide an accurate estimation of Ber and Ae.

As previously discussed, the above results have been obtained using direct and adjoint neutron fluxes
calculated in absence of the source term in the equations for B¢ and Aek. The kinetic parameters have
also obtained using a direct flux from the solution of the source driven equation Adg =Fdg +S and an

adjoint flux solution of the transport equation AdS =Fdg +vE; as a weighting function. VARIANT

computer code has the capability to solve a direct equation with external neutron source but it does
not have the capability to solve an adjoint equation with external neutron source. It is possible with the
BISTRO computer code to obtain the adjoint flux with an external neutron source. As a consequence,
the RZ model is used to obtain the kinetic parameters with different external neutron sources. The
previous results showed that the kinetic parameters from the use of the three dimensional model (XYZ
geometry) and the two dimensional model (RZ geometry) are similar.
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YALINA Configuration Booster Thermal
Nuclear Data Library JEF2.2 | JEF3.1 | ENDF/B- | jppsy | ENDF/B-
V1.8 V1.8

A - No external neutron source — Unweighted 695.4 695.6 695.6 692.1 692.0

B - N_o external neutron source — Weighted 751 1 7521 7522 775.2 775.3
with Homogeneous Adjoint Flux

C - (d,t) neutron source — Unweighted 694.7 694.7 694.7 692.9 692.8

D-(df) neutron source — Weighted with | 7,94 | 7493 749.3 776.5 776.7
Homogeneous Adjoint Flux

E-(dt) neutron source — Weighted with | 7,94 | 7493 749.3 776.0 776.1
Inhomogeneous Adjoint Flux

F - (d,d) neutron source — Unweighted 695.5 695.7 695.7 692.2 692.1

G- (dd) neutron source — Weighted with | 75,4 | 751 4 751.2 775.9 776.1
Homogeneous Adjoint Flux

H- (d,d) neutron source — Weighted with | 756, | 751 751.1 775.3 775.4
Inhomogeneous Adjoint Flux

| - Cf neutron source — Unweighted 695.3 695.5 695.6 692.1 692.0

J- Cf neutron source — Weighted with | 7504 | 7508 750.9 775.8 775.9
Homogeneous Adjoint Flux

K- Cf neutron source — Weighted with 750 1 750.7 750.8 775.1 7753
Inhomogeneous Adjoint Flux

Table 25. Calculated Ag [us] for the YALINA Configuration in RZ Geometry

YALINA Configuration

YALINA-Booster

YALINA-Thermal

Nuclear Data Library JEF2.2 | JEF3.1 | ENDF/B- | jppsy | ENDF/B-
VI.8 VI.8

A - No external neutron source — Unweighted 62.6 70.2 70.3 206.3 207.7

B - N_o external neutron source — Weighted 459 479 477 79.0 79.4
with Homogeneous Adjoint Flux

C - (d,t) neutron source — Unweighted 60.4 66.9 66.9 204.7 206.1

D - (d,t) neutron source — Weighted with 44.9 456 45 4 78.4 78.8
Homogeneous Adjoint Flux

E - (d,t) neutron source — Weighted with 44.4 459 457 78.8 79.3
Inhomogeneous Adjoint Flux

F - (d,d) neutron source — Unweighted 60.4 67.0 66.9 200.7 201.8

G- (d,d) neutron source — Weighted with 44 3 45 7 455 78.2 78.5
Homogeneous Adjoint Flux

H- (d,d) neutron source — Weighted with 44 5 46.0 458 78.5 78.9
Inhomogeneous Adjoint Flux

| - Cf neutron source — Unweighted 60.4 66.9 66.9 199.3 200.3

J - Cf neutron source — Weighted with 44 3 457 455 78.0 78.3
Homogeneous Adjoint Flux

K- Cf neutron source — Weighted with 445 46.0 458 78.3 78.7
Inhomogeneous Adjoint Flux
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The results of Tables 24 and 25 show that the use of source dependent fluxes to calculate the kinetic
parameters has a small impact on their values. This implies that the external neutron sources in the
YALINA configurations do not excite the high order harmonics especially in the case of the adjoint
solution because the source term is distributed like the fission neutron source, vZ;. The change in the
kinetic parameter values due to the use of external neutron source are given in Tables 26 and 27. By
applying the corrections listed in Tables 26 and 27 to the values calculated in 3D geometry with KIN3D
from Tables 20 to 23, the final results are listed in Tables 28 and 29.

Table 26. ABex [pcm] Due to the Use of Different External Neutron Source Relative to the case without
External Neutron Source with RZ Geometry

YALINA Configuration YALINA-Booster YALINA-Thermal
Nuclear Data Library JEF2.2 JEF3.1 ENDF/B-VI.8 JEF3.1 ENDF/B-VI.8
ABesr [pcm] (case E — caseB) -2.1 -2.8 -3.0 0.8 0.8
ABesr [pcm] (case H — caseB) -0.7 -1.1 -1.1 0.1 0.1
ABesr [pcm] (case K — caseB) -1.0 -1.4 -1.5 -0.1 -0.1

Table 27. AN« [Us] Due to the Use of Different External Neutron Source Relative to the case without
External Neutron Source with RZ Geometry

YALINA Configuration YALINA-Booster YALINA-Thermal
Nuclear Data Library JEF2.2 JEF3.1 ENDF/B-VI.8 JEF3.1 ENDF/B-VI.8
A Nt [US] (case E — caseB) -1.5 -1.9 -2.0 -0.2 -0.2
A Nt [US] (case H — caseB) -1.4 -1.9 -2.0 -0.5 -0.5
A Nt [US] (case K — caseB) -1.4 -1.9 -2.0 -0.6 -0.7

Table 28. Beff [pcm] Adjoint Flux Weighted Values for the YALINA Configurations

YALINA Configuration Booster Thermal
Nuclear Data Library JEF2.2 JEF3.1 ENDF/B-VI.8 JEF3.1 ENDF/B-VI.8
(d,t) neutron source 750.7 750.4 750.4 779.8 780.0
(d,d) neutron source 752.0 752.2 752.2 779.2 779.3
Cf neutron source 751.8 751.8 751.9 779.0 779.2
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Table 29. Asx [us] Adjoint Flux Weighted Values for the YALINA Configurations
YALINA Configuration Booster Thermal
Nuclear Data Library JEF2.2 JEF3.1 ENDF/B-VI.8 JEF3.1 ENDF/B-VI.8
(d,t) neutron source 459 48.5 48.3 86.9 87.30
(d,d) neutron source 46.0 48.5 48.3 86.6 87.0
Cf neutron source 46.0 48.5 48.3 86.4 86.8

VI.4. Neutron Spectra

Neutron spectra have been calculated at the center of the experimental channels EC2B (fast zone),
EC6T (thermal zone), EC8R (reflector) for the YALINA-Booster configuration, and EC1 (fuel zone),
EC2 (fuel zone), EC3 (fuel zone), EC5 (reflector), EC6 (reflector) for the YALINA-Thermal
configuration. The channel locations in the YALINA-Booster and -Thermal are shown in Figures 1 and
10, respectively. The calculations have been performed for three external neutron sources (d,t), (d,d)
and Cf-252 using the JEF2.2, JEF3.1 and ENDF/B-VI.8 data libraries for the YALINA-Booster and
JEF3.1 and ENDF/B-VI.8 for the YALINA-Thermal. In the present Section, the JEF3.1 results will be
presented, while the comparison of the neutron spectra obtained with different libraries is shown in
Appendix F.

The neutron spectra have been calculated in the 172 energy group structure with SP3P, (P; angular
flux expansion with simplified spherical harmonics and anisotropic scattering order 0) and SP;P4 (P3
angular flux expansion with simplified spherical harmonics and anisotropic scattering order 1) for the
YALINA-Booster and -Thermal respectively, as shown in Figures 17 through 24. The angular flux
expansion and the anisotropic scattering order cannot be increased further because of the limitations
of the computer resources when using 172 energy groups. However, the neutron spectra for the
YALINA-Thermal with (d,d) neutron source calculated in 172 energy group structure with SP;P, and
SP;P4 approximations have been compared in Figure 25. The two spectra show a good agreement
and minor differences are observed at high neutron energy. This indicates that the flux spectra
obtained in SP3;P, approximation is adequate.
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Vli.4.a. Neutron Spectra of the YALINA-Booster
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Figure 18. EC6T Neutron Spectra in the YALINA-

Figure 17. EC2B Neutron Spectra in the YALINA-
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Figure 19. EC8R Neutron Spectra in the YALINA-Booster
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VI.4.b. Neutron Spectra of the YALINA-Thermal
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Figure 21. EC2 Neutron Spectra in the YALINA-

Figure 20. EC1 Neutron Spectra in the YALINA-
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Figure 23. EC5 Neutron Spectra in the YALINA-

Figure 22. EC3 Neutron Spectra in the YALINA-
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Figure 24. EC6 Neutron Spectra in the YALINA-Thermal

Vi.4.c. Comparison of Neutron Spectra in the YALINA-Thermal Calculated with Different

Approximations
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Figure 25. EC2 Neutron Spectra in the YALINA-Thermal with Different Approximations

VI.5. Reaction Rate Distributions

Reaction rates have been calculated along the experimental channels in presence of the three
external neutron sources (d,t), (d,d) and Cf-252, using JEF2.2, JEF3.1 and ENDF/B-VI.8 for the
YALINA-Booster, and JEF3.1 and ENDF/B-VI.8 for the YALINA-Thermal. The reaction rates have
been obtained using the 53 energy groups fluxes with the most accurate approximation orders
possible by the present computational resources: SP3;P; for the YALINA-Booster and P3P, for the
YALINA-Thermal. As discussed in Section VI.1, the final calculated reactivity values have been
derived at higher approximation orders by applying appropriate correction factors. The absolute
reaction rate values are function of the assembly reactivity since the neutron multiplication and
consequently the neutron flux are function of the reactivity. It is assumed that the reaction rate value is
inversely proportional to the associated reactivity. For this reason, the fluxes have been calculated
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with the highest possible expansion orders allowed by the computer resources and an appropriate
correction factor has been applied to v. This factor is the ratio between the final ke value and the ke
normally calculated without any correction on v. So that, the neutron flux is corresponding to the most
accurate reactivity value calculated for the subcritical assembly. As an alternative solution, the v could
have been normalized to the measured reactivity rather than the calculated value. In addition,
separate fluxes calculations have been performed for the cases where the reaction rates are required
to be determined with the explicit modeling of the experimental channel holders. The other
calculations assume air in the experimental channels.

