
Task and Timing: Separating Procedural
and Tactical Knowledge in Student Models

Joshua Cook
∗

, Collin F. Lynch, Andrew G. Hicks, & Behrooz Mostafavi
Department of Computer Science, North Carolina State University, Raleigh, NC, U.S.A.

jacook7, cflynch, aghicks3, & bzmostaf@ncsu.edu

ABSTRACT
BKT and other classical student models are designed for binary
environments where actions are either correct or incorrect. These
models face limitations in open-ended and data-driven environ-
ments where actions may be correct but non-ideal or where there
may even be degrees of error. In this paper we present BKT-
SR and RKT-SR: extensions of the existing BKT model that
distinguish knowing how to apply a skill from knowing when.
We compare their relative performance to that of classical BKT
and PFA on data collected from Deep Thought, an open-ended
propositional logic tutor. We develop basic performance curves
for student outcomes to help us visually compare models pre-
dictions to data. We also introduce a new approach for finding
a probability distribution of actions in ranked, multiple option
environments with RKT and RKT-SR. Our results show that
knowing when to use skills is more important than how in these
open-ended contexts. In fact, including the how components
may hurt performance if implemented naively. Furthermore we
show that ranked models outperform binary-based models even
under restrictive assumptions.

Keywords
Student-Modeling, Data-Driven Tutoring, Open-Ended Tutors,
BKT, PFA, Interaction Networks, RKT, RKTSR, BKTSR

1. INTRODUCTION
Bayesian Knowledge Tracing (BKT) and other existing learner
models, such as Performance Factors Analysis (PFA), are about
right and wrong but for many realistic problem-solving situa-
tions students are not choosing just correct or incorrect actions.
They are choosing from among a range of potential actions some
of which may be optimal or substantively better than others.
Thus the classical models are out of sync with the performance
criteria by which the students are being judged. It also means
that the models, by design, conflate two distinct skills: knowing
how to apply a skill (procedural knowledge), and knowing when
to apply a skill (tactical knowledge). In classical BKT we base

∗Corresponding author

performance on the validity of an individual action not on its
optimality. Thus students receive points for correctly applying
sub-optimal skills.

In this paper we present an extension to BKT, BKT-SR, which
separates tactical knowledge (recognition of optimal skills) from
procedural knowledge (correct skill application). This model
is designed for use in open-ended and data-driven tutorial do-
mains where students are expected to learn not just how to
apply individual skills but how to recognize the sequence of skill
applications that make up an optimal solution. We also present
a refinement of the existing probability calculations for ranked
options, and apply these in two new models: RKT and RKT-SR.
This refinement leads to an improvement in the accuracy of the
models over existing methods.

Additionally, in order to investigate which component of BKT-
SR is most important, we tested the individual components
(how, when, and some slight variations) on student data. Our
data is drawn from an open ended propositional logic tutor
called Deep Thought that is designed for use in discrete math-
ematics and philosophy. We compare the differing models on
our data set to demonstrate that knowing when to apply a skill
is separable from knowing how.

2. EXISTING MODELS
BKT and PFA are two of the most successful student model-
ing approaches. Both are binary action models that predict
whether a student will take actions that are correct or incorrect
at any given time given their level of understanding and other
parameters. In prior head-to-head comparisons the two have
performed similarly [5].

BKT is a simple two state Hidden-Markov Model (HMM) [3]. It
is based upon five assumptions. Each skill is independent and has
two states: learned, L, and not learned. Each problem depends
on exactly one skill, and answers are either correct or incorrect.
Students can learn, but cannot forget. After an opportunity
to apply a skill, there is a constant probability to transition,
T, from unlearned to learned. Students who know a skill will
answer a problem correctly unless they slip, S, and students
who don’t know a skill answer incorrectly, unless they guess, G.

The parameters of BKT are: L0, the initial probability of know-
ing a skill. T, the probability of transitioning from unlearned
to learned. G, the probability of answering a question correctly
when a skill is not learned. S, the probability of answering a
question incorrectly when a skill is learned.

