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1. Introduction

Thermoelectric (TE) materials possessing high energy 
conversion efficiency are necessary in order to be applied in 
practical electric power generation systems. Thermoelectric 
energy conversion has very important advantages to harvest 
waste heat in a wide number of industrial applications. 
Moreover, it can be used to transform solar energy into 
electricity at lower cost than photovoltaic energy [1]. The 
conversion efficiency of such materials is quantified by 
the dimensionless figure of merit ZT, which is defined 
as TS2/ρκ (in which S2/ρ is also called power factor, PF), 
where S is the Seebeck coefficient (or thermopower), ρ the 
electrical resistivity, κ the thermal conductivity, and T is the 
absolute temperature [2]. As a consequence, an adequate TE 
material for practical applications must involve, therefore, 
high thermopower and low electrical resistivity, with low 
thermal conductivity.

The discovery of large thermoelectric power in Na
x
CoO

2
 

[3], which was found to possess a high ZT value of about 
0.26 at 300K, has opened a broad research field and from that 
moment on, great efforts have been devoted to explore new 
cobaltite families with high thermoelectric performances. 
Some other layered cobaltites, such as misfit [Ca

2
CoO

3
]

[CoO
2
]

1.62
, [Bi

0.87
SrO

2
]

2
[CoO

2
]

1.82
 and [Bi

2
Ca

2
O

4
][CoO

2
]

1.65
 were 

also found to exhibit attractive thermoelectric properties 
[4-8]. In these systems, the crystal structure is formed by two 
different layers, showing an alternate stacking of a common 
conductive CdI

2
-type CoO

2
 layer with a two-dimensional 

triangular lattice and a block layer, composed of insulating 
rock-salt-type (RS) layers. Both sublattices (RS block and 
CdI

2
-type CoO

2
 layer) possess common a- and c-axis lattice 

parameters and β angles but different b-axis length, causing a 
misfit along the b-direction [9,10].

One of the main factors affecting the thermoelectric 
performances of this kind of materials is the electrical resistivity 
which should be maintained as low as possible. The resistivity 
values in ceramic materials are influenced by a number of 
different parameters as content and distribution of secondary 
phases, porosity, oxygen content, etc. As a consequence, 
many different synthetic methods have been used in order to 
synthesize thermoelectric and other layered ceramic materials 
[11-18]. On the other hand, layered cobaltites are materials with 
a strong crystallographic anisotropy; therefore the alignment 
of plate-like grains by mechanical and/or chemical processes 
has been studied to attain macroscopic properties comparable 
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powder diffractometer (CuKα radiation) with 2θ ranging 
between 10 and 70 degrees. Microstructural observations 
were performed on polished samples using a Field Emission 
Scanning Electron Microscope (FESEM, Carl Zeiss Merlin) 
fitted with energy dispersive spectrometry (EDS) analysis. 
Micrographs of these samples have been recorded to analyze 
the different phases and their distribution. From these pictures, 
an estimation of the amount of the different phases has been 
performed using Digital Micrograph software. Moreover, 
apparent density measurements have been performed in 
several samples for each composition.

Steady-state simultaneous measurements of resistivity and 
thermopower were determined by the standard dc four-probe 
technique in a LSR-3 apparatus (Linseis GmbH) between 50 
and 650 ºC under He atmosphere. From these data, PF values 
as a function of temperature were calculated in order to 
evaluate the final samples performances.

3. Results and discussion

Powder XRD patterns for all Bi
1.6

Pb
0.4

Sr
2
Co

1.8
O

x
 samples 

with different amounts of Ag are plotted (from 10 to 40° 
for clarity) in Fig. 1. They show very similar patterns where 
the most intense peaks correspond to the misfit cobaltite 
Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
 phase, in agreement with previous reported 

data [24,33]. From this figure, it is clear that the cobaltite 
phase appears as the major one, independently of Ag content. 
Peaks marked with a  in the plot correspond to the Co-free 
Bi

0.75
Sr

0.25
O

1.375
 secondary phase [34], and the * indicates the 

(111) peak of Si, used for reference. Moreover, for the samples 
with 1 and 3wt.% Ag, a new peak appears in the XRD plots 
at around 38 degrees, which corresponds to the metallic Ag 
(111) plane (indicated by ) [35]. This peak also indicates that 
Ag does not react with the thermoelectric ceramic, leading 

to those obtained on single crystals mainly due to the electrical 
resistivity decrease. Some techniques have been shown to be 
adequate to obtain a good grain orientation in several oxide 
ceramic systems, such as templated grain growth (TGG) [10], 
sinter-forging [19], spark plasma sintering [20], or directional 
growth from the melt [21,22]. Other possibilities arising from 
the crystallographic structure of these materials are the cationic 
substitutions in the RS layer, which can change the misfit 
relationship between the two layers and, as a consequence, 
modifying the values of the thermopower [7]. From this 
point of view, it is clear that this kind of substitutions can be 
useful in order to improve thermoelectric performances of 
ceramic materials [19], as it is reported for the substitution of 
Gd and Y for Ca [23], or Pb for Bi [24-26]. Moreover, metallic 
Ag additions have also shown to improve, in an important 
manner, the mechanical and electric properties of this system 
[27] and other similar materials [28] which nearly do not react 
with Ag, as it has been found in some phase diagram studies 
[29].

