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ABSTRACT

We show how the novel use of a semantic representation
based on Osgood’s semantic differential scales can lead to
effective features in predicting short- and long-term learning
in students using a vocabulary learning system. Previous
studies in students’ intermediate knowledge states during
vocabulary acquisition did not provide much information
on which semantic knowledge students gained during word
learning practice. Moreover, these studies relied on human
ratings to evaluate the students’ responses. To solve this
problem, we propose a semantic representation for words
based on Osgood’s semantic decomposition of vocabulary
[16]. To demonstrate our method can effectively represent
students’ knowledge in vocabulary acquisition, we build
models for predicting the student’s short-term vocabulary
acquisition and long-term retention. @ We compare the
effectiveness of our Osgood-based semantic representation to
that provided by Word2Vec neural word embedding [13], and
find that prediction models using features based on Osgood
scale-based scores (OSG) perform better than the baseline
and are comparable in accuracy to those using Word2Vec
score-based models (W2V). By using more interpretable
Osgood-based scales, our study results can help with better
understanding of students’ ongoing learning states and
designing personalized learning systems that can address an
individual’s weak points in vocabulary acquisition.

Keywords
Vocabulary learning, semantic similarity, prediction model,
intelligent tutoring system

1. INTRODUCTION

Studies of word learning have shown that knowledge of
individual words is typically not all-or-nothing. Rather,
people acquire varying degrees of knowledge of many words
incrementally over time, by exposure to them in context [9].
This is especially true for so-called “academic” words that are
less common and more abstract — e.g., pontificate, probity,
or assiduous [7]. Binary representations and measures model
word knowledge simply as correct or incorrect on a particular
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item (word), but in reality, a student’s knowledge level may
reside between these two extremes. Thus, previous studies of
vocabulary acquisition have suggested that students’ partial
knowledge be modeled using a representation that adding an
additional label corresponding to an intermediate knowledge
state [6] or further, in terms of continuous metrics for
semantic similarity [3].

In addition, there are multiple dimensions to a word’s
meaning [16]. Measuring a student’s partial knowledge on
a single scale may only provide abstract information about
the student’s general answer quality and not give enough
information to specify which dimensions of word knowledge
a student already has learned or needs to improve. In order
to achieve detailed understanding of a student’s learning
state, online learning systems should be able to capture
a student’s “learning trajectory” that tracks their partial
knowledge on a particular item over time, over multiple
dimensions of meaning in a multidimensional semantic
representation.

Hence, multidimensional representations of word knowledge
can be an important element for building an effective
intelligent tutoring system (ITS) for reading and language.
Maintaining a fine-grained semantic representation of a
student’s degree of word knowledge can be helpful for
the ITS to design more engaging instructional content,
more helpful personalized feedback, and more sensitive
assessments [17, 19]. Selecting semantic representations
to model, understand, and predict learning outcomes is
important to designing a more effective and efficient I'TS.

In this paper, we explore the use of multidimensional
semantic word representations for modeling and predicting
short- and long-term learning outcomes in a vocabulary
tutoring system. Our approach derives predictive
features using a novel application of existing methods in
cognitive psychology combined with methods from natural
language processing (NLP). First, we introduce a new
multidimensional representation of a word based on the
Osgood semantic differential [16], an empirically based,
cognitive framework that uses a small number of scales
to represent latent components of word meaning. We
compare the effectiveness of model features based on this
Osgood-based representation to features based on a different
representation, the widely-used Word2Vec word embedding
[13]. Second, we evaluate our prediction models using
data from a meaning-generation task that was conducted
during a computer-based intervention. Our study results
demonstrate how similarity-based metrics based on rich
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semantic representation can be used to automatically
evaluate specific components of word knowledge, track
changes in the student’s knowledge toward the correct
meaning, and compute a rich set of features for use in
predicting short- and long-term learning outcomes. Our
methods could support advances in real-time, adaptive
support for word semantic learning, resulting in more
effective personalized learning systems.

2. RELATED WORK

The present study is informed by three areas of research:
(1) studies of partial word knowledge; (2) the Osgood
framework for multiple dimensions of word meaning, and (3)
computational methods for estimating semantic similarity.

Partial Word Knowledge. The concept of partial word
knowledge has interested vocabulary researchers for several
decades, particularly in the learning and instruction of “Tier
2” words [20]. Tier 2 words are low-frequency and typically
have complex (multiple, nuanced) meanings. By nature,
they are rarely learned through “one-shot” learning or direct
definition. Instead, they are learned partially and gaps are
filled in over time.