Proceedings of the 10th International Conference on Educational Data Mining 186

Let Li be the probability of knowing a skill at step i. Then the
probability of answering a problem correctly is calculated as:

P(Correct)=Li ·(1−S)+(1−Li)·G
To update L, we first apply Bayes theorem, then apply the
transition probability. The reinforcement process has two steps:

Bi(Answer)=

{
Li·(1−S)

Li·(1−S)+(1−Li)·G Answer is correct
Li·S

Li·S+(1−Li)·(1−G)
Answer is incorrect

Li+1=Bi(Answer)+T ·(1−Bi(Answer))

BKT is time tested, easily interpreted and implemented, but fit-
ting BKT parameters is difficult. One difficulty lies in avoiding
degenerate parameters: parameters that cause BKT to behave
counter to its’ physical interpretation. We avoid degenerate
models using brute force grid search [5].

PFA, by contrast, is a logistic regression model based upon
the skill difficulty(β), number of successes (γ), and number of
failures(ρ) [11]. PFA has many upsides, not the least of which is
that it can be fit efficiently with general regression calculations.

3. INTERACTION NETWORKS
The above models were designed for classical binary problems.
Most realistic problems however are more open-ended. Problems
are defined by a goal state and a set of given information that
problem solvers may apply a range of rules to achieve their goal.
Rather than each action being correct or incorrect some actions
are correct in a given solution context and there many be many
ways to solve a problem or many actions to take at a given time
with some being more efficient than others. The structure of
these open-ended solutions can be efficiently represented in a
data structure called an interaction network. Interaction Net-
works are directed graphs representing a solution space where
each node is a partial solution state and each edge is a rule
application [4]. Individual solutions are represented as paths in
the network from the start state to a goal state. An Interaction
Network is the aggregation of all the student solutions for a
problem where each edge is weighted by the number of students
who followed it.

3.1 Value Iteration
Value iteration is an algorithm for identifying the optimal policy
(π) for use in a Markov Decision Process (MDP) [1]. The core of
the algorithm depends upon an update function that estimates
the current value of a state (Vi+1(s)) based upon a set reward
(R), the current values of the neighboring states (Vi(ue)), a
discount factor or cost for taking each action (γ), and the prob-
ability of taking an action (P(e)). In these experiments we use
a constant reward function and a discount factor. Goal states
were assigned a constant value, and the probability of a given
action (P(e)) transitioning from state s to s′ was estimated
based upon the number of times that it was taken relative to
the total number of steps out of s.

For the purposes of our study we defined two forms of the value
function. The optimistic function assumes that students will
take the best possible action in a given state and thus the best
possible route to a goal. The conservative function, by contrast,
assumes that they will follow the general probability distribution
of the dataset. Thus:

Conservative: Vi+1(s)=R+γ ·∑e∈Es
P(e)·Vi(ue)

Optimistic: Vi+1(s)=maxe∈EsR+γ ·P(e)·Vi(ue)

The former approach was used in the Hint Factory system
which uses interaction networks to generate data-driven hints
[15], while the latter is equivalent to a single option MDP [16].
Any iteration that maximizes over contracting functions like
these is, by definition, a contraction mapping [7]. Thus both
forms will converge over time to a stable value.

4. OUR EXTENSIONS
We built several different extensions to the existing BKT model
that are designed to take advantage of extra information in
the interaction network to separate tactical knowledge (when to
apply a skill) from procedural knowledge (how to apply a skill).

4.1 BKT-SR (BKT Skill Recognition)
BKT Skill Recognition (BKT-SR) is a semi-binary model that
predicts students’ behavior on a binary basis but reinforces on
a more complex paired. In it we maintain two separate BKT
models for each skill, one tracks procedural knowledge BKTHow,
and the the other tracks tactical knowledge BKTWhen. BKT-
SR assumes that the ideal skill will be used only if the student
correctly recognizes how to apply it, and knows that it is ideal.

The probability of answering a question correctly is the proba-
bility given by BKTHow multiplied by that given by BKTWhen.
The difference between the two models lies in their reinforce-
ment. BKTHow reinforces the skill component of the action
used, positively if it was used correctly. BKTWhen reinforces
skill component of both the action used AND the ideal action,
positively if they are the same, negatively otherwise.