In addition, the neutron detector cross-sections have been calculated in a separate cell calculation.
For some reaction rates, the detectors are explicitly described along the experimental channel with
their materials and geometrical details. In the deterministic calculation, often it is quite difficult to model
the detector with accurate details, particularly due to the restrictions imposed by the cell code for the
geometrical description. In this calculation, the detector cross-sections have been obtained with a
single homogeneous cell calculation, where the detector compositions are “infinitely diluted”. This
solution could affect the calculated results since the detector cross-sections do not account for the
self-shielding effects associated with the detector material. After comparing the calculated reaction
rates with the results obtained from Monte-Carlo calculations where the detectors can be explicitly
described and the experimental measurements, further investigation could be performed in the
attempt to quantify possible effects neglected in the present calculations.

In the present Section, the JEF3.1 results are presented, while the comparison of the reaction rates
obtained with different nuclear data files is shown in Appendix G. For demonstration purpose, the He-3
(n,p) and U-235 fission reaction rates in the EC6T and EC2B experimental channels with (d,t) neutron
source, respectively, have been calculated with and without correction on v as shown in Figures 48
and 49. The obtained values are approximately consistent with the previously mentioned formula:

T ithout correction Pwith correction
ey . From Tables 3 and 5, Puithout v comection = -3498 pcm and

Tuwith _v_ correction Pwithout _v_ correction

Pwith _v_correction 2772

Puwith_v_correction = =27 72 pcm, =0.79, which corresponds approximately to the

Pwithout _v_ correction 3498
ratio of the reaction rates shown in Figures 48 and 49.

In Appendix G, the He-3 (n,p) reaction rates for the YALINA-Booster have not been calculated with
JEF2.2 nuclear data because He-3 is missing in this library. The JEF2.2 reaction rate values are
higher values than the corresponding values from the other nuclear data libraries. This is due to the
higher multiplication factor obtained with JEF2.2 relative to the other libraries, as discussed before.

38



ANL-09-23

the YALINA-Booster. Polyethylene Holder is
Modeled

Figure 31. EC6T In-115 Capture Reaction Rates in

VI1.5.a. Reaction Rate Distributions in the YALINA-Booster
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Figure 33. EC10R In-115 Capture Reaction Rates in
the YALINA-Booster. Polyethylene Holder is
Modeled
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Figure 34. EC2B Au-197 Capture Reaction Rates
in the YALINA-Booster. Lead Holder is Modeled

Figure 35. EC6T Au-197 Capture Reaction Rates in
the YALINA-Booster. Polyethylene Holder is
Modeled
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Figure 36. EC2B Mn-55 Capture Reaction Rates
in the YALINA-Booster. Lead Holder is in Modeled

Figure 37. EC6T Mn-55 Capture Reaction Rates in
the YALINA-Booster. Polyethylene Holder is
Modeled
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Figure 43. EC3 U-235 Fission Reaction Rates
in the YALINA-Thermal

VL1.5.b. Reaction Rate Distributions in the YALINA-Thermal
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Figure 44. EC2 In-115 Capture Reaction Rates
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Figure 45. EC7 In-115 Capture Reaction Rates in
the YALINA-Thermal. Polyethylene Holder is
Modeled
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Figure 47. EC2 Mn-55 Capture Reaction Rates in
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Modeled

VI.5.c. Comparison of Reaction Rate Distributions in the YALINA-Booster
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Figure 49. EC2B U-235 Fission Reaction Rates
in the YALINA-Booster
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VI.6. Pulse Calculations

The KIN3D code of ERANOS has been used to perform pulse calculations. The goal is to calculate the
neutron detector response in the subcritical YALINA configurations to repeated neutron pulses with a
very short pulse duration of 5us. In the calculations, the neutron pulse is simulated as having a
triangular shape, with the intensity linearly increasing from 0 to a maximum value (MV) in the time
interval 0<t<2.5us, then linearly decreasing from MV to 0 in 2.5<t<5us. The maximum amplitude, MV,
reached by the neutron pulse in the calculations has been arbitrary fixed to 1000. Then, the calculated
response is then normalized according to the benchmark specifications (see Section llI).

KIN3D has capabilities to perform the calculations in transport and diffusion approximations. In this
analyses, the simulation has been carried out with the diffusion approximation. Since the decay slope
of the detector response is strictly dependent on the reactivity value of the calculated model, the
multiplication factor has been normalized to the most accurate value obtained from the transport
calculation. The normalization is made by multiplying v by an appropriate constant, which is the ratio
between the desired multiplication factor and the ke value normally obtained by the calculation without
introducing any change on v.

Kinetic calculations have been performed for the YALINA-Booster using the JEF2.2, JEF3.1 and
ENDF/B-VI.8 and for the YALINA-Thermal using JEF3.1 and ENDF/B-VI.8. Results obtained with
JEF3.1 are presented in this Section and Appendix H gives the results from the use of the other
nuclear data files. The results show that the use of the two external sources (d,t) or (d,d) has only an
effect on the amplitude of the detector response but not on the decay slope that remains practically
the same.
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Figure 57. JEF3.1 EC1B Detector Response with
(d,d) Neutron Source for the YALINA-Booster
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Figure 56. JEF3.1 EC8R Detector Response with
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Figure 59. JEF3.1 EC3B Detector Response with

Figure 58. JEF3.1 EC2B Detector Response with

(d,d) Neutron Source for the YALINA-Booster

(d,d) Neutron Source for the YALINA-Booster
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Figure 60. JEF3.1 EC2 Detector Response with (d,t)Figure 61. JEF3.1 EC5 Detector Response with (d,t)
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Figure 63. JEF3.1 EC2 Detector Response with

Figure 62. JEF3.1 EC1 Detector Response with (d,t)

(d,d) Neutron Source for the YALINA-Thermal

Neutron Source for the YALINA-Thermal
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Figure 64. JEF3.1 EC5 Detector Response with Figure 65. JEF3.1 EC1 Detector Response with
(d,d) Neutron Source for the YALINA-Thermal (d,d) Neutron Source for the YALINA-Thermal

VII. Conclusions

This report presents the obtained results for the YALINA-Booster loaded with 1141 EK-10 rods and
the YALINA-Thermal loaded with 280 EK-10 rods using the deterministic ERANOS code system.
Considerable efforts have been made for creating deterministic models for the two assemblies using
JEF2.2, JEF3.1, and ENDF/B-VI.8 nuclear data files.

The obtained reactivity values for the YALINA-Booster show a quite good agreement with the use of
the three different nuclear data libraries. The calculated reactivity is -2700 pcm with variations of less
than 250 pcm depending on the selected nuclear data files. Regarding the YALINA-Thermal, JEF3.1
and ENDF/B-VI.8 provide comparable results of ~ -4900 pcm. JEF2.2 gives a lower reactivity value of
~3000 pcm for YALINA-Thermal. Perturbation calculations demonstrated that the use of the JEF2.2
library is inappropriate for the YALINA-Thermal calculations because of the use of carbon instead of
the missing graphite for the reflector.

The source multiplication factor is also calculated for the two assemblies. The use of (d,t) neutron
source produces the highest ks value for YALINA-Booster, the lowest value for YALINA-Thermal. The
source multiplication factor is even lower than the corresponding ke value for the YALINA-Thermal. In
YALINA-Thermal, the (d,t) neutron source significantly increases the neutron leakage relative to the
induced fission reaction rate.

The kinetic parameters, effective fraction of delayed neutrons B.s and mean generation time A, have
been calculated with the KIN3D module of ERANOS in 3D geometry. The use of the different nuclear
data libraries (JEF2.2, JEF3.1 and ENDFB-VI.8) does not change the obtained results. The B¢« values
are 753 pcm for the YALINA-Booster and 779 pcm for the YALINA-Thermal. The values for A are 50
us for the YALINA-Booster and 87 us for the YALINA-Thermal.

Neutron spectra have been obtained in specific locations for the two assemblies as specified by the
IAEA benchmark. In presence of (d,t) and (d,d) neutron sources, peaks in the neutron spectra are
observed at the neutron source energy especially in the experimental channels close to the target for
the two YALINA configurations. These peaks decrease with the distance from the source location and
the peak values are significantly reduced in the reflector zone. The obtained neutron spectrum in the
fast zone of the YALINA-Booster is typical of fast reactor systems, the highest fraction of neutrons
being located at ~1 MeV. Similarly, in the fuel zone of YALINA-Thermal the neutron spectrum is typical
of thermal reactors, with a large fraction of neutrons located below 1 eV.
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The KIN3D code of ERANOS has been used to determine the response of the YALINA configurations
to a very short neutron pulse, 5us width. The neutron pulse is simulated with a triangular shape, with
intensity linearly increasing from 0 to a Maximum Value (MV) in the time interval 0<t<2.5us, then
linearly decreasing from MV to 0 in 2.5<t<5us. The simulation is carried out with the diffusion
approximation. The decay slope of the detector response is strictly dependent on the reactivity value
associated with the calculated model for (d,d) and (d,t) pulses.

The YALINA-Booster and -Thermal configurations have been successfully analyzed using the
ERANOS modules, both steady-state and time dependent with different neutron sources.
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Appendix A

Deterministic Model Details

A.1. Fuel Pin Calculations

The ERANOS code system initially developed for the analysis of fast systems with extended
capabilities for the slowing down treatment with up to 1968 energy groups and it can be used for the
analysis of thermal reactors. In order to investigate the ERANOS performance when calculating
thermal systems, calculations have been performed for the single fuel cell used in the YALINA-
Thermal of Figure 66 and the obtained results have been compared with MCNPX results. The cell is
assumed infinite in the axial direction (Z direction) with reflected boundary conditions in X and Y. The
ket results of Table 30 and the neutron flux spectra of Figures 67 to 73 show excellent agreements
between ERANOS and MCNPX if the polyethylene region is subdivided in an appropriate number of
sub-regions in ERANOS calculations. Table 30 shows that subdividing the fuel region in ERANOS
calculation does not play an important role: the use of three sub-regions for the fuel pin produces
practically the same results of a single fuel region.