Words in this intermediate state, neither novel nor fully
known, are sometimes called “frontier words” [5]. Durso
and Shore operationalized the frontier word as a word the
student had seen previously but was not actively using it [6].
Based on this definition, the student may have had implicit
memory of frontier words, such as general information like
whether the word indicates a good or bad situation or refers
a person or an action. They discovered that students are
more familiar with frontier words than other types of words
in terms of their sounds and orthographic characteristics [6].
This previous work suggested that the concept of frontier
words can be used to represent a student’s partial knowledge
states in a vocabulary acquisition task [5, 6].

In some studies, partial word knowledge has been
represented using simple, categorical labels, e.g., multiple-
choice tests that include “partially correct” response options,
as well as a single “best” (correct) response. In other studies,
the student is presented with a word and is asked to say
what it means [1]. The definition is given partial credit
if it reflects knowledge that is partial or incomplete. For
example, a student may recognize that the word probity
has a positive connotation, even if she cannot give a
complete definition. However, single categorical or score-
based indicators may not explain which specific aspects of
vocabulary knowledge the student is missing. Moreover,
these studies relied on human ratings to evaluate students’
responses for unknown words [6]. Although widely used
in psychometric and psycholinguistic studies [4, 16], hiring
human raters is expensive and may not be done in real time
during students’ interaction with the tutoring system.

To address these problems, we propose a data-driven method
that can automatically extract semantic characteristics of
a word based on a set of relatively simple, interpretable
scales. The method benefits from existing findings in
cognitive psychology and natural language processing. In
the following sections, we illustrate more details of related
findings and how they can be used in an intelligent tutoring
system setting.
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Semantic Representation & the Osgood Framework.
To quantify the semantic characteristics of a student’s
intermediate knowledge of vocabulary, this paper uses a
“spatial analogue” for capturing semantic characteristics of
words. In [16], Osgood investigated how the meaning of
a word can be represented by a series of general semantic
scales. By using these scales, Osgood suggested that the
meanings of any word can be projected and explored in a
continuous semantic space.

Osgood asked human raters to evaluate a set of words using a
large number of scales (e.g., tall-short, fat-thin, heavy-light)
and captured the semantic representation of a word [16].
Respondents gave Likert ratings, which indicated whether
they thought that a word meaning was closer to one extreme
(-3) or the other (43), or basically irrelevant (0). A principal
components analysis (PCA) was used to represent the latent
semantic features that can explain the patterns of response
to individual words within this task.

In our study, we suggest a method that can automatically
extract similar semantic information that can project a word
into a multidimensional semantic space. By using semantic
scales selected from [16], we verify if such representation of
semantic attributes of words is useful for predicting students’
short- and long-term learning.

Semantic Similarity Measures. Studies in NLP have
suggested methods to automatically evaluate the semantic
association between two words. For example, Markov
Estimation of Semantic Association (MESA) [3, 9] can
estimate the similarity between words from a random walk
model over a synonym network such as WordNet [14]. Other
methods like latent semantic analysis (LSA) are based on
co-occurrence of the word in a document corpus. In LSA,
semantic similarity between words is determined by using
a cosine similarity measure, derived from a sparse matrix
constructed from unique words and paragraphs containing
the words [10].

For this paper, we use Word2Vec [13], a widely used word
embedding method, to calculate the semantic similarity
between words. Word2Vec’s technique [11] transforms the
semantic context, such as proximity between words, into a
numeric vector space. In this way, linguistic regularities
and patterns are encoded into linear translations. For
example, using outputs from Word2Vec, relationships
between words can be estimated by simple operations on
their corresponding vectors, e.g., Madrid - Spain + France
= Paris, or Germany + capital = Berlin [13].

Measures from these computational semantic similarity tools
are powerful because they can provide an automated method
for evaluation of partial word knowledge. However, they
typically produce a single measure (e.g., cosine similarity or
Euclidean distance), representing semantic similarity as a
one-dimensional construct. With such a measure, it is not
possible to determine represent partial semantic knowledge
and changes in knowledge of latent semantic features as
word knowledge progresses from unknown to frontier to
fully known. In following sections, we describe how we
address this problem, using novel methods to to estimate
the contribution of Osgood semantic features to individual
word meanings.
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2.1 Overview of the Study

Based on findings from existing studies, this study will
suggest an automatized method for evaluating students’
partial knowledge of vocabulary that can be used to predict
students’ short-term vocabulary acquisition and long-term
retention. To investigate this problem, we will answer the
following research questions with this paper.