4.2 RKT (Ranked Knowledge Tracing)
Our environment is not binary, there are almost always several
‘correct’ options of ranked quality for each state. We there-
fore introduce the ranked models, RKT and RKT-SR. These
models introduce a technique to give a probability distribution
over a set of ranked options from simpler single skill models.
The underlying model and reinforcement technique of RKT
and RKT-SR is similar to BKT however it can be replaced by
other comparable models so long as the reinforcement process
is modified appropriately. This approach gives us a rigorous
way to aggregate simple learner model predictions into a valid
probability distribution over all actions. Conceptually, RKT
tries the best option, if that fails it tries the second best, if that
fails it tries the third and so on, wrapping back to the first.

Let x be our current model state and let αi(x) be the probability
that a student can use the skill required for option i given state
x. Assuming the that the n skill options for a problem are given
in order, the probability of using the ith action is

pi(x)=
αi(x)

∏i−1
j=1(1−αj(x))

1−∏n
j=1(1−αj(x))

RKT’s underlying model uses a simple two state Hidden-Markov
Model (HMM) for each skill. State x is a vector of knowledge con-
fidence. While αi(x) is defined by taking the ith component as L,
and then calculating the probability as in standard BKT. RKT’s
update function is inspired by Bayes’ theorem but differs slightly
as our probability function is not linear. An exact, näıve imple-

Proceedings of the 10th International Conference on Educational Data Mining 187

mentation of an HMM would require that we sum over every
combination of skill knowledge, which is prohibitively expensive.

To illustrate the update algorithm, suppose skill k is applied in
state x, and that xj is the probability of knowing skill j, and
uj is x with the jth skill set to 1. We then calculate the new
value for skill j, yj, as:

yj =
pk(uj)·xj
pk(x)

After each update we apply our transition function only to the
ideal skill model. This function is applied in the same way as
in BKT. Here pi is convex in each argument, so our update will
keep L between 0 and 1. Further, it will increase L iff knowing
L will increase the chance of the given action. Thus the update
is consistent and in the appropriate direction.

4.3 RKT-SR (RKT Skill Recognition)
Like BKT-SR, RKT-SR tries to separate procedural and tactical
knowledge using two parallel RKTs, one for how and one for
when. Like RKT, for state x, let αi(x) denote confidence of
being able to apply the skill used in option i, and βi(x) denote
confidence of being able to identify when to use skill of option i.

In the RKT-SR approach we model the student’s process as
first noticing a set of options (how skill). Then, of the noticed
options, they rank them (when skill). And finally they select
the highest rank action to the best of their ability. Thus the
probability of doing action i is:

pi(x)=
∑

{i}∈S⊆[n]

1

1−∏j∈[n](1−αj(x))

∏

j∈S
αj(x)

∏

j∈[n]\S
(1−αj(x))

·
βi(x)

∏
j<i,j∈S(1−βj(x))

1−∏j∈S(1−βj(x))

This simplifies to:

pi(x)=
αi(x)βi(x)

1−∏k∈[n](1−αk(x))

∞∑

j=0

(1−βi(x))j

·
i−1∏

k=1

(αk(x)(1−βk(x))j+1+1−αk(x))

·
n∏

k=i+1

(αk(x)(1−βk(x))j+1−αk(x))

Assuming that each β is bounded away from 1 and 0, we can
approximate the infinite sum by taking a fixed number of terms,
then normalizing it. For the sake of efficiency, we limit the
number of terms to 3. We believe that RKT-SR has a convex
probability function like RKT. Thus we update it similarly, with
how and when updated independently.

Note that setting all αi=1 in this model yields RKT, as does
setting all βi = 1. Thus RKT does not necessarily claim that
either tactical or procedural knowledge is more important, since
modelling either one with the assumption that the other is trivial
yields the same model.

5. DATA SET
For this analysis we collected data from two semesters of an
undergraduate Discrete Mathematics course at NCSU where

Deep Thought is used. This dataset includes 4 class sections, 205
students, 2322 problem attempts, and 28640 individual steps.
Unfortunately the data includes several cases where individual
events were not logged such as the student entering or exiting the
program, and cases where events were logged out of order due to
network issues. While we cleaned these up as much as possible,
we still include 913 errors in our data that we could detect but
could not fix. While this missing data may contain important
information, the average student only had a few such errors, even
though 148 of the students had some kind of error in their logs.