U02-MgO (10% U235) Air Gap

(R=035cm) (R=0.55cm)
Aluminum Alloy Polyethvlene
(R=0.5 cm) D ey

Figure 66. YALINA-Thermal Fuel Cell

Table 30. ko Values Comparison between MCNPx and ERANOS

Computer code and Nuclear Data Library Keit
MCNPX — ENDF/B-VI1.6 1.36510 + 0.00012
ERANOS - ENDF/B-VI.8
(1 Region Fuel; 1 Region Polyethylene) 1.37993
ERANOS - ENDF/B-VI.8 1.37021
(3 Subregions Fuel; 4 Subregions Polyethylene) '
ERANOS - ENDF/B-VI.8 136640
(3 Subregions Fuel; 5 Subregions Polyethylene) '
ERANQOS - ENDF/B-VI.8 1.36451
(3 Subregions Fuel; 6 Subregions Polyethylene) '
ERANOS - ENDF/B-VI.8 136347
(3 Subregions Fuel; 7 Subregions Polyethylene) '
ERANQOS - ENDF/B-VI.8 1.36347
(1 Region Fuel; 7 Subregions Polyethylene) '
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Figure 73. Comparison of MCNPX Polyethylene Neutron Spectra and ERANOS Neutron Spectra from
Different Polyethylene regions

A.2. YALINA-Booster

The deterministic calculational model [19] developed for the YALINA-Booster is shown in Figures 74
and 75 (the axial views) and in Figure 76 (the XY view). Figures 74 to 76 show the zones where the
cross-sections have been separately processed: e.g.,, a homogeneous set of cross-sections is
associated to each zone number. The zones containing experimental channels have not been
represented in Figures 74 and 75. Taking into consideration the zones with experimental channels, a
total of 113 cell calculations were performed to describe the deterministic model of the YALINA-
Booster.

As explained before, void regions should be avoided in the geometrical model. Therefore, the void
regions are homogenized with the neighbor regions. For instance, zones 24 and 26 have been
obtained from the homogenization of the graphite reflector and the air gap as shown in Figure 77.
Similarly, zone 23 is the result of homogenizing the borated polyethylene blocks and the air gap.
Additional homogenizations have been performed for the end part of the fuel rods and for the
experimental channels, details will be discussed later.

Heterogeneity effects are very important for the YALINA configurations, as consequence, the cross-
sections of most of the regions have been processed with heterogeneous cell calculations. Figures 78
to 83 and 91 to 100, show the cell configurations used to process the cross-sections of the separate
assembly regions.
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Figure 77. Homogenization of the Air Gap with the Graphite Reflector (Zones 24 and 26) and of the Air
with Borated Polyethylene (Zone 23)

Fuel Regions
Generally, the cells are chosen to represent the XY cut of the lead or polyethylene blocks shown in

Figures 78 to 83. A particular attention has been devoted to the absorber subassemblies with the B,C
pins. For these subassemblies, the cross-sections have been processed according to the schemes
indicated in Figures 80 and 81, depending on the cell position in the subcritical assembly, whether it is
located at the corner or not; the cell calculations have been performed with neutron leakage from the
thermal zone. The stainless steel frame surrounds nine blocks of polyethylene or lead in the YALINA-
Booster assembly as shown in Figure 84. The heterogeneous cell calculation conserve the stainless
steel volume and each block has its share of stainless steel as shown on the right of Figure 84. The
heterogeneous cell model includes explicit representation for each fuel pin. YALINA-Thermal does not
have a stainless steel frame.

Radii: 0.32, 0.33, 0.35, Radiiz 0.33, 0.35,

Radii: 0.32, 0.33, 0.35, 0.38, 045 | P | Y

=16~

| 8.13 |

k N
. H B [l 1} O [ |
[m m L] | End E,,,.,m [; E{)z Lead Stainless Air  Powdered Umel. (Unat) UO2
Lead Stainless Air Umet. . Steel 36% of U235 Steel B4C 36% of U235
units inem Steel 90% of U235 units in em units in em
Figure 78. Cell Scheme for Zone 9 Figure 79. Cell Scheme for Figure 80. Cell Scheme for
Zone 13 Zone 17A
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Figure 84. Cell Scheme and Representation of the Assembly Steel Structure

End Part of the Fuel and Absorber Rods

The selected axial meshes match the geometries of the fuel rods shown in Figures 6 to 8. The
following are the axial boundaries used for each fuel rod design:

- Bottom part of the 90% U-235 enriched metallic fuel rods, the 36% U-235 enriched uranium

oxide fuel rods, and the natural uranium fuel rods: Z = 6.4, 8.4, and 13.4 cm as shown in

Figure 85.;

- Top part of the 90% U-235 enriched metallic fuel rods, the 36% U-235 enriched uranium oxide
fuel rods, and the natural uranium fuel rods: Z = 63.4, 67.9, and 70.9 cm as shown in Figure 86;

- Bottom part of the boron carbide rods: Z = 6.4, 8.4, and 13.4 cm as shown in Figure 87;

- Top part of the boron carbide rods: Z = 63.4, 67.9, and 70.9 cm as shown in Figure 88;

- Bottom part of EK-10 fuel rods: Z = 8.4, 10.7, and 13.4 cm as shown in Figure 89;

- Top part of EK-10 fuel rods: Z = 63.4, 66.1, and 67.9 cm as shown in Figure 90.
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For these regions, the cross-sections have been obtained with heterogeneous geometry, as shown in
Figures 91 to 100. However, for some zones material homogenization were used as shown in
Figures 85 to 90.
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and the Natural Uranium Fuel Rods and the Natural Uranium Fuel Rods
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Real Configuration Model
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Figure 100. Cell Scheme for Zone 19 (8.4<Z<10.7) and 22 (66.1<Z<67.9)

Borated Polyethylene Region
Cross-sections have been processed with a homogeneous cell calculation with homogenized borated
polyethylene and stainless steel.

Reflector Region
Cross-section have been processed with a homogeneous cell calculation with homogenized graphite,
stainless steel and glass.

Deuteron Beam Duct and Target

The central subassembly of the YALINA-Booster, including the deuteron beam duct and the target,
has been modeled with six axial zones as shown in Figure 101. The XY views of the cells used for the
cross-section processing are shown on the right side of Figure 101. The geometrical layout of these
cells includes part of the lead material outside the beam duct and target area. The XY view of the
YALINA-Booster shows the 8 x 8 cm square central subassembly inside the fast zone with the highly
enriched uranium. The fast zone extends for 15.6 x 15.6 cm. The space between the two squares
[(15.6 — 8) / 2 = 3.8 cm] has three 90% U-235 enriched metallic uranium fuel rods. The fuel pitch is
1.114 cm, which leaves 0.458 cm on each side of the 8-cm deuteron beam duct and target. This
space has lead material as shown in the YALINA-Booster configuration. To avoid the introduction of
fine meshes in the deterministic model, this lead material is included with the deuteron beam duct and
target in its heterogeneous geometrical model as shown in Figure 101.
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Experimental Channels

In order to avoid the presence of void regions and fine meshes in the deterministic model, the
experimental channels have been homogenized with the regions where they are located. As
consequence, the experimental channels located in the reflector are homogenized with an opportune
volume of the reflector itself. The experimental channels located in the fuel zones are homogenized
over the volume of the cell used to create the cross-section for the fuel region where they are located.
Figure 102 shows the cell scheme adopted for the EC4B experimental channel. Additionally, due to
the limitations imposed by the cell code in the geometry description, some simplifications were
adopted to describe the presence of the experimental channels. For instance, Figure 103 shows the
real geometry description of the cell containing the experimental channel EC1B, while Figure 104
shows its model. Similarly, Figures 105 and 106 show the real configuration and the model of the cell
containing the experimental channels EC5T. Finally, Figures 107 and 108 show the solution adopted
to represent the three void channels for the boron carbide rods in the thermal zone.
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Steel 36% of 1235
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Figure 102. EC4B Experimental Channel
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Figure 103. EC1B Experimental Channel Figure 104. EC1B Calculational Model
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Figure 106. EC5T Calculational Model
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The deterministic model developed for the YALINA-Thermal is shown in Figures 109 and 110 (the
axial views), and in Figure 111 (the XY view). Figures 109 to 111 show the regions where the cross-
sections have been separately processed: e.g., a homogeneous set of cross-sections is associated to
each zone number. The zones containing experimental channels are not presented in Figures 109 and
110. The number of cell calculations describing the deterministic model is 49 including the zones with

experimental channels.

As the case for the YALINA-Booster, the void regions of the YALINA-thermal configuration were
homogenized with the neighbor regions. For instance, the cross-sections of zone 12 were obtained by
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the homogenization of a section of the graphite reflector and the air gap as shown in Figure 112. In
addition, homogenizations were performed for the end part of the fuel rods and the experimental
channels.

Heterogeneous cell calculations were performed for the other regions to get their homogenized cross-
sections. Figures 113 to 115, 118 and 119, show the cell configuration used to process the cross-
sections of the different regions

63



May 2008

59.5

57.6
54.9

11

49
22

0
cs
&

II‘ TO Beam Tube

. U02 (10% U235)

. Glass

per End Part
U02(10% U235)

r'ro

11

o8

Bottomn End Part
UO2 (10% U235)

@ Reflector

Pzl
8071

B End Part

UO2 (10% U235)

Mixture of
Reflector and Air

Units in cm

Figure 109. XZ Model for the YALINA-Thermal Deterministic Model
(Experimental Channels are not Represented)

59.5

57.6
54.9

1L

49
22

SFo

TO Beam Tube

. U02 (10% U235)

B ro0:ca

Borated
Polyethylene

Upper End Part
U02 (10% U235)

Mixture of
Fe360 + Cd and Air

ANL-09-23

1L

Bottom End Part
U02 (10% U235)

Reflector

B X
e
[

B End Part
U002 (10% U235)

Mixture of
Reflector and Air

SE611

Units in cm

Figure 110. YZ Model for the YALINA-Thermal Deterministic Model
(Experimental Channels are not Represented)

64



May 2008

ANL-09-23
120.3
119.45
87.05
TL05
63.05
47.05
0.45
1]
°g 5z g Z 55
B Tub Polyethylene Blocks
and ECL B vozaow uzs) with Empty Rods
I To Polyethylene Blocks with :'". Denotes the Location of the Cells for
Measurement Channels L__! the Experimental Channel Modelization
Reflector . Glass . Fe360 + Cadmium Units in cm
Figure 111. XY Layout of the YALINA-Thermal Deterministic Model
68.5 68.5
65.8
59.5 59.5
| |Air | | Reflector Mixture of Air
_ o o and Reflector
Figure 112. Homogenization of Air with Graphite Reflector of Zone 12
Fuel Regions