The first research question (RQ1): Can semantic similarity
scores from Word2Vec be used to predict students’ short-
term learning and long-term retention? Previous studies in
vocabulary tutoring systems tend to focus on how different
experimental conditions, such as different spacing between
question items [18], difficulty levels [17], and systematic
feedback [7], affect students’ short-term learning. This study
will answer how computationally estimated trial-by-trial
scores in a vocabulary tutoring system can be used to predict
students’ short-term learning and long-term retention.

RQ2: Compared to using regular Word2Vec scores, how does
the model using Osgood’s semantic scales [16] as features
perform for immediate and delayed learning prediction
tasks? As described in the previous section, the initial
outcome from Word2Vec returns hundreds of semantic
dimensions to represent the semantic characteristics of
a word. Summary statistics for comparing such high-
dimensional vectors, such as cosine similarity or Euclidean
distance, only provide the overall similarity between words.
If measures from Osgood scales work in a similar level
to models using regular Word2Vec scores for predicting
students’ learning outcomes, we can argue that it can
be an effective method for representing students’ partial
knowledge of vocabulary.

3. METHOD
3.1 Word Learning Study

This study used a vocabulary tutoring system called
Dynamic Support of Contextual Vocabulary Acquisition
for Reading (DSCoVAR) [8]). DSCoVAR aims to support
efficient and effective learning vocabulary in context. All
participants accessed DSCoVAR in a classroom-setting
environment by using Chromebook devices or the school’s
computer lab in the presence of other students.

3.1.1 Study Participants

Participants included 280 middle school students (6th to
8th grade) from multiple schools, including children from
diverse socio-economic and educational backgrounds. Table
1 provides a summary of student demographics, including
location (P1 or P2), age and grade level, sex. Location P1 is
a laboratory school affiliated with a large urban university in
the northeastern United States. Students from location P1
were generally of high socio-economic status (e.g., children
of University faculty and staff). Location P2 includes three
public middle schools in a southern metropolitan area of the
United States. All students from location P2 qualified for
free or reduced lunch. The study included a broad range of
students so that the results of this analysis were more likely
to generalize to future samples.

3.1.2  Study Materials

DSCoVAR presented students with 60 SAT-level English
words (also known as Tier 2 words). These “target words,”
lesser-known words that the students are going to learn,
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Table 1: The number of participants by grade and
gender

6th grade 7th grade 8th grade

Group | Girl | Boy | Girl | Boy | Girl | Boy
P1 16 28 19 23 18 13
P2 53 51 12 6 21 20

were balanced between different parts of speech, including 20
adjectives, 20 nouns, and 20 verbs. Based on previous works,
we expected that students would have varying degrees of
familiarity with the words at pre-test, but that most words
would be either completely novel (“unknown”) or somewhat
familiar (“partially known”) [8, 15]. This selection of
materials ensured that there would be variability in word
knowledge across students for each word and across words
for each student.

In DSCoVAR, students learned how to infer the meaning
of an unknown word in a sentence by using surrounding
contextual information. Having more information in a
sentence (i.e., a sentence with a high degree of contextual
constraint) can decrease the uncertainty of inference. In
this study, the degree of sentence constraint was determined
using standard cloze testing methods: quantifying the
diversity of responses from 30 human judges when the target
word is left as a fill-in-the-blank question.

3.1.3  Study Protocol

The word learning study comprised four parts: (1) a pre-
test, which was used to estimate baseline knowledge of
words, (2) a training session, where learners were exposed to
words in meaningful contexts, (3) an immediate post-test,
and (4) a delayed post-test, which occurred approximately
one week after training.

Pre-test. The pre-test session was designed to measure
the students’ prior knowledge of the target words. For
each target word, students were asked to answer two types
of questions: familiarity-rating questions and synonym
selection questions. In familiarity rating questions, students
provided their self-rated familiarity levels (unknown, known,
and familiar) for presented target words. In synonym-
selection questions, students were asked to select a synonym
word for the given target word from five multiple choice
options. The outcome from synonym-selection questions
provided more objective measures for students’ prior domain
knowledge of target words.

Training. Approximately one week after the pre-test
session, students participated in the training. During
training, students learned strategies to infer the meaning
of an unknown word in a sentence by using surrounding
contextual information.

A training session consisted of two parts: an instruction
video and practice questions. In the instruction video,
students saw an animated movie clip about how to identify
and use contextual information from the sentence to infer
the meaning of an unknown word. In the practice question
part, students could exercise the skill that they learned from
the video. DSCoVAR provided sentences that included a
target word with different levels of surrounding contextual
information. The amount of contextual information for
each sentence was determined by external crowd workers
(details described in Section 3.1.2). In the practice question
part, each target word was presented four times within
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different sentences. Students were asked to type a synonym
of the target word, which was presented in the sentence as
underlined and bold. Over two weeks, students participated
in two training sessions with a week’s gap between them.
Each training session contained the instruction video and
practice questions for 30 target words. An immediate post-
test session followed right after each training session.