In open-ended tutors like Deep Thought, problem-solving errors
(i.e. incorrect applications) are often treated in one of two ways.
Either the system records the mistake but leaves it onscreen and
does not permit it to hinder forward progress. Or the system
forces the student to fix or retract it immediately. In effect this
forces the user to always step back to their prior state before
moving on. Deep Thought adopts this latter approach. Conse-
quently it is possible to ignore user mistakes in our dataset or to
recognize them explicitly. With that in mind we tested our mod-
els with two different interaction networks. One network ignored
self-loops, thus ignoring mistakes, and the other included them.

For each state, we ranked the set of derived statements to obtain
a canonical order. Thus the states are dependant only on what
was derived, not how or when it was derived.

5.1 Deep Thought
Deep thought is an intelligent tutoring system for propositional
logic. Deep thought has been continually improved with hints
[15], worked examples [10], and proficiency profiling [9]. The
system’s assessments have been verified against student test
scores [8]. Deep Thought uses a GUI to guide students through
6 problem levels with increasing difficulty. Problems in Deep
Thought are presented as a set of logical assumptions, and
a statement which the student must to derive from them by
applying axioms of propositional logic.

6. METHODOLOGY
We first generated the networks using all of the student data.
This ensured that all actions taken by the students were in-
cluded in the graph thus simplifying our analysis. This was not
expected to bias in favor of any model. For the modeling step
we only calculated the error and reinforced the models based
upon steps with multiple correct options.

We used InVis to produce the graphs and perform the value
iteration [12]. We fixed the value of our goal states at 100, used a
negative immediate reward for each action of -1, and a discount
factor of 0.9. Every other state started with a value of 0.

When measuring error, we focus on the cases where the system
predicts that that a student will take the ideal action. We use
a running average as our baseline. For the present we are more
interested in the relative performance of our models than their
absolute performance against chance.

In many states there are two distinct ideal actions that lead to
different states with the same value. In this case, we want to
know if a student completed either one. To get the appropri-
ate probability of an ideal action we calculate the individual
probabilities of the two ideal actions and, assuming they are
independent, we then return the probability that either one is

Proceedings of the 10th International Conference on Educational Data Mining 188

performed. This approach works for simpler models like BKT
and PFA which return per-action probabilities. However it
may be unfairly penalizing RKT and RKT-SR, who return a
complete probability distribution.

We tested our models using 10 fold cross validation. Each model
was fit using an exhaustive grid search minimizing RMSE. Final
metrics were found by calculating the RMSE and AUC for each
fold, and then averaging them.

6.1 Applying Binary Models
BKT and PFA are not designed to handle non-ideal solutions,
thus their models do not tell us how to reinforce them in this
case. For each skill, we can reinforce the underlying knowledge
component of the skill positively (reward), or negatively (punish-
ment). Thus each model is seen as a black box, where we ”select”
skills to reinforce, and reward or punish it appropriately. In this
context we can reinforce the sklls that the student actually per-
formed as well as the ideal skills, which they may not. Here we
tested four different versions of BKT which differ in what skills
are selected for punishment and which are selected for reward.

Stock-BKT: This focuses solely on the students’ demonstrated
skills, ignoring idealness. It selects the skill used and rewards it
if the action is correct. ActualSkill-BKT: This focuses on the
students demonstrated skills, but with only the best possible ac-
tion considered correct. It selects the skill used and rewards it if
it is ideal. IdealApp-BKT: Focuses on whether or not the stu-
dent knows which action is ideal and penalizes them for anything
else. Selects the ideal skill and rewards if it was used ideally. The
model makes no change if they performed a correct, but non-ideal
use of the skill, and it punishes otherwise. IdealActual-BKT:
Attempts to model both using a joint probability distribution.
Thus it explicitly conflates knowing when to do something and
knowing how and then sets a standard of correctness consistent
with that. Selects both the ideal and the applied skills. If the
ideal skill is used it is rewarded, otherwise both are punished.

We chose to reinforce PFA and the running average using the
same selection model as in ActualSkill-BKT. For reference,
BKT-SR is equivalent to IdealActual-BKT times Stock-BKT,
reinforced independently.