Generally, the cell is chosen with the purpose to represent the XY cut of the polyethylene
subassemblies as shown in Figures 113 to 115. In the YALINA-Thermal the polyethylene blocks are
assembled without any stainless steel frame around. As consequence, the cells used for the cross-
section processing do not have the stainless steel frame represented in the corresponding cells of the

YALINA-Booster.
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End Part of the Fuel Rods
The selected axial meshes match the geometry of the fuel rod design shown in Figure 8. The following
are the axial boundaries used for each fuel rod design:

- Bottom part of EK-10 fuel rods: Z =0, 2.2, and 4.9 cm as shown in Figure 116;

- Top part of EK-10 fuel rods: Z = 54.9, 57.6, and 59.5 cm as shown in Figure 117.
For these regions, the cross-sections have been obtained with heterogeneous geometry, as shown in
Figures 118 and 119. However, for some zones material homogenization were used as shown in
Figures 116 and 117.
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Figure 118. Cell Scheme for Zone 20 F."Ejﬁré 119. Cell Scheme for Zone
(2.2<Z<4.9 and 54.9<Z<57.6) 19 (0<Z<2.2) and 22 (57.6<Z<59.5)

Borated polyethylene region
Borated polyethylene and stainless steel cross-sections have been processed with a homogeneous
cell calculation.

Reflector region
Graphite, stainless steel and glass cross-section have been processed with a homogeneous cell

calculation.

Deutron Beam Duct and Target

The central subassembly of the YALINA-Thermal including the deuteron beam duct and the target has
been presented with 5 axial zones as shown in Figure 120. The XY layout of the cells used for the
cross-section processing is shown on the right side of Figure 120 for each axial zone. The deuteron
beam duct and the target of the YALINA-Thermal has been modeled like the case of the YALINA-
Booster. However, YALINA-Thermal has a stainless steel tube around the central assembly as shown
in Figure 120.

67



ANL-09-23

364

354

349
347

327

3135
30.75
30.65

449

294

209 3B

249

b bala
tn Bin

%]

fud
th

w
[¥-]

—

Lead
Target

Stainless

. Steel
D Air

Vacuum
E D Water
Target

(Copper)
units in cm

R NT: 39 is half side of the square
other units are radii

Stainless
Steel

Lead
Target

Homogeneized
Materials

(58)
&7 cm

(Water)
& 6.7cm

(85)

& 5.6cm

(Air)
& §em

7.8 cm

qcm

Figure 120. YALINA-Thermal Calculational Models of the Central Assembly

Experimental Channels

To avoid void regions and fine meshes in the calculational model, the experimental channels are
homogenized with materials from the neighbor regions while conserving the material content of the
assembly. The experimental channels of the reflector zone are homogenized with an opportune
volume of the graphite reflector. The experimental channels located in the fuel zone are homogenized
over the volume of the cell where they are located. Some simplifications were adopted to describe the
presence of the experimental channels consistently with the cell lattice used to describe the fuel pins.
Figure 121 shows the EC2 experimental channel inside the fuel zone and Figure 122 shows its
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calculational model. Figure 123 shows the exact geometry of the three channels of the boron carbide
rods and Figure 124 shows the developed model for the three channels.
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Appendix B
RZ Model
The flux calculation with the BISTRO code requires the use of an RZ model. Figures 125 and 126

show the RZ models developed for the YALINA-Booster and —Thermal. The cross-section sets
produced for the 3D models have been used for the corresponding zones of the RZ models.
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Figure 125. RZ Geometrical Model of the YALINA-Booster
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The 172 and 53 energy group structures used for the deterministic calculations are presented in

Tables 31 and 32 respectively.

Appendix C

Energy Group Structures

Table 31. The 172-Energy Group Structure

ANL-09-23

Group Group Group Group
Number | Energy® [MeV] | Number| Energy® [MeV] | Number| Energy® [MeV] | Number| Energy® [MeV]

1 1.96403E+01 44 1.50344E-02 87 8.31529E-06 130 9.10000E-07
2 1.73325E+01 45 1.11378E-02 88 7.52398E-06 131 8.60000E-07
3 1.49182E+01 46 9.11882E-03 89 6.16012E-06 132 8.50000E-07
4 1.38403E+01 47 7.46586E-03 90 5.34643E-06 133 7.90000E-07
5 1.16183E+01 48 5.53084E-03 91 5.04348E-06 134 7.80000E-07
6 1.00000E+01 49 5.00451E-03 92 4.12925E-06 135 7.05000E-07
7 8.18731E+00 50 3.52662E-03 93 4.00000E-06 136 6.25000E-07
8 6.70320E+00 51 3.35463E-03 94 3.38075E-06 137 5.40000E-07
9 6.06531E+00 52 2.24867E-03 95 3.30000E-06 138 5.00000E-07
10 5.48812E+00 53 2.03468E-03 96 2.76792E-06 139 4.85000E-07
11 4.49329E+00 54 1.50733E-03 97 2.72000E-06 140 4.33000E-07
12 3.67879E+00 55 1.43382E-03 98 2.60000E-06 141 4.00000E-07
13 3.01194E+00 56 1.23410E-03 99 2.55000E-06 142 3.91000E-07
14 2.46597E+00 57 1.01039E-03 100 2.36000E-06 143 3.50000E-07
15 2.23130E+00 58 9.14242E-04 101 2.13000E-06 144 3.20000E-07
16 2.01897E+00 59 7.48518E-04 102 2.10000E-06 145 3.14500E-07
17 1.65299E+00 60 6.77287E-04 103 2.02000E-06 146 3.00000E-07
18 1.35335E+00 61 4.53999E-04 104 1.93000E-06 147 2.80000E-07
19 1.22456E+00 62 3.71703E-04 105 1.84000E-06 148 2.48000E-07
20 1.10803E+00 63 3.04325E-04 106 1.75500E-06 149 2.20000E-07
21 1.00259E+00 64 2.03995E-04 107 1.67000E-06 150 1.89000E-07
22 9.07180E-01 65 1.48625E-04 108 1.59000E-06 151 1.80000E-07
23 8.20850E-01 66 1.36742E-04 109 1.50000E-06 152 1.60000E-07
24 6.08101E-01 67 9.16609E-05 110 1.47500E-06 153 1.40000E-07
25 5.50232E-01 68 7.56736E-05 111 1.44000E-06 154 1.34000E-07
26 4.97871E-01 69 6.79041E-05 112 1.37000E-06 155 1.15000E-07
27 4.50492E-01 70 5.55951E-05 113 1.33750E-06 156 1.00000E-07
28 4.07622E-01 71 5.15780E-05 114 1.30000E-06 157 9.50000E-08
29 3.01974E-01 72 4.82516E-05 115 1.23500E-06 158 8.00000E-08
30 2.73237E-01 73 4.55174E-05 116 1.17000E-06 159 7.70000E-08
31 2.47235E-01 74 4.01690E-05 117 1.15000E-06 160 6.70000E-08
32 1.83156E-01 75 3.72665E-05 118 1.12300E-06 161 5.80000E-08
33 1.22773E-01 76 3.37202E-05 119 1.11000E-06 162 5.00000E-08
34 1.11090E-01 77 3.05113E-05 120 1.09700E-06 163 4.20000E-08
35 8.22975E-02 78 2.76077E-05 121 1.07100E-06 164 3.50000E-08
36 6.73795E-02 79 2.49805E-05 122 1.04500E-06 165 3.00000E-08
37 5.51656E-02 80 2.26033E-05 123 1.03500E-06 166 2.50000E-08
38 4.08677E-02 81 1.94548E-05 124 1.02000E-06 167 2.00000E-08
39 3.69786E-02 82 1.59283E-05 125 9.96000E-07 168 1.50000E-08
40 2.92830E-02 83 1.37096E-05 126 9.86000E-07 169 1.00000E-08
41 2.73945E-02 84 1.12245E-05 127 9.72000E-07 170 6.90000E-09
42 2.47875E-02 85 9.90556E-06 128 9.50000E-07 171 5.00000E-09
43 1.66156E-02 86 9.18981E-06 129 9.30000E-07 172 3.00000E-09

) Upper Energy boundary
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Table 32. The 53-Energy Group Structure

Group Energy® Group Energy® Group Energy®

Number [MeV] Number [MeV] Number [MeV]
1 1.96403E+01 19 5.53084E-03 37 9.10000E-07
2 1.41907E+01 20 3.35463E-03 38 8.50000E-07
3 1.39561E+01 21 2.03468E-03 39 7.90000E-07
4 1.00000E+01 22 1.23410E-03 40 7.05000E-07
5 6.06531E+00 23 7.48518E-04 41 6.25000E-07
6 3.67879E+00 24 4 .53999E-04 42 5.40000E-07
7 2.23130E+00 25 3.04325E-04 43 4.85000E-07
8 1.35335E+00 26 1.48625E-04 44 4.33000E-07
9 8.20850E-01 27 9.16609E-05 45 3.20000E-07
10 4.97871E-01 28 6.79041E-05 46 2.48000E-07
11 3.01974E-01 29 4.01690E-05 47 1.60000E-07
12 1.83156E-01 30 2.26033E-05 48 1.40000E-07
13 1.11090E-01 31 1.37096E-05 49 1.00000E-07
14 6.73795E-02 32 8.31529E-06 50 5.00000E-08
15 4.08677E-02 33 4.00000E-06 51 3.50000E-08
16 2.47875E-02 34 2.76792E-06 52 2.50000E-08
17 1.50344E-02 35 1.37000E-06 53 1.50000E-08
18 9.11882E-03 36 9.50000E-07

@ Upper Energy boundary
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Appendix D

Cf-252 Source Energy Distribution

ANL-09-23

The 172 and 53 energy group distributions of the Cf-252 source used for the deterministic calculations
are presented in Tables 33 and 34 respectively.

Table 33. 172 Energy Group Distribution of the Cf-252 Source

@

Energy @

[MeV]

Cf-252
Source

Gr.

Energy @

[MeV]

Cf-252
Source

Gr.