Figure 1: An example of a training session question.
In this example, the target word is “education” with
a feedback message for a high-accuracy response.

| go to school because | want to get a good education.

Please enter ONE word that has the same meaning as the word That is correct

education

school

If you do not know the answer, make your best guess. If you can't think of an exact synonym, enter a
word with a closely related meaning.

Students were randomly selected to experience different
instruction video conditions (full instruction video vs.
restricted instruction video). Additionally, various difficulty
level conditions and feedback conditions (e.g., DSCoVAR
provides a feedback message to the student based on answer
accuracy vs. no feedback) were tested within the same
student. However, in this study, we focused on data
from students who experienced a full instruction video
and repeating difficulty conditions. Repeating difficulty
conditions included questions with all high or medium
contextual constraint levels. By doing so, we wanted to
minimize the impact from various experimental conditions
for analyzing post-test outcomes. Moreover, we filtered out
response sequences that did not include all four responses
for the target word. As a result, we analyzed 818 response
sequences from 7,425 items in total.

Immediate and Delayed Post-test. The immediate
post-test occurred right after the students finished the
training; the delayed post-test was conducted one week later.
Data collected during the immediate and delayed post-
tests were used to estimate short-and long-term learning,
respectively. Test items were identical to those in the pretest
session, except for item order, which varied across tests. For
analysis of the delayed post-test data, we only used the data
from target words for which the student provided a correct
answer in the earlier, immediate post-test session. As a
result, 449 response sequences were analyzed for predicting
the long-term retention.

3.2 Semantic Score-Based Features
We now describe the semantic features tested in our
prediction models.

3.2.1 Semantic Scales

For this study, we used semantic scales from Osgood’s study
[16]. Ten scales were selected by a cognitive psychologist as
being considered semantic attributes that can be detected
during word learning (Figure 2). FEach semantic scale
consists of pairs of semantic attributes. For example, the
bad-good scale can show how the meaning of a word can
be projected on a scale with bad and good located at either
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Figure 2: Ten semantic scales used for projecting
target words and responses [16].

e bad — good e complex — simple
e passive — active e fast — slow

e powerful — helpless e noisy — quiet

e big — small e new — old

e helpful — harmful e healthy — sick

end. The word’s relationship with each semantic anchor can
be automatically measured from its semantic similarity with
these exemplar semantic elements.

3.2.2  Basic Semantic Distance Scores

To extract meaningful semantic information, we have
applied the following measures that can be used to explain
various characteristics of student responses for different
target words. In this study, we used a pre-trained model
for Word2Vec,! built based on the Google News corpus
(100 billion tokens with 3 million unique vocabularies,
using a negative sampling algorithm), to measure semantic
similarity between words. The output of the pre-trained
Word2Vec model contained a numeric vector with 300
hundred dimensions.

First, we calculated the relationship between word pairs (i.e.,
a single student response and the target word, or a pair of
responses) in both the regular Word2Vec (W2V) score and
the Osgood semantic scale (OSG) score. In the W2V score,
the semantic relationship between words was represented
with a cosine similarity between word vectors:

Dw2v(w17w2) =1- |szm(V(w1), V(wQ))I (1)

In this equation, the function V returned the vectorized
representation of the word (wi or wz) from the pre-trained
Word2Vec model. By calculating the cosine similarity
between two vectors (a cosine similarity function is noted
as sim), we could extract a single numeric similarity score
between two words. This score was converted into a
distance-like score by taking the absolute value of the cosine
similarity score and subtracting from one.

For the OSG score, we extracted two different types of
scores: a non-normalized score and a normalized score. A
non-normalized score showed how a word is similar to a
single anchor word (e.g., bad or good) from the Osgood scale.

Sosg (w,ai,5) = sim(V (w), V(a:,5)) (2)

Dgsg (wi, w25 a:,5) = |Song (w1, ai,5)| — [Sosg (w2, ai )| (3)

In equation 2, a;; represents a single anchor word (j) in
the i-th Osgood scale. The similarity between the anchor
word and the evaluating word w was calculated with cosine
similarity of Word2Vec outcomes for both words. In a non-
normalized setting, the distance between two words given
by a particular anchor word was calculated by the difference
of absolute cosine similarity scores (equation 3).