6.2 Plotting Performance
In order to quickly check for skill acquisition, we developed
a visualization technique. For each student, we look at the
opportunities that they had to apply a skill ideally, and whether
they actually used it. We then plotted these frequencies for all
students on a single scatter plot.

Specifically, for each student x, and for each skill k, we make
vector kx, where the length of kx is the number of times when
skill k was ideal, with kxi 1 if the student used the ideal option
the ith time k was ideal, 0 otherwise. Let nx(i) be the set of
skills that were ideal at least i times. Define vx as

vxi =

∑
k∈nx(i)

kxi

|nx(i)|
Then we just plot each vx together on a scatter graph. For
comparison purposes we simulated data using BKT and plotted
it using this technique. In it, you can see a clear trend. This
trend is not clearly visible in our real data set. While some
tweaking of the parameters in the simulated data show slower

Figure 1: Real Data Performance

Figure 2: Simulated Performance

learning, they still show learning. Even graphs with errors look
almost identical to the ones shown irrespective of value iteration
algorithm. Thus this technique, while interesting, is ill-suited
to detect learning in this domain.

6.3 Model Fitting
We fit our parameters using exhaustive grid search. Grid search
often performs favorably with other fitting methods like EM
[14]. We define our grid by specifying the upper bound, the
lower bound, and the number of equal length steps between
them for each parameter. We chose the parameter bounds so
that no fit would be degenerate [17]. BKT-SR used the same
parameters to fit both the when and how subskills, but fits them
independently to save time. Similarly for RKT-SR.

We chose the resolution for our grid search model in these cases
to guarantee a similar amount of time per search, around 2

Proceedings of the 10th International Conference on Educational Data Mining 189

Table 1: Model Fitting Results
Optimistic Conservative

Model No Err Err No Err Err
RMSE AUC RMSE AUC RMSE AUC RMSE AUC

Average 0.451457 0.696120 0.438547 0.690875 0.465104 0.674632 0.446898 0.667558
PFA 0.454968 0.690093 0.442861 0.681035 0.469697 0.661166 0.451412 0.660922

Stock-BKT 0.493906 0.664096 0.489387 0.647382 0.492487 0.663387 0.495561 0.633865
ActualSkill-BKT 0.458204 0.676102 0.446208 0.671619 0.471135 0.656281 0.454614 0.646841
IdealApp-BKT 0.452686 0.699546 0.438583 0.709654 0.465627 0.681597 0.448043 0.686899

IdealActual-BKT 0.449347 0.697695 0.436518 0.704180 0.462758 0.682124 0.444161 0.684025
BKT-SR 0.452071 0.691284 0.469820 0.650012 0.465264 0.671495 0.479585 0.628389

RKT 0.450763 0.737032 0.437331 0.724183 0.464668 0.709409 0.447027 0.704591
RKT-SR 0.440841 0.739516 0.432296 0.729586 0.455561 0.715869 0.438965 0.713305

Table 2: KT Fitting Parameters
BKT BKTSR RKT RKTSR

L0 T G S L0 T G S L0 T G S L0 T G S
Min 0.1 0.02 0.04 0.02 0.2 0.03 0.04 0.03 0.2 0.06 0.07 0.06 0.3 0.06 0.08 0.1
Steps 5 5 5 5 4 4 4 4 3 4 4 3 2 3 3 2
Max 0.9 0.30 0.40 0.30 0.8 0.30 0.40 0.30 0.8 0.30 0.40 0.30 0.7 0.30 0.40 0.25

Table 3: Baseline Fitting Parameters
Running Avg PFA

Prior Avg Start β γ ρ
Min 0.00 1 -2.4 0.05 -1.25
Steps 21 21 9 9 9
Max 1.00 101 2.4 1.25 -0.05

hours, save for RKT-SR, which takes about 5 times as long as
RKT to run, and takes 10 times as long to fit using our grid
search. We determined that lowering the resolution any more
would make fitting ineffective. We expect that the real running
time could be greatly improved through code tweaks and by
using a more efficient implementation language.

7. RESULTS
The results of the optimistic and conservative value iteration are
largely equivalent, with every model predicting a little better
on the optimistic value iteration, including the running aver-
age. This is likely because the optimistic value iteration favors
the most frequently used options more than conservative value
iteration.