Energy @

[MeV]

Cf-252
Source

Gr.

Energy @

[MeV]

Cf-252
Source

1.96403E+1

3.15397E-5

44

1.50344E-2

2.78323E-4

87

8.31529E-6

5.49139E-11

130

9.10000E-7

4.68838E-12

1.73325E+1

1.19837E-4

45

1.11378E-2

1.27186E-4

88

7.52398E-6

9.32030E-11

131

8.60000E-7

9.49148E-13

1.49182E+1

1.52529E-4

46

9.11882E-3

9.43383E-5

89

6.16012E-6

5.49591E-11

132

8.50000E-7

5.78197E-12

1.38403E+1

9.63875E-4

47

7.46586E-3

9.78305E-5

90

5.34643E-6

2.03933E-11

133

7.90000E-7

9.78998E-13

1.16183E+1

2.28808E-3

48

5.53084E-3

2.39987E-5

91

5.04348E-6

6.15469E-11

134

7.80000E-7

7.49767E-12

1.00000E+1

7.59485E-3

49

5.00451E-3

6.06114E-5

92

4.12925E-6

8.72791E-12

135

7.05000E-7

8.34103E-12

8.18731E+0

1.68971E-2

50

3.52662E-3

6.34700E-6

93

4.00000E-6

4.20617E-11

136

6.25000E-7

9.33793E-12

6.70320E+0

1.34418E-2

51

3.35463E-3

3.67875E-5

94

3.38075E-6

5.52748E-12

137

5.40000E-7

4.59905E-12

OO (NO|N|H|WIN|—

6.06531E+0

1.74494E-2

52

2.24867E-3

6.23691E-6

95

3.30000E-6

3.68120E-11

138

5.00000E-7

1.76347E-12

5.48812E+0

4.80426E-2

53

2.03468E-3

1.39717E-5

96

2.76792E-6

3.35726E-12

139

4.85000E-7

6.29790E-12

4.49329E+0

6.54085E-2

54

1.50733E-3

1.77722E-6

97

2.72000E-6

8.44550E-12

140

4.33000E-7

4.16402E-12

3.67879E+0

7.98244E-2

55

1.43382E-3

4.59877E-6

98

2.60000E-6

3.53638E-12

141

4.00000E-7

1.16095E-12

3.01194E+0

8.90453E-2

56

1.23410E-3

4.72617E-6

99

2.55000E-6

1.35441E-11

142

3.91000E-7

5.44236E-12

2.46597E+0

4.60985E-2

57

1.01039E-3

1.88261E-6

100

2.36000E-6

1.66598E-11

143

3.50000E-7

4.16154E-12

2.23130E+0

4.61686E-2

58

9.14242E-4

3.01673E-6

101

2.13000E-6

2.19795E-12

144

3.20000E-7

7.81404E-13

2.01897E+0

8.99886E-2

59

7.48518E-4

1.20188E-6

102

2.10000E-6

5.89290E-12

145

3.14500E-7

2.08979E-12

1.65299E+0

8.35147E-2

60

6.77287E-4

3.35507E-6

103

2.02000E-6

6.68884E-12

146

3.00000E-7

2.95827E-12

1.35335E+0

3.84492E-2

61

4.53999E-4

1.06009E-6

104

1.93000E-6

6.75801E-12

147

2.80000E-7

4.93988E-12

1.22456E+0

3.59645E-2

62

3.71703E-4

7.86832E-7

105

1.84000E-6

6.45277E-12

148

2.48000E-7

4.56724E-12

1.10803E+0

3.33760E-2

63

3.04325E-4

1.01842E-6

106

1.75500E-6

6.52821E-12

149

2.20000E-7

5.38294E-12

1.00259E+0

3.07519E-2

64

2.03995E-4

4.71461E-7

107

1.67000E-6

6.22034E-12

150

1.89000E-7

1.63866E-12

9.07180E-1

2.81517E-2

65

1.48625E-4

9.15735E-8

108

1.59000E-6

7.09590E-12

151

1.80000E-7

3.78551E-12

8.20850E-1

6.97099E-2

66

1.36742E-4

3.12498E-7

109

1.50000E-6

1.99108E-12

152

1.60000E-7

4.01681E-12

6.08101E-1

1.87442E-2

67

9.16609E-5

9.61616E-8

110

1.47500E-6

2.80308E-12

153

1.40000E-7

1.25756E-12

5.50232E-1

1.67481E-2

68

7.56736E-5

4.36375E-8

111

1.44000E-6

5.66396E-12

154

1.34000E-7

4.17141E-12

4.97871E-1

1.49114E-2

69

6.79041E-5

6.46812E-8

112

1.37000E-6

2.65757E-12

155

1.15000E-7

3.53370E-12

4.50492E-1

1.32335E-2

70

5.55951E-5

1.98626E-8

113

1.33750E-6

3.08986E-12

156

1.00000E-7

1.23418E-12

4.07622E-1

3.11447E-2

71

5.15780E-5

1.59604E-8

114

1.30000E-6

5.41919E-12

157

9.50000E-8

3.90531E-12

3.01974E-1

7.99448E-3

72

4.82516E-5

1.27794E-8

115

1.23500E-6

5.50655E-12

158

8.00000E-8

8.22734E-13

2.73237E-1

7.00992E-3

73

4.55174E-5

2.40847E-8

116

1.17000E-6

1.71328E-12

159

7.70000E-8

2.86222E-12

2.47235E-1

1.61770E-2

74

4.01690E-5

1.25474E-8

117

1.15000E-6

2.32790E-12

160

6.70000E-8

2.76092E-12

1.83156E-1

1.33950E-2

75

3.72665E-5

1.48132E-8

118

1.12300E-6

1.12719E-12

161

5.80000E-8

2.63697E-12

1.22773E-1

2.32704E-3

76

3.37202E-5

1.28969E-8

119

1.11000E-6

1.13142E-12

162

5.00000E-8

2.85448E-12

1.11090E-1

5.28161E-3

77

3.05113E-5

1.12410E-8

120

1.09700E-6

2.27593E-12

163

4.20000E-8

2.72748E-12

8.22975E-2

2.44504E-3

78

2.76077E-5

9.80943E-9

121

1.07100E-6

2.29401E-12

164

3.50000E-8

2.11807E-12

6.73795E-2

1.82809E-3

79

2.49805E-5

8.57115E-9

122

1.04500E-6

8.87299E-13

165

3.00000E-8

2.30178E-12

5.51656E-2

1.91047E-3

80

2.26033E-5

1.08932E-8

123

1.03500E-6

1.33629E-12

166

2.50000E-8

2.54446E-12

4.08677E-2

4.71193E-4

81

1.94548E-5

1.15620E-8

124

1.02000E-6

2.15179E-12

167

2.00000E-8

2.88647E-12

3.69786E-2

8.63168E-4

82

1.59283E-5

1.74019E-10

125

9.96000E-7

9.01706E-13

168

1.50000E-8

3.42222E-12

2.92830E-2

1.96655E-4

83

1.37096E-5

1.86882E-10

126

9.86000E-7

1.26760E-12

169

1.00000E-8

2.57774E-12

2.73945E-2

2.60851E-4

84

1.12245E-5

9.58049E-11

127

9.72000E-7

2.00458E-12

170

6.90000E-9

1.88060E-12

2.47875E-2

7.29832E-4

85

9.90556E-6

5.10506E-11

128

9.50000E-7

1.83621E-12

171

5.00000E-9

2.42586E-12

1.66156E-2

1.24073E-4

86

9.18981E-6

6.15234E-11

129

9.30000E-7

1.84993E-12

172

3.00000E-9

8.33921E-12

@ Upper Energy boundary
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Table 34. 53 Energy Group Distribution of the Cf-252 Source

ANL-09-23

Gr.|Energy® [MeV]| Cf-252 Source | Gr.|Energy® [MeV]| Cf-252 Source | Gr. |Energy® [MeV]| Cf-252 Source
1 | 1.96403E+01 1.51377E-4 | 19| 5.53084E-03 9.09571E-5 | 37| 9.10000E-07 | 5.63753E-12
2 | 1.41907E+01 1.52529E-4 | 20| 3.35463E-03 4.30244E-5 | 38| 8.50000E-07 | 5.78197E-12
3 | 1.39561E+01 3.25195E-3 | 21| 2.03468E-03 2.03477E-5 | 39| 7.90000E-07 | 8.47667E-12
4 | 1.00000E+01 3.79338E-2 | 22| 1.23410E-03 9.62551E-6 | 40| 7.05000E-07 | 8.34103E-12
5 | 6.06531E+00 1.30901E-1 | 23| 7.48518E-04 4.55694E-6 | 41| 6.25000E-07 | 9.33793E-12
6 | 3.67879E+00 2.14968E-1 | 24| 4.53999E-04 1.84692E-6 | 42| 5.40000E-07 | 6.36252E-12
7 | 2.23130E+00 2.19672E-1 | 25| 3.04325E-04 1.48988E-6 | 43| 4.85000E-07 | 6.29790E-12
8 | 1.35335E+00 1.66693E-1 | 26| 1.48625E-04 4.04072E-7 | 44| 4.33000E-07 | 1.49289E-11
9 | 8.20850E-01 1.05202E-1 | 27 | 9.16609E-05 1.39799E-7 | 45| 3.20000E-07 | 1.07693E-11
10| 4.97871E-01 5.92896E-2 | 28| 6.79041E-05 1.37368E-7 | 46| 2.48000E-07 | 1.53744E-11
11| 3.01974E-01 3.11814E-2 | 29| 4.01690E-05 6.98790E-8 | 47| 1.60000E-07 | 4.01681E-12
12| 1.83156E-01 1.57221E-2 | 30| 2.26033E-05 2.26292E-8 |48 | 1.40000E-07 | 8.96267E-12
13| 1.11090E-01 7.72665E-3 | 31| 1.37096E-05 | 3.95261E-10 | 49| 1.00000E-07 | 1.42223E-11
14 | 6.73795E-02 3.73856E-3 | 32| 8.31529E-06 | 2.93744E-10 | 50| 5.00000E-08 | 5.58196E-12
15| 4.08677E-02 1.79187E-3 | 33| 4.00000E-06 | 8.44012E-11 | 51| 3.50000E-08 | 4.41985E-12
16 | 2.47875E-02 8.53906E-4 | 34| 2.76792E-06 | 1.03836E-10 | 52| 2.50000E-08 | 5.43093E-12
17 | 1.50344E-02 4.05509E-4 | 35| 1.37000E-06 | 3.60922E-11 | 53| 1.50000E-08 | 1.86456E-11
18 | 9.11882E-03 1.92169E-4 | 36| 9.50000E-07 | 3.68614E-12

@ Upper Energy boundary
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Appendix E

ENDF Delayed Neutron Data

ANL-09-23

This delayed neutron data used in the analyses from ENDF/B nuclear data files are tabulated in

Tables 35, 36, 37,

and 38.