The second type of OSG score is a normalized score. By
using Word2Vec’s ability to do arithmetical calculation of

LAPI and pre-trained model for Word2Vec was downloaded
from this URL: https://github.com/3Top/word2vec-api
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multiple word vectors, the normalized OSG score provided
a relative location of the word from two anchor ends of the
Osgood scale.

Sosg (wya:) = sim(V(w), V(ai,1) = V(ai2))  (4)

Dodg" (w1, wa;ai) = |Sgsq" (w1, ai) — Sodg" (w2, a:)|  (5)

In equation 4, the output represents the cosine similarity
score between the word w and two anchor words (as,1
and a;2). For example, if the cosine similarity score of
Sosg (w, a;) is close to -1, it means the word w is close to
the first anchor word a;,1. If the score is close to 1, it is vice
versa. In equation 5, the distance between two words was
calculated as the absolute value of the difference between
two cosine similarity measures.

3.2.3 Deriving Predictive Features

Based on semantic distance equations explained in the
previous section, this section explains examples of predictive
features that we used to predict students’ short-term
learning and long-term retention.

Distance Between the Target Word and the
Response. For regular Word2Vec score models and Osgood
scale score models, distance measures between the target
word and the response (by using equations 1 and 5) were
used to estimate the accuracy of the response to a question.
This feature represents the trial-by-trial answer accuracy of
a student response. Each response sequence for the target
word contained four distance scores.

Difference Between Responses. Another feature that
we used in both types of models was the difference between
responses. This feature could capture how a student’s
current answer is semantically different from the previous
response. From each response sequence, we could extract
three derivative scores from four responses.

Convex Hull Area of Responses. Alternative to
the difference between responses feature, Osgood scale
models were also tested with the area size of convex hull
that can be generated by responses calculated with non-
normalized Osgood scale scores (equation 3). For example,
for each Osgood scale, a non-normalized score provided
two-dimensional scores that can be used for geometric
representation. By putting the target word in an origin
position, a sequence of responses can create a polygon
that can represent the semantic area that the student
explored with responses. Since some response sequences
were unable to generate the polygon by including less than
three unique responses, we added a small, random noise
that uniformly distributed (between —10~* and 10™%) to all
response points. Additionally, a value of 1072° was added to
all convex hull area output to create a visible lower-bound
value.

Unlike the measure of difference between responses, this
feature also considers angles that can be created between
responses and the target word. This representation can
provide more information than just using difference between
responses.

3.3 Modeling

To predict students’ short-term learning and long-term
retention, we used a mixed-effect logistic regression model
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(MLR). MLR is a general form of logistic regression model
that includes random effect factors to capture variations
from repeated measures.

3.3.1 Off-line Variables

Off-line variables capture item- or subject-level variances
that can be observed repeatedly from the data. In this study,
we used multiple off-line variables as random effect factors.

First, results from familiarity-rating and synonym-selection
questions from the pre-test session were used to include
item- and subject-level variances. Both variables include
information on the student’s prior domain knowledge level
for target words. Second, the question difficulty condition
was considered as an item group level factor. In the analysis,
sentences for the target word that were presented to the
student contained the same difficulty level, either high or
medium contextual constraint levels, over four trials. Third,
a different experiment group was used as a subject group
factor. As described in Section 3.1.1, this study contains
data from students in different institutions in separate
geographic locations. The inclusion of these participant
groups in the model can be used to explain different
short-term learning outcomes and long-term retention by
demographic groups.

3.3.2 Model Building

In this study, we compared the performance of MLR models
with four different feature types. First, the baseline model
was set to indicate the MLR model’s performance without
any fixed effect variables but only with random intercepts.
Second, the response time model was built to be compared
with semantic score-based models. Many previous studies
have used response time as an important predictor of student
engagement and learning [2, 12]. In this study, we used two
types of response time variables, the latency for initiating
the response and finishing typing the response, as predictive
features. Both variables were measured in milliseconds over
four trials and natural log transformed for the analysis.
Third, semantic features from regular Word2Vec scores were
used as predictors. This model was built to show how
semantic scores from Word2Vec can be useful for predicting
students’ short- and long-term performance in DSCoVAR.
Lastly, Osgood scale-based features were used as predictors.
This model was compared with the regular Word2Vec score
model to examine the effectiveness of using Osgood scales for
evaluating students’ performance in DSCoVAR. For these
semantic-score based models, we tested out different types
of predictive features that were described in Section 3.2.3.
All models shared the same random intercept structure
that treated each off-line variable as an individual random
intercept.

For Osgood scale models, we also derived reduced-scale
models. Reduced-scale models were compared with the full-
scale model, which uses all ten Osgood scales. In this case,
using fewer Osgood scales can provide easier interpretation
of semantic analysis for intelligent tutoring system users.