Stock-BKT, the standard how BKT, performed worse then
any other model across the board. This implies that tactical
knowledge is more important then procedural knowledge in this
domain. Surprisingly, removing all error observations does not
change the performance of Stock-BKT relative to the other
models.

ActualSkill-BKT does slightly worse then a running average, as
does PFA, but IdealApp-BKT, which reinforces the ideal skill
alone, performs better, trading blows with the running average.
This suggests that using the wrong skill is more an indication
that the right skill is not known, rather than that the used skill
is unknown. Ultimately it appears that they are more important
together, this is supported by the fact that IdealActual-BKT
outperforms both the other models and the running average.

BKT-SR does not perform as well as its when sub-component,
IdealActual-BKT. In fact, when we include errors in our data set,
BKT-SR does significantly worse. The fact that including errors
did not help Stock-BKT or BKT-SR was a surprise. This seems
to suggest that failing to use a skill correctly does not always stem
from not knowing that skill. We suggest that this is actually just
noise from random guesses. When looking at individual records,
we find that this is consistent with what we have seen in the logs.
There we find long stretches where students solve problems in
order followed by bursts of failed skill applications. Thus the
extra noise in the how component of BKT-SR hurts the model.

But, if we compare the more informed models, RKT and RKT-
SR, we get a better picture. RKT-SR is the best performing
model across the board with RKT second in terms of AUC,
and IdealActual-BKT second in RMSE. RKT and RKT-SR
incorporate more then just the ideal option, their predictions
incorporate all of the other skills into the probabilities. Thus
in BKT terms, the guess and slip are not constant, and they
depend upon the other options and upon how good the student
is with them. In line with this, RKT and RKT-SR reinforces
every applicable skill, not just a few.

Both RKT and RKT-SR assume that the options are ordered,
the conceptual difference is that RKT does not distinguish
between procedural and tactical knowledge. That is enough
to outdo all our other models (except RKT-SR) in terms of
AUC. Unlike our simpler models, incorporating both how and
when information further improves performance, as RKT-SR
outperforms RKT. So when and how are both different and
useful concepts, but separating them takes a little more effort
then BKT-SR.

8. CONCLUSIONS & FUTURE WORK
Open-ended tutoring systems are designed to teach students
not only how to apply a skill but when to do so. Classical
student modeling approaches, however, have focused entirely on
procedural knowledge and generally ignore tactical information.
In practice it is often difficult to assess whether or not students

Proceedings of the 10th International Conference on Educational Data Mining 190

are gaining this tactical knowledge and prior studies have either
assumed it or have been content to conflate the two.

In this paper we address this lack of information in two ways.
First we sought to visually inspect improvements in tactical
knowledge. We found that for real student data there is no
clear or statistically significant indication of improvement. We
therefore opted to develop novel student models that incorporate
this information and then to assess their performance on real
student data.

In future work we plan to enhance the structure of both our
experimental and baseline models. Since this project started,
there have been a number of interesting extensions to BKT,
such as adding forgetting, and latent student abilities [6]. We
did not implement these extensions, but they should be directly
applicable to this context, as well as to RKT and RKT-SR.

Additionally, Deep thought originally implemented interaction
networks for the purposes of hint generation [15]. Later im-
provements saw worked examples incorporated into it [10]. This
significantly effected student behaviour. Since none of our mod-
els integrate contextual data, we restricted our data to the
students that saw no worked examples. In future, we may
modify the update for the model to incorporate the worked
examples. This integration of contextual information has been
done before [13], but in this case it is probably more accurate
to apply a transition probability.

Many interactive tutors have solutions that can be expressed as
an interaction network and thus can be used with these methods.
These include Andes [18], and Pyrenees [2]. We will seek to
generalize these results by testing them on datasets collected
from these tools.

RKT and RKT-SR are new models which make strong assump-
tions. In future work we will reevaluate the behavior of these
models and the underlying assumptions that they make. RKT,
for example, assumes that quality is ranked, but removing that
assumption could change the model significantly.