Table 35. ENDF/B Delayed Time Constants [sec.”]

U235 1.33360E-2 | 3.27390E-2 | 1.20780E-1 | 3.02780E-1 | 8.49490E-1 |2.85300E+0
U238 1.36300E-2 | 3.13340E-2 | 1.23340E-1 | 3.23730E-1 | 9.05970E-1 |3.04870E+0
Table 36. ENDF/B B"
Family Group 1 2 3 4 5 6 Total
U235 5.84666E-4|3.01753E-3|2.88051E-3|6.45923E-3|2.64878E-3 | 1.10928E-3 |1.67000E-2
U238 6.13371E-4|4.96323E-3|5.76393E-3 | 1.69455E-2|1.11779E-2 |4.53606E-3 |4.40000E-2
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ANL-09-23

Table 37. Calculated ENDF/B Delayed Neutron Spectra for the YALINA-Booster

Family Group 1 2 3 4 5 6
Group| En.[eV]

1 1.964E+7 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
2 1.419E+7 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
3 1.396E+7 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
4 1.000E+7 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
5 6.065E+6 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
6 3.679E+6 | 0.000E+0 | 0.000E+0 | 3.793E-4 | 4.424E-3 | 8.661E-3 | 1.528E-2
7 2.231E+6 | 9.904E-3 | 1.274E-2 | 1.620E-2 | 5.643E-2 | 5.122E-2 | 5.860E-2
8 1.353E+6 | 1.237E-1 | 1.534E-1 | 8.771E-2 | 1.617E-1 | 1.235E-1 | 1.217E-1
9 8.209E+5 | 1.691E-1 | 2.236E-1 | 2.698E-1 | 2.350E-1 | 2.140E-1 | 2.154E-1
10 | 4.979E+5 | 2.117E-1 | 2.628E-1 | 2.291E-1 | 2.132E-1 | 2.159E-1 | 2.018E-1
11 3.020E+5 | 1.961E-1 | 1.295E-1 | 1.624E-1 | 1.410E-1 | 1.635E-1 | 1.548E-1
12 | 1.832E+5 | 1.234E-1 | 8.235E-2 | 1.071E-1 | 9.009E-2 | 1.023E-1 | 9.366E-2
13 | 1.111E+5 | 5.972E-2 | 6.409E-2 | 5.598E-2 | 4.348E-2 | 5.644E-2 | 5.964E-2
14 | 6.738E+4 | 4.966E-2 | 2.797E-2 | 2.985E-2 | 2.242E-2 | 2.733E-2 | 2.745E-2
15 | 4.087E+4 | 2.186E-2 | 1.721E-2 | 1.786E-2 | 1.398E-2 | 1.410E-2 | 1.519E-2
16 | 2.479E+4 | 2.182E-2 | 1.049E-2 | 1.072E-2 | 8.978E-3 | 1.224E-2 | 1.975E-2
17 | 1.503E+4 | 1.085E-2 | 6.329E-3 | 6.131E-3 | 5.037E-3 | 7.996E-3 | 1.450E-2
18 | 9.119E+3 | 8.465E-4 | 3.765E-3 | 2.646E-3 | 1.690E-3 | 1.127E-3 | 8.529E-4
19 | 5.531E+3 | 5.134E-4 | 2.284E-3 | 1.605E-3 | 1.025E-3 | 6.837E-4 | 5.173E-4
20 | 3.355E+3 | 3.114E-4 | 1.385E-3 | 9.734E-4 | 6.217E-4 | 4.147E-4 | 3.138E-4
21 2.035E+3 | 1.889E-4 | 8.401E-4 | 5.904E-4 | 3.771E-4 | 2.515E-4 | 1.903E-4
22 | 1.234E+3 | 1.146E-4 | 5.096E-4 | 3.581E-4 | 2.287E-4 | 1.526E-4 | 1.154E-4
23 | 7.485E+2 | 6.949E-5 | 3.091E4 | 2.172E-4 | 1.387E-4 | 9.253E-5 | 7.001E-5
24 | 4.540E+2 | 3.531E-5 | 1.571E-4 | 1.104E-4 | 7.050E-5 | 4.703E-5 | 3.558E-5
25 | 3.043E+2 | 3.674E-5 | 1.634E-4 | 1.148E-4 | 7.334E-5 | 4.892E-5 | 3.701E-5
26 | 1.486E+2 | 1.344E-5 | 5.978E-5 | 4.201E-5 | 2.683E-5 | 1.790E-5 | 1.354E-5
27 | 9.166E+1 | 5.605E-6 | 2.493E-5 | 1.752E-5 | 1.119E-5 | 7.464E-6 | 5.647E-6
28 | 6.790E+1 | 6.544E-6 | 2.911E-5 | 2.045E-5 | 1.306E-5 | 8.714E-6 | 6.593E-6
29 | 4.017E+1 | 4.144E-6 | 1.843E-5 | 1.295E-5 | 8.274E-6 | 5.519E-6 | 4.175E-6
30 | 2.260E+1 | 2.098E-6 | 9.333E-6 | 6.559E-6 | 4.189E-6 | 2.794E-6 | 2.114E-6
31 1.371E+1 | 1.273E-6 | 5.661E-6 | 3.978E-6 | 2.541E-6 | 1.695E-6 | 1.282E-6
32 | 8.315E+0 | 1.018E-6 | 4.529E-6 | 3.182E-6 | 2.033E-6 | 1.356E-6 | 1.026E-6
33 | 4.000E+0 | 2.907E-7 | 1.293E-6 | 9.086E-7 | 5.803E-7 | 3.871E-7 | 2.929E-7
34 | 2.768E+0 | 3.298E-7 | 1.467E-6 | 1.031E-6 | 6.584E-7 | 4.392E-7 | 3.323E-7
35 | 1.370E+0 | 9.909E-8 | 4.408E-7 | 3.097E-7 | 1.978E-7 | 1.320E-7 | 9.983E-8
36 9.500E-1 | 9.437E-9 | 4.198E-8 | 2.950E-8 | 1.884E-8 | 1.257E-8 | 9.508E-9
37 9.100E-1 | 1.416E-8 | 6.297E-8 | 4.425E-8 | 2.826E-8 | 1.885E-8 | 1.426E-8
38 8.500E-1 | 1.416E-8 | 6.297E-8 | 4.425E-8 | 2.826E-8 | 1.885E-8 | 1.426E-8
39 7.900E-1 | 2.005E-8 | 8.920E-8 | 6.268E-8 | 4.004E-8 | 2.671E-8 | 2.020E-8
40 7.050E-1 | 1.888E-8 | 8.395E-8 | 5.900E-8 | 3.768E-8 | 2.514E-8 | 1.902E-8
41 6.250E-1 | 2.005E-8 | 8.920E-8 | 6.268E-8 | 4.004E-8 | 2.671E-8 | 2.020E-8
42 5.400E-1 | 1.298E-8 | 5.772E-8 | 4.056E-8 | 2.591E-8 | 1.728E-8 | 1.307E-8
43 | 4.850E-1 | 1.227E-8 | 5.457E-8 | 3.835E-8 | 2.449E-8 | 1.634E-8 | 1.236E-8
44 | 4.330E-1 | 2.666E-8 | 1.186E-7 | 8.333E-8 | 5.322E-8 | 3.550E-8 | 2.686E-8
45 3.200E-1 | 1.699E-8 | 7.556E-8 | 5.310E-8 | 3.391E-8 | 2.262E-8 | 1.711E-8
46 2.480E-1 | 2.076E-8 | 9.235E-8 | 6.490E-8 | 4.145E-8 | 2.765E-8 | 2.092E-8
47 1.600E-1 | 4.719E-9 | 2.099E-8 | 1.475E-8 | 9.420E-9 | 6.284E-9 | 4.754E-9
48 1.400E-1 | 9.437E-9 | 4.198E-8 | 2.950E-8 | 1.884E-8 | 1.257E-8 | 9.508E-9
49 1.000E-1 | 1.180E-8 | 5.247E-8 | 3.687E-8 | 2.355E-8 | 1.571E-8 | 1.189E-8
50 5.000E-2 | 3.539E-9 | 1.574E-8 | 1.106E-8 | 7.065E-9 | 4.713E-9 | 3.566E-9
51 3.500E-2 | 2.359E-9 | 1.049E-8 | 7.375E-9 | 4.710E-9 | 3.142E-9 | 2.377E-9
52 2.500E-2 | 2.359E-9 | 1.049E-8 | 7.375E-9 | 4.710E-9 | 3.142E-9 | 2.377E-9
53 1.500E-2 | 3.539E-9 | 1.574E-8 | 1.106E-8 | 7.065E-9 | 4.713E-9 | 3.566E-9
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Table 38. Calculated ENDF/B Delayed Neutron S
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ectra for the YALINA-Thermal