3.3.3 Model Evaluation

To compare performance between different models, this
study used various evaluation metrics, including AUC (an
area under the curve score from a response operating
characteristic (ROC) curve), Fi (a harmonic mean of
precision and recall), and error rate (a ratio of the number of
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misclassified items over total items). 95% confidence interval
of each evaluation metric was calculated from the outcome of
a ten-fold cross-validation process repeated over ten times.

To select the semantic score-based features for models based
on regular Word2Vec scores and Osgood scale scores, we
used rankings from each evaluation metric. The model with
the highest overall rank (i.e., sum the ranks from AUC, Fi,
and error rate, and select the model with the lowest rank-
sum value) was considered the best-performing model for
the score type (i.e., models based on the regular Word2Vec
score or Osgood scale score). More details on this process
will be illustrated in the next section.

4. RESULTS
4.1 Selecting Models

In this section, we selected the best-performing model based
on the models’ overall ranks in each evaluation metric. All
model parameters were trained in each fold of repeated
cross-validation. We calculated 95% confidence intervals for
comparison. To calculate the confidence interval of F; and
error rate measures, the maximum (F7) and minimum (error
rate) scores of each fold were extracted. These maximum
and minimum values were derived from applying multiple
cutoff points to the mixed-effect regression model.

4.1.1 Predicting Immediate Learning

First, we built models that predict the students’ immediate
learning from the immediate post-test session.  From
models based on regular Word2Vec scores (W2V), the model
with the distance between the target and responses and
the difference between responses (Dist+Resp) provided the
highest rank from various evaluation metrics (Table 2).
From models based on Osgood scales (OSG), the model with
the difference between responses (Resp) provided the highest
rank.

The selected W2V model provided significantly better
performance than the baseline model. The selected OSG
model also showed significantly better performance than the
baseline model, except for the AUC score. The selected
W2V model was significantly better than the model using
response time features in the AUC score and error rates.

The selected W2V model showed significantly better
performance than the OSG model only with the AUC score.
Figure 3 shows that the W2V model has a slightly larger area
under the ROC curve than the OSG model. In the precision
and recall curve, the selected W2V model provides more
balanced trade-offs between precision and recall measures.
The selected OSG model outperforms the W2V model in
precision only in a very low recall measure range.

4.1.2  Predicting Long-Term Retention

We also built prediction models to predict the students’
long-term retention in the delayed post-test session. In
this analysis, a student response was included only when
the student provided correct answers to the immediate
post-test session questions.  Among W2V score-based
models, the best-performing model contained the same
feature types as the immediate post-test results (Table 3).
By using the distance between the target and responses
and difference between responses (Dist+Resp), the model
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achieved significantly better performance than the baseline
model, except for the AUC score.

For OSG models, the model with a convex hull area of
responses (Chull) provided the highest overall rank from
evaluation metrics (Table 3). The results were significantly
better than the baseline model, and marginally better than
the W2V model. Both selected W2V and OSG models were
marginally better than the response time model, except the
error rate of the OSG model was significantly better.

In Figure 3, the selected W2V model slightly outperforms
the OSG model in mid-range true positive rates, while
the OSG model performed slightly better in a higher true
positive area. Precision and recall curves show similar
patterns to those we observed from the immediate post-test
prediction models. The OSG model only outperforms the
W2V model in a very low recall value area.

4.1.3 Comparing Models

Compared to the selected W2V model in the immediate
post-test condition, the selected W2V model in the delayed
post-test retention condition showed a significantly lower
AUC score, marginally higher F; score, and marginally
higher error rate. In terms of OSG models, the selected OSG
model for delayed post-test retention showed a significantly
better F score and error rates than the selected OSG model
in the immediate post-test condition. Based on these results,
we can argue that Osgood scale scores can be more useful for
predicting student retention in the delayed post-test session
than predicting the outcome from the immediate post-test.

In terms of selected feature types, the best-performing
OSG models used features based on the difference between
responses (Resp) or the convex hull area (Chull) that was
created from the relative location of the responses. On the
other hand, selected W2V models used both the distance
between the target word and responses and difference
between responses (Dist+Resp). When we compared
both W2V and OSG models using the difference between
responses feature, we found that performance is similar in
the immediate post-test data. However, the OSG model
was significantly better in the delayed post-test data. These
results show that Osgood scale scores can be more useful for
representing the relationship among response sequences.