RKT gives a valid probability distribution over all options, but
we have only tested its accuracy in predicting whether the ideal
action is used. We did not test whether or not it was accurate at
predicting which of the other actions would be used. This is be-
lieved to be an advantage of RKT, but we have not verified that.

9. ACKNOWLEDGMENTS
This research was supported in part by the Provost’s Professional
Experience Program (PEP) at North Carolina State University.

10. REFERENCES
[1] R. Bellman. A Markovian Decision

Process. Journal of Mathematics and Mechanics, 6, 1957.

[2] M. Chi and K. VanLehn. Meta-cognitive strategy
instruction in intelligent tutoring systems: How, when, and
why. Educational Technology & Society, pages 25–147, 2010.

[3] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge. User
modeling and user-adapted interaction, 4:253–278, 1995.

[4] M. Eagle, M. Johnson, and T. Barnes. Interaction networks:
Generating high level hints based on network community
clustering. In Proceedings of the fifth international
conference on educational data mining, pages 164–167, 2012.

[5] Y. Gong, J. E. Beck, and N. T. Heffernan. Comparing
knowledge tracing and performance factor analysis
by using multiple model fitting. In Intelligent Tutoring
Systems: 10th International Conference, pages 35–44, 2010.

[6] M. M. Khajah,
R. V. Lindsey, and M. C. Mozer. How deep is knowledge
tracing. In Proceedings of the 9th International Conference
on Educational Data Mining, pages 94–101, 2016.

[7] J. E. Marsden and M. J. Hoffman. Elementary
Classical Analysis. W.H. Freeman and Company, 1993.

[8] B. Mostafavi and T. Barnes.
Exploring the impact of data-driven tutoring methods
on students’ demonstrative knowledge in logic problem
solving. In Proceedings of the 9th International Conference
on Educational Data Mining, pages 460–465, 2016.

[9] B. Mostafavi, Z. Liu, and T. Barnes. Data-driven proficiency
profiling. In Proceedings of the 8th International Conference
on Educational Data Mining, pages 335–341, 2015.

[10] B. Mostafavi, G. Zhou, C. Lynch, M. Chi, and T. Barnes.
Data-driven worked examples improve retention and
completion in a logic tutor. In 17th International Conference
on Artificial Intelligence in Education, pages 726–729, 2015.

[11] Philip I. Pavlik Jr., H. Cen, and K. R. Koedinger.

Performance factors analysis âĂŞ a new alternative to
knowledge tracing. In Proceedings of the 2009 conference
on Artificial Intelligence in Education, pages 531–538, 2009.

[12] V. Sheshadri, C. Lynch, and T. Barnes. Invis: An edm tool
for graphical rendering and analysis of student interaction
data. In EDM 2014 (G-EDM 2014: Workshop on
Graph-based Educational Data Mining), pages 65–69, 2014.

[13] R. S.J.d. Baker, A. T. Corbett, and V. Aleven. More
accurate student modeling through contextual estimation
of slip and guess probabilities in bayesian knowledge
tracing. In Proceedings of the 9th International Conference
on Intelligent Tutoring Systems, pages 406–415, 2008.

[14] R. S.J.d. Baker, Z. A. Pardos, S. M.
Gowda, B. B. Nooraei, and N. T. Heffernan. Ensembling
predictions of student knowledge within intelligent
tutoring systems. In Proceedings of the 19th international
conference on User modeling, pages 13–24, 2011.

[15] J. C. Stamper, M. Eagle,
T. Barnes, and M. Croy. Experimental evaluation
of automatic hint generation for a logic tutor. In
Artificial Intelligence in Education, pages 345–352, 2011.

[16] R. S. Sutton and A. G. Barto. Reinforcement
learning: An introduction. MIT press Cambridge, 1998.

[17] B. Van De
Sande. Properties of the bayesian knowledge tracing model.
Journal of Educational Data Mining, 5(2):253–278, 2013.

[18] K. Vanlehn, C. Lynch,
K. Schulze, J. A. Shapiro, R. Shelby, L. Taylor, D. Treacy,
A. Weinstein, and M. Wintersgill. The andes physics
tutoring system: Lessons learned. International Journal
of Artificial Intelligence in Education, pages 147–204, 2005.

Proceedings of the 10th International Conference on Educational Data Mining 191