Family Group 1 2 3 4 5 6
Group| En.[eV]
1 1.964E+7 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
2 1.419E+7 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
3 1.396E+7 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
4 1.000E+7 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
5 6.065E+6 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0 | 0.000E+0
6 3.679E+6 | 0.000E+0 | 0.000E+0 | 3.793E-4 | 4.419E-3 | 8.653E-3 | 1.527E-2
7 2.231E+6 | 9.896E-3 | 1.273E-2 | 1.621E-2 | 5.641E-2 | 5.123E-2 | 5.858E-2
8 1.353E+6 | 1.236E-1 | 1.533E-1 | 8.772E-2 | 1.617E-1 | 1.236E-1 | 1.217E-1
9 8.209E+5 | 1.690E-1 | 2.235E-1 | 2.699E-1 | 2.351E-1 | 2.140E-1 | 2.155E-1
10 | 4.979E+5 | 2.116E-1 | 2.627E-1 | 2.291E-1 | 2.132E-1 | 2.159E-1 | 2.017E-1
11 3.020E+5 | 1.962E-1 | 1.295E-1 | 1.624E-1 | 1.410E-1 | 1.635E-1 | 1.548E-1
12 | 1.832E+5 | 1.235E-1 | 8.243E-2 | 1.071E-1 | 9.007E-2 | 1.023E-1 | 9.366E-2
13 | 1.111E+5 | 5.975E-2 | 6.411E-2 | 5.597E-2 | 4.347E-2 | 5.641E-2 | 5.963E-2
14 | 6.738E+4 | 4.969E-2 | 2.799E-2 | 2.984E-2 | 2.242E-2 | 2.732E-2 | 2.745E-2
15 | 4.087E+4 | 2.187E-2 | 1.722E-2 | 1.785E-2 | 1.398E-2 | 1.410E-2 | 1.519E-2
16 | 2.479E+4 | 2.183E-2 | 1.050E-2 | 1.072E-2 | 8.974E-3 | 1.224E-2 | 1.977E-2
17 | 1.503E+4 | 1.086E-2 | 6.335E-3 | 6.129E-3 | 5.034E-3 | 7.999E-3 | 1.452E-2
18 | 9.119E+3 | 8.471E-4 | 3.768E-3 | 2.645E-3 | 1.688E-3 | 1.126E-3 | 8.530E-4
19 | 5.531E+3 | 5.138E-4 | 2.285E-3 | 1.604E-3 | 1.024E-3 | 6.832E-4 | 5.174E-4
20 | 3.355E+3 | 3.116E-4 | 1.386E-3 | 9.729E-4 | 6.208E-4 | 4.144E-4 | 3.138E-4
21 | 2.035E+3 | 1.890E-4 | 8.407E-4 | 5.901E-4 | 3.766E-4 | 2.513E-4 | 1.903E-4
22 | 1.234E+3 | 1.146E-4 | 5.099E-4 | 3.579E-4 | 2.284E-4 | 1.525E-4 | 1.154E-4
23 | 7.485E+2 | 6.954E-5 | 3.093E-4 | 2.171E-4 | 1.385E-4 | 9.246E-5 | 7.002E-5
24 | 4.540E+2 | 3.534E-5 | 1.572E-4 | 1.103E-4 | 7.040E-5 | 4.699E-5 | 3.558E-5
25 | 3.043E+2 | 3.676E-5 | 1.635E-4 | 1.148E-4 | 7.323E-5 | 4.888E-5 | 3.702E-5
26 | 1.486E+2 | 1.345E-5 | 5.982E-5 | 4.199E-5 | 2.679E-5 | 1.788E-5 | 1.354E-5
27 | 9.166E+1 | 5.609E-6 | 2.495E-5 | 1.751E-5 | 1.117E-5 | 7.459E-6 | 5.648E-6
28 | 6.790E+1 | 6.548E-6 | 2.913E-5 | 2.044E-5 | 1.305E-5 | 8.707E-6 | 6.594E-6
29 | 4.017E+1 | 4.147E-6 | 1.845E-5 | 1.295E-5 | 8.262E-6 | 5.515E-6 | 4.176E-6
30 | 2.260E+1 | 2.100E-6 | 9.340E-6 | 6.555E-6 | 4.183E-6 | 2.792E-6 | 2.114E-6
31 1.371E+1 | 1.274E-6 | 5.665E-6 | 3.976E-6 | 2.537E-6 | 1.694E-6 | 1.282E-6
32 | 8.315E+0 | 1.019E-6 | 4.532E-6 | 3.181E-6 | 2.030E-6 | 1.355E-6 | 1.026E-6
33 | 4.000E+0 | 2.909E-7 | 1.294E-6 | 9.081E-7 | 5.795E-7 | 3.868E-7 | 2.929E-7
34 | 2.768E+0 | 3.301E-7 | 1.468E-6 | 1.030E-6 | 6.575E-7 | 4.389E-7 | 3.323E-7
35 | 1.370E+0 | 9.916E-8 | 4.411E-7 | 3.096E-7 | 1.975E-7 | 1.319E-7 | 9.985E-8
36 9.500E-1 | 9.444E-9 | 4.201E-8 | 2.948E-8 | 1.881E-8 | 1.256E-8 | 9.509E-9
37 9.100E-1 | 1.417E-8 | 6.301E-8 | 4.422E-8 | 2.822E-8 | 1.884E-8 | 1.426E-8
38 8.500E-1 | 1.417E-8 | 6.301E-8 | 4.422E-8 | 2.822E-8 | 1.884E-8 | 1.426E-8
39 7.900E-1 | 2.007E-8 | 8.926E-8 | 6.265E-8 | 3.998E-8 | 2.669E-8 | 2.021E-8
40 7.050E-1 | 1.889E-8 | 8.401E-8 | 5.896E-8 | 3.763E-8 | 2.512E-8 | 1.902E-8
41 6.250E-1 | 2.007E-8 | 8.926E-8 | 6.265E-8 | 3.998E-8 | 2.669E-8 | 2.021E-8
42 5.400E-1 | 1.299E-8 | 5.776E-8 | 4.054E-8 | 2.587E-8 | 1.727E-8 | 1.308E-8
43 | 4.850E-1 | 1.228E-8 | 5.461E-8 | 3.833E-8 | 2.446E-8 | 1.633E-8 | 1.236E-8
44 | 4.330E-1 | 2.668E-8 | 1.187E-7 | 8.329E-8 | 5.315E-8 | 3.548E-8 | 2.686E-8
45 | 3.200E-1 | 1.700E-8 | 7.561E-8 | 5.307E-8 | 3.387E-8 | 2.260E-8 | 1.712E-8
46 | 2.480E-1 | 2.078E-8 | 9.241E-8 | 6.486E-8 | 4.139E-8 | 2.763E-8 | 2.092E-8
47 1.600E-1 | 4.722E-9 | 2.100E-8 | 1.474E-8 | 9.407E-9 | 6.279E-9 | 4.755E-9
48 1.400E-1 | 9.444E-9 | 4.201E-8 | 2.948E-8 | 1.881E-8 | 1.256E-8 | 9.509E-9
49 1.000E-1 | 1.181E-8 | 5.251E-8 | 3.685E-8 | 2.352E-8 | 1.570E-8 | 1.189E-8
50 5.000E-2 | 3.542E-9 | 1.575E-8 | 1.106E-8 | 7.055E-9 | 4.709E-9 | 3.566E-9
51 3.500E-2 | 2.361E-9 | 1.050E-8 | 7.370E-9 | 4.704E-9 | 3.140E-9 | 2.377E-9
52 | 2.500E-2 | 2.361E-9 | 1.050E-8 | 7.370E-9 | 4.704E-9 | 3.140E-9 | 2.377E-9
53 1.500E-2 | 3.542E-9 | 1.575E-8 | 1.106E-8 | 7.055E-9 | 4.709E-9 | 3.566E-9
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Appendix F

Comparison of Neutron Spectra Calculated with Different Nuclear Data Libraries
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with Cf Neutron Source
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Appendix G

Comparison of Reaction Rates Calculated with Different Nuclear Data Libraries

G.1. YALINA-Booster

Reaction Rate [sec-1*cm-3]
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Figure 151. He-3(n,p) Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,t)
Source

Figure 152. U-235 Fission Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with (d,t)
Source
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Figure 153. U-235 Fission Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,t)
Source

Figure 154. In-115 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with (d,t)
Source. Lead Holder is Modeled
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Figure 155. In-115 Capture Reaction Rate in EC5T
Experimental Channel of the YALINA-Booster with (d,t)
Source. Polyethylene Holder is Modeled

Figure 156. In-115 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,t)
Source. Polyethylene Holder is Modeled
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Figure 157. In-115 Capture Reaction Rate in EC7T
Experimental Channel of the YALINA-Booster with (d,t)
Source. Polyethylene Holder is Modeled

Figure 158. In-115 Capture Reaction Rate in EC10R
Experimental Channel of the YALINA-Booster with (d,t)
Source. Polyethylene Holder is Modeled

i i i i
——JEF2.2; EC2B; Au197 Capt; (d,t)
0.07

——JEF3.1; EC2B; Au197 Capt; (d,t)

ENDF/B-VI.8; EC2B; Au197 Capt; (d,t

Reaction Rate [sec-1*cm-3]

Reaction Rate [sec-1*cm-3]

— JEF2.2; ECBT; Au197 Capt; (d.) I I

|| —— JEF3.1; ECBT; Au197 Capt; (dt) | |

| ENDF/B-VI.8; EC6T; Au197 Capt; (d,t)

-15 -10 -5 5 20 25

Z[cm]

0
Z[cm]

Figure 159. Au-197 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with (d,t)
Source. Lead Holder is Modeled

Figure 160. Au-197 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,t)
Source. Polyethylene Holder is Modeled
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Figure 161. Mn-55 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with (d,t)
Source. Lead Holder is Modeled
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Figure 162. Mn-55 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,t)
Source. Polyethylene Holder is Modeled
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Figure 163. He-3(n,p) Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,d)
Source
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Figure 164. U-235 Fission Capture Reaction Rate in
EC2B Experimental Channel of the YALINA-Booster with
(d,d) Source
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Figure 165. U-235 Fission Capture Reaction Rate in
ECG6T Experimental Channel of the YALINA-Booster with
(d,d) Source

Figure 166. In-115 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with (d,d)
Source. Lead Holder is Modeled
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Figure 167. In-115 Capture Reaction Rate in EC5T
Experimental Channel of the YALINA-Booster with (d,d)
Source. Polyethylene Holder is Modeled

Figure 168. In-115 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,d)
Source. Polyethylene Holder is Modeled
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Figure 169. In-115 Capture Reaction Rate in EC7T
Experimental Channel of the YALINA-Booster with (d,d)
Source. Polyethylene Holder is Modeled

Figure 170. In-115 Capture Reaction Rate in EC10R
Experimental Channel of the YALINA-Booster with (d,d)
Source. Polyethylene Holder is Modeled
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Figure 171. Au-197 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with (d,d)
Source. Lead Holder is Modeled

Figure 172. Au-197 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,d)
Source. Polyethylene Holder is Modeled
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Figure 173. Mn-55 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with (d,d)
Source. Lead Holder is Modeled

Figure 174. Mn-55 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with (d,d)
Source. Polyethylene Holder is Modeled