4.2 Comparing the Osgood Scales

To identify which Osgood scales are more helpful than
others for predicting students’ performance, we conducted
a scale-wise importance analysis. The results from this
section reveal which Osgood scales are more important than
others, and how the performance of prediction models with
a reduced number of scales is comparable with the full-scale
model.

4.2.1 Identifying More Important Osgood Scales

In this section, based on the selected Osgood score model
from Section 4.1, we identified the level of contribution for
features based on each Osgood scale. For example, the
selected OSG model for predicting the immediate post-test
data uses the difference between responses in ten Osgood
scales as features. In order to diagnose the importance level
of the first scale (bad—good), we can retrain the model with
features based on the nine other scales and compare the
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Table 2: Ranks of predictive feature sets for regular Word2Vec models (W2V) and Osgood score models
(OSG) in the immediate post-test data. All models are significantly better than the baseline model. (Bold:

the selected model with highest overall rank.)

W2V models OSG models

Features AUC Fy Err AUC Fy Err

baseline 0.68 [0.67, 0.69] (5) ]0.74 [0.73, 0.74] (5) 33 [0.33, 0.34] (5) [0.68 [0.67, 0.69] (5) [0.74 [0.73, 0.74] (5) [0.33 [0.33, 0.34] (7)
RT 0.69 [0.68, 0.70] (4) 0.75 [0.75, 0.76] (3) 31 [0.31, 0.32 ) 0.69 [0.68, 0.70] (2) |0.75 [0.74, 0.76] (2) |0.31 [0.31, 0.32] (2)
Dist 0.72 [0.71, 0.74] (1) [0.76 [0.75, 0.76] (2) 29 [0.28, 0.30 0.67 [0.66, 0.68] (7) |0.73 [0.73, 0.74] (7) |0.33 [0.32, 0.34] (6)
Resp 0.70 [0.69, 0.71] (3) [0.75 [0.74, 0.76] (4) |0.31 [0.30, 0.32 ) 0.69 [0.68, 0.70] (1)|0.75 [0.75, 0.76] (1)|0.31 [0.30, 0.32] (1)
Chull NA NA NA 0.69 [0.68, 0.70] (3) |0.74 [0.73, 0.75] (4) |0.32 [0.31, 0.33] (4)
Dist+Resp |0.72 [0.71, 0.73] (2)|0.76 [0.75, 0.77] (1)|0.29 [0.28, 0.30] (1)|0.68 [0.67, 0.69] (4) |0.74 [0.73, 0.75] (3) ]0.31 [0.31, 0.32] (3)
Dist+Chull|[NA NA NA 0.67 [0.66, 0.68] (6) |0.74 [0.73, 0.74] (6) ]0.33 [0.32, 0.34] (5)

Table 3: Ranks of predictive feature sets for W2V and OSG models in the delayed post-test data. All models
are significantly better than the baseline model. (Bold: the selected model with highest overall rank.)

Dist+Chull|NA NA NA

W2V models OSG models
Features AUC Fy Err AUC Fy Err
baseline 0.65 [0.64, 0.67] (5) [0.75 [0.74, 0.76] (5) [0.33 [0.32, 0.34] (5) [0.65 [0.64, 0.67] (5) [0.75 [0.74, 0.76] (7) [0.33 [0.32, 0.34] (7)
RT 0.67 [0.65, 0.68] (3) [0.76 [0.76, 0.77] (4) |0.31 [0.30, 0.32] (3) [0.67 [0.65, 0.68] (3) |0.76 [0.76, 0.77] (5) [0.31 [0.30, 0.32] (5
Dist 0.66 [0.64, 0.68] (4) [0.77 [0.76, 0.78] (3) |[0.31 [0.30, 0.32] (4) |0.66 [0.64, 0.68] (4) [0.78 [0.77, 0.79] (3) |0.30 [0.29, 0.31] (3)
Resp 0.69 [0.67, 0.71] (1) [0.77 [0.76, 0.78] (2) ]0.30 [0.29, 0.31] (2) [0.63 [0.61, 0.65] (7) |0.76 [0.75, 0.77] (6) |0.32 [0.31, 0.33] (6)
Chull NA NA NA 0.69 [0.68, 0.71] (1)|0.78 [0.77, 0.79] (2)|0.28 [0.27, 0.29] (1)

Dist+Resp |0.68 [0.66, 0.70] (2)|0.78 [0.77, 0.79] (1)|0.30 [0.29, 0.31] (1) [0.64 [0.62, 0.66] (6) [0.77 [0.76, 0.78] (4) |0.31 [0.29, 0.32] (4)

0.69 [0.67, 0.71] (2) [0.78 [0.78, 0.79] (1) [0.29 [0.27, 0.30] (2)

performance of the newly trained model with the existing
full-scale model.