Taking into account these previously discussed effects, the 
aim of this work is producing high performance TE materials 
by the addition of small amounts of metallic Ag, determined 
in previous works [27], to the optimally Pb doped Bi-Sr-Co-O 
compound studied in previous works [24,30].

2. Experimental

The initial Bi
1.6

Pb
0.4

Sr
2
Co

1.8
O

x
 polycrystalline ceramics with 

small amounts of silver (0, 1, and 3 wt.% Ag) were prepared 
from commercial Bi(NO

3
)

3
 • 5H

2
O (≥98 %, Aldrich), PbO 

(Aldrich, ≥ 99 %), SrCO
3
 (98.5 %, Panreac), Co(NO

3
)

2
 • 6H

2
O 

(98 %, Panreac), and metallic Ag (99 %, Aldrich) powders by 
a sol-gel via nitrates method described in detail elsewhere 
[31]. They were weighed in the appropriate proportions and 
dissolved in a mixture of distilled water and concentrated 
HNO

3
 (analysis grade, Panreac) of about 50 vol.% of each 

component, leading to a clear pink solution. Citric acid (99.5 
%, Panreac), and ethylene glycol (99 %, Panreac), were added 
to this solution in the adequate proportions and stirred until 
all the products were dissolved. Evaporation of the solvent 
was performed slowly, in a hot plate at around 50-75 ºC, in 
order to decompose the nitric acid excess which allows the 
polymerization reaction between ethylene glycol and citric 
acid, forming a pink gel [32]. Once the polymerization has 
been finished, the temperature was raised to evaporate the 
remaining water and the unreacted ethylene glycol. At the 
same time, the nitrates are decomposed and nitrogen oxides are 
released, leaving the organometallic coordination compound. 
This complex was then decomposed (slow self combustion) 
by heating at 350-400 ºC for 1 h, producing very fine and 
homogeneous powders which were mechanically ground 
and calcined at 750 and 800 °C for 12 h, with an intermediate 
grinding, to totally decompose the SrCO

3
 produced in the 

coordination compound combustion. The resulting powder 
was uniaxially pressed in form of parallelepipeds (~14 mm x 
2 mm x 3 mm) under an applied pressure of about 400 Mpa. 
The compact materials were then sintered at 810 ºC under 
air during 24 h with furnace cooling, which are the best 
conditions for the pure composition [12].

The structural identification of all the samples was 
performed by powder XRD utilizing a Rigaku D/max-B X-ray 

Figure 1. Powder XRD diagrams for the Bi
1.6

Pb
0.4

Sr
2
Co

1.8
O

x
 sintered 

samples with a) 0; b) 1; and c) 3 wt.% Ag. Crystallographic planes have 
been indicated on the peaks corresponding to the Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
 

phase. Other phases are indicated by symbols:  Co-free Bi
0.75

Sr
0.25

O
1.375

 
secondary phase;  Ag; and * Si (111) peak used as reference.
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representative micrographs, recorded with backscattered 
electrons, of all samples are presented. In these views, it can 
be clearly seen that porosity decreases when Ag is added to 
the samples. This is in agreement with the apparent density 
measurements performed on the sintered samples, which 
show an increase of density when the Ag amount is increased. 
The mean values are 4.89 gr/cm3 for the pure Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
 

samples, while they increase to 5.22 and 5.70 gr/cm3 for the 1 
and 3 wt.% Ag-containing samples after subtracting the Ag 
contribution to the total density. This effect can be due to 
the formation of a eutectic phase in the Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
/

Ag pseudobinary system, as it was previously reported for 
relatively similar systems [29]. As a consequence, melting 
point is decreased which favours further densification than 
the produced in samples without Ag.

Moreover three main contrasts can be identified in these 
micrographs. Each one correspond to a different phase, 
grey contrast (#1) associated by EDX to the thermoelectric 
Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
 phase, and white (#2) and dark grey (#3) 

ones to the Bi
3
SrO

y
 and CoO secondary phases, respectively. 