87



ANL-09-23

0.04 ,
|
|
7 0.035 |
! |
+ |
| 0.03 |
7 ! 7 |
I £ 7
; | £ 0025 |
% | ) | ]
3, ! 3 | |
8 ! g 002 | 1 |
g 4 & | | |
< | c | | T
£ I 2 0015 Y | | |
B I 8 I I I I
g I & I I I I
4 ‘ 0.01 | | | |
A e ——JEF2.2; EC6T; He3 (n,p); Cf Fr——— T~~~ 7~ -~~~ ~~"~———=—77 | JEF2.2; EC2B: U235 Fiss; Cf | | |
I | | | | | |
) ——JEF3.1; EC6T,; He3 (n,p); Cf ] | | 0005+ — — — | —— JEF3.1; EC2B; U235 Fiss; Cf — - m ===
ENDF/B-VI.8; EC6T; He3 (n,p); Cf: } } } ENDF/B-VI.8; EC2B; U235 Fiss; Cf : : :
0
0 T T T I I
25 20 15 10 o 5 10 15 2 2 25 -20 -15 -10 5 0 5 10 15 20 25
Z[em] Z[cm]

Figure 175. He-3(n,p) Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with Cf
Neutron Source

Figure 176. U-235 Fission Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with Cf
Neutron Source
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Figure 177. U-235 Fission Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with Cf
Neutron Source

Figure 178. In-115 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Lead Holder is Modeled
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Figure 179. In-115 Capture Reaction Rate in EC5T
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Polyethylene Holder is Modeled

Figure 180. In-115 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Polyethylene Holder is Modeled

88




ANL-09-23

08 !
—— JEF2.2; EC10R; In115 Capt; Cf
o7l SNC oo — JEF3.1; EC10R; In115 Capt; Cf
ENDF/B-V1.8; EC10R; In115 Capt; Cf
06
7 7
§ £
:‘_’ :3 05
5 ;
k1 8
2 o 04
& 2
c
8 S 03
; 2
S o
L3 ¢
03 1 | i | | 02
w2l . [ —EFRZECTTIMISCHt S |
|| ——JEF3.1; ECTT; In115 Capt; Cf | or
AL ——— | e .
‘ ENDF/B-VL.8; ECTT; In115 Capt; Cf !
0 | | o
-24.2 -19.2 -14.2 -9.2 -4.2 0.8 5.8 10.8 15.8 20.8, 49 54 59 64 69 74
Z[cm] X [cm]

Figure 181. In-115 Capture Reaction Rate in EC7T
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Polyethylene Holder is Modeled

Figure 182. In-115 Capture Reaction Rate in EC10R
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Polyethylene Holder is Modeled
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Figure 183. Au-197 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Lead Holder is Modeled

Figure 184. Au-197 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Polyethylene Holder is Modeled
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Figure 185. Mn-55 Capture Reaction Rate in EC2B
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Lead Holder is Modeled

Figure 186. Mn-55 Capture Reaction Rate in EC6T
Experimental Channel of the YALINA-Booster with Cf
Neutron Source. Polyethylene Holder is Modeled
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Figure 187. He-3(n,p) Reaction Rate in EC1 Experimental Figure 188. He-3(n,p) Reaction Rate in EC2 Experimental

Channel of the YALINA-Thermal with (d,t) Neutron
Source
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Figure 189. He-3(n,p) Reaction Rate in EC3 Experimental
Channel of the YALINA-Thermal with (d,t) Neutron
Source

Figure 190. U-235 Fission Reaction Rate in EC1
Experimental Channel of the YALINA-Thermal with (d,t)
Neutron Source
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Figure 191. U-235 Fission Reaction Rate in EC2
Experimental Channel of the YALINA-Thermal with (d,t)
Neutron Source
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Figure 192. U-235 Fission Reaction Rate in EC3
Experimental Channel of the YALINA-Thermal with (d,t)
Neutron Source




ANL-09-23

JEF3.1; EC7; In115 Capt; (d,t)

ENDF/B-V1.8; EC7; In115 Capt; (d.t)

45 50 55 60|

40
Z[cm]

Figure 194. In-115 Capture Reaction Rate in EC7
Experimental Channel of the YALINA-Thermal with (d,t)
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Figure 196. Mn-55 Capture Reaction Rate in EC2
Experimental Channel of the YALINA-Thermal with (d,t)
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Figure 200. U-235 Fission Reaction Rate in EC1
Experimental Channel of the YALINA-Thermal with (d,d)

Figure 199. He-3(n,p) Reaction Rate in EC3 Experimental
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Figure 201. U-235 Fission Reaction Rate in EC2

Neutron Source

Neutron Source

ENDF/B-V1.8; EC7; In115 Capt; (d,d)

JEF3.1; EC7; In115 Capt; (d,d)

60|

45 50

40
Z[cm]

30 35
115 Capture Reaction Rate in EC7

25

20

| S

|
- — -
|

JEF3.1; EC2; In115 Capt; (d,d)
ENDF/B-V1.8; EC2; In115 Capt; (d,d)

024 —— — o
0

044+ — — —

-19, -14.2 -9.2 -4.2 0.8 5.8 10.8 15.8 20.8

-24.2

Z[cm]

Figure 203. In-115 Capture Reaction Rate in EC2

Figure 204. In
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Figure 206. Mn-55 Capture Reaction Rate in EC2

Figure 205. Au-197 Capture Reaction Rate in EC2

Experimental Channel of the YALINA

-Thermal with (d,d)

-Thermal with (d,d) Experimental Channel of the YALINA

Neutron Source. Polyethylene Holder is modeled

Neutron Source. Polyethylene Holder is modeled

25

20

15

[¢-wo, |-00s] ajey uonoeay

L e
|
|
|
L_L_|w
6] £
= res
2 N
&5 £
s 3
s T |«
I\
? O
T u
KT
w =
-
P
L o
w Z e
S w .
==="1 &
| ] ) o '
| | | [
| | | [
S S b —— &
N @2 © ® 9 N ¥ = © L N ® © ® o
§ 3 88 8K I 3 @ ey
©
, &
|
|
| °
, &
|
|
L_L__|lw
, e
|
|
| °
|
|
|
L_L_|lw
|
|
- —_
[8)
VhO.nme
a
5 || ™
= o
o @
s T |tw
-
? O
I o
5 &le
w > |
= 2
O T
e o
w Z e
S owr
=—==—=| §
[
[
[
[ Q
630,

3(n,p) Reaction Rate in EC2 Experimental

Channel of the YALINA-Thermal with Cf Neutron Source Channel of the YALINA-Thermal with Cf Neutron Source

3(n,p) Reaction Rate in EC1 Experimental Figure 208. He

Figure 207. He-

25

20

15

-t e
—— -t v
o
SI.E
o Lo
- 2 ]
O w N
PR e)
8 &
L 5| o
8 =
Q& O
O w
S 8le
w x|~
- o
pESTS
£ g
g ae
——=——
[ '
[
[
g
© ® o
c o
©
{
°
Q
H--te
e
©
St o8,
a N
£
(5]
o |l v
o\
p
O
w
LI
>
@
[T
S|l w
Z |~
w
°

|
|
|
,,,,,,
© v o o © o

33

8§ ® e g

wo, |-09s] ajey uonoeay

-25

Figure 210. U-235 Fission Reaction Rate in EC1
Experimental Channel of the YALINA-Thermal with Cf
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Figure 214. In-115 Capture Reaction Rate in EC7
Experimental Channel of the YALINA-Thermal with Cf
Neutron Source. Polyethylene Holder is modeled
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Figure 216. Mn-55 Capture Reaction Rate in EC2
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Appendix H

Comparison with Different Libraries

H.1. ENDF/B-VI.8 Results
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Figure 217. He-3 Detector Response in EC6T
Experimental Channel of the YALINA-Booster with (d,t)

Figure 218. He-3 Detector Response in EC8R
Experimental Channel of the YALINA-Booster with (d,t)
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Figure 220. He-3 Detector Response in EC2B
Experimental Channel of the YALINA-Booster with (d,t)

Figure 219. He-3 Detector Response in EC1B
Experimental Channel of the YALINA-Booster with (d,t)
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Figure 222. He-3 Detector Response in EC6T
Experimental Channel of the YALINA-Booster with (d,d)
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Figure 221. He-3 Detector Response in EC3B
Experimental Channel of the YALINA-Booster with (d,t)
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Figure 224. He-3 Detector Response in EC1B
Experimental Channel of the YALINA-Booster with (d,d)
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Figure 223. He-3 Detector Response in EC8R
Experimental Channel of the YALINA-Booster with (d,d)
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Figure 226. He-3 Detector Response in EC3B
Experimental Channel of the YALINA-Booster with (d,d)

Figure 225. He-3 Detector Response in EC2B
Experimental Channel of the YALINA-Booster with (d,d)
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Figure 227. He-3 Detector Response in EC2
Experimental Channel of the YALINA-Thermal with (d,t)
Neutron Source

Figure 228. He-3 Detector Response in EC5
Experimental Channel of the YALINA-Thermal with (d,t)
Neutron Source
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Figure 229. He-3 Detector Response in EC1
Experimental Channel of the YALINA-Thermal with (d,t)
Neutron Source

Figure 230. He-3 Detector Response in EC2
Experimental Channel of the YALINA-Thermal with (d,t)
Neutron Source
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Figure 231. He-3 Detector Response in EC5
Experimental Channel of the YALINA-Thermal with (d,d)
Neutron Source

Figure 232. He-3 Detector Response in EC1
Experimental Channel of the YALINA-Thermal with (d,d)
Neutron Source
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H.2. Use of JEF2.2
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Figure 234. He-3 Detector Response in EC2B
Experimental Channel of the YALINA-Booster with (d,t)

Figure 233. He-3 Detector Response in EC1B
Experimental Channel of the YALINA-Booster with (d,t)
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Figure 236. He-3 Detector Response in EC1B
Experimental Channel of the YALINA-Booster with (d,d)

Figure 235. He-3 Detector Response in EC3B
Experimental Channel of the YALINA-Booster with (d,t)
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Figure 238. He-3 Detector Response in EC3B
Experimental Channel of the YALINA-Booster with (d,d)

Figure 237. He-3 Detector Response in EC2B
Experimental Channel of the YALINA-Booster with (d,d)
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