Even if CoO phase has not been identified in the XRD patterns, 
the proportion and the other present phases are in agreement 
with the previously discussed XRD data. In this figure, it 
can also be observed that in Ag-added samples the amount 
and size of these secondary phases are reduced. Moreover, 
a new grey contrast appears, corresponding to the metallic 
Ag. It is very similar to the thermoelectric phase but it can be 
distinguished by the nearly spherical shape of Ag particles (#4 
in Fig. 2b). In order to estimate the amount of each phase in 
the bulk materials, several micrographs have been analysed 
for each composition. The approximate content of these 
secondary phases is about 7 vol.% of Bi

3
Sr

2
O

y
 and 8 vol.% of 

CoO for the pure samples, which are reduced to around 3 
and 5 vol.% for the 1 wt.%Ag ones, and 1 and 3 vol.% found 
in the 3 wt.%Ag samples, following the same trends found in 
previously published works on textured materials [38].

The temperature dependence of the electrical resistivity as 
a function of the Ag content is represented in Fig. 3. As it can 

to the formation of a ceramic matrix composite with metallic 
particles distributed inside the matrix, as observed in similar 
ceramic systems [28,36,37].

Scanning electron microscopy has been performed on 
polished transversal sections of all samples after the sintering 
process. The microstructural evolution of samples, as a 
function of Ag content, can be easily observed in Fig. 2 where 

Figure 2. Scanning electron micrographs from transversal polished 
samples Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
 with different Ag contents with backscat-

tered electrons: a) 0; b) 1; and c) 3 wt.%. The contrasts corresponding 
to the different phases are indicated by arrows, 1) Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
; 2) 

Bi
3
Sr

2
O

y
; 3) CoO; and 4) Ag.

Figure 3. Temperature dependence of the electrical resistivity for tex-
tured Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
 with different Ag contents.  0;  1; and  

3 wt.%.
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of about 0.025 mW/K2.m for the 3wt.% samples, is lower 
than the obtained on in-plane measurements performed in 
single crystals without Ag (~ 0.2 mW/K2.m) [40], but higher 
than the obtained ones in pure sintered Bi

2
Sr

2
Co

1.8
O

z
 (~ 0.017 

mW/K2.m) [12]. Moreover, it is more than two times higher 
than the obtained for the pure Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
. This result 

indicates that small Ag additions can be very useful in order 
to strongly reduce electrical resistivity and, as a consequence, 
raising the thermoelectric performances of these ceramic 
materials.

4. Conclusions

This paper demonstrates that Bi
1.6

Pb
0.4

Sr
2
Co

1.8
O

x
 

thermoelectric materials with small Ag additions (0, 1, and 3 
wt.%) can be produced successfully by the sol-gel method. It 
has been determined that Ag addition significantly reduces 
the amount of secondary phases and increases the apparent 
density of the samples. Moreover, the electrical resistivity data 
clearly indicated that Ag produces an important reduction 
of their electrical resistivity without modifying the Seebeck 
coefficient values. All these factors lead to a raise in the Power 
Factor of about two times, at room temperature, compared 
with the pure Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
.
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be easily seen, the ρ(T) curves show very similar behaviour 
for all samples. All curves display a semiconducting-like 
behaviour (dρ/dT < 0) from room temperature to about 
550 ºC and a slightly metallic-like one (dρ/dT > 0) at 
higher temperatures. On the other hand, when increasing Ag 
contents, a significant reduction on the resistivity values at 
room temperature, is produced. This evolution of the electrical 
resistivity is consistent with the reduction of the secondary 
phases content already mentioned in the microstructure 
discussion (see Fig. 2) and the increase on the samples density 
already described in the apparent density measurements. The 
minimum resistivity value at room temperature, ~ 75 mV.cm, 
is obtained for samples with 3 wt.% Ag, while for the 0 and 
1 wt.% Ag is about two times higher, 155 and 125 mV.cm, 
respectively.

Fig. 4 displays the variation of the Seebeck coefficient as 
a function of temperature for all the samples. In this figure, 
it is clear that the sign of the Seebeck coefficient is positive 
for the whole measured temperature range, which confirms 
a conduction mechanism predominantly governed by holes. 
The values increase almost linearly with temperature in 
all the measured range, with very similar values for all the 
samples. This is a clear indication that these small amounts 
of Ag do not affect thermopower values, as observed in 
annealed textured samples without Pb [27]. In all cases, the 
room temperature values are higher than the measured in 
single crystals with similar composition without Ag (about 
100 µV/K) [39].

In order to evaluate the thermoelectric performances of 
the sintered ceramic materials, variation of Power Factor 
with temperature has been calculated from the resistivity and 
Seebeck coefficient values and displayed, as a function of the 
Ag content, in Fig. 5. As it was found in the Seebeck coefficient 
measurements, PF increases with temperature in all the 
measured range. Moreover, the values at room temperature 
increase with Ag content, due to the decrease on the electrical 
resistivity values. The minimum value, at room temperature, 

Figure 4. Temperature dependence of the Seebeck coefficient for tex-
tured Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
 with different Ag contents.  0;  1; and  

3 wt.%.

Figure 5. Temperature dependence of the power factor for textured 
Bi

1.6
Pb

0.4
Sr

2
Co

1.8
O

x
 with different Ag contents.  0;  1; and  3 

wt.%.
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