In Table 4, we picked the top five scales that were
important in individual prediction tasks. We found that big-
small, helpful-harmful, complex-simple, and fast-slow were
commonly important Osgood scales for predicting students’
performance in immediate post-test and delayed post-test
sessions. Scales like bad-good and passive-active were only
important scales in the immediate post-test prediction.
Likewise, new-old was an important scale only in the delayed
post-test prediction.

Table 4: Scale-wise importance of each Osgood
scale. Scales were selected based on the sum of each
evaluation metric’s rank. (Bold: Osgood scales that
were commonly important in both prediction tasks;
*: top five scales in each prediction task including
tied ranks)

Imm. post-test Del. post-test
Scales AUC| Fy | Err | All AUC| Fy | Err | All
bad-good 1 1 1 1* 4 10 | 4 [§
passive-active 2 4 3 2% 8 6 6 7
powerful-helpless 7 9 6 7.5 10 8 10 10
big-small 3 3 4 3* 1 3 2 2%
helpful-harmful | 4 6 5 5.5%| 2 1 1 1*
complex-simple | 8 5 2 5.5%|| 3 5 7 4.5%
fast-slow 5 2 7 4* 6 4 3 3*
noisy-quiet 6 8 8 7.5 7 9 9 9
new-old 9 7 9 9 5 2 8 4.5%
healthy-sick 10 10 | 10 10 9 7 5 8

4.2.2  Performance of Reduced Models

Based on the scale-wise importance analysis results, we built
reduced-scale models that only contain features with more
important Osgood scales. The prediction performance of
reduced-scale models was similar or marginally better than
full-scale OSG models. For example, the OSG model for
predicting the immediate post-test outcome with the top
two scales (bad—good and passive—active) were marginally
better than the full-scale model (AUC: 0.71 [0.70, 0.72], Fi:
0.76 [0.75, 0.77], error rate: 0.30 [0.29, 0.30]). Similar results
were observed for predicting retention in the delayed post-
test (selected scales: helpful-harmful, big—small) (AUC: 0.71
[0.69, 0.72], Fy: 0.79 [0.78, 0.80], error rate: 0.28 [0.27,
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0.29]). Although differences were small, the results indicate
that using a small number of Osgood scales can be similarly
effective to the full-scale model.

S. DISCUSSION AND CONCLUSIONS

In this paper, we introduced a novel semantic similarity
scoring method that uses predefined semantic scales to
represent the relationship between words. By combining
Osgood’s semantic scales [16] and Word2Vec [13], we could
automatically extract the semantic relationship between
two words in a more interpretable manner. To show this
method can effectively represent students’ knowledge in
vocabulary acquisition, we built prediction models that can
be used to predict the student’s immediate learning and
long-term retention. We found that our models performed
significantly better than the baseline and the response-
time-based models. In the future, we believe results from
using an Osgood scale-based student model could be used
to provide a more personalized learning experience, such
as generating questions that can improve an individual
student’s understanding for specific semantic attributes.

Based on our findings, we have identified the following
points for further discussion. First, in Section 4.1, we
found that models using Osgood scale scores perform
similarly with models using regular Word2Vec scores
for predicting students’ long-term retention of acquired
vocabulary. However, we think our models can be further
improved by incorporating additional features. For example,
non-semantic score-based features like response time and
orthographic similarity among responses can be useful
features for capturing different patterns of false predictions
of current models. Moreover, some general measures to
capture a student’s meta-cognitive or linguistic skills could
be helpful to explain different retention results found even if
students provided the same response sequences. Similarly, in
Section 4.1.3, we found that Osgood scores can be a better
metric to characterize the relationship between responses
in terms of predicting students’ retention. A composite
model that uses both regular Word2Vec score-based feature
(target-response distance) and Osgood scale score-based
feature (response-response distance) may also provide better
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Figure 3: ROC curves and precision and recall curves for selected immediate post-test prediction models
Curves are smoothed out with a local polynomial
regression method based on repeated cross-validation results.

(left) and delayed post-test prediction models (right).
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prediction performance.

Second, we found that models with a reduced number of
Osgood scales performed marginally better than the full-
scale model. However, differences were very small. Since
this study only used some of the semantic scales from
Osgood’s study [16], further investigation would be required
to examine the validity of these scales, including other scales
not used for this study, for capturing the semantic attributes
of student responses during vocabulary learning.

Also, there were some limitations in the current study
and areas for future work. First, expanding the scope
of analysis to the full set of experimental conditions
used in the study may reveal more complex interactions
between these conditions and students’ short- and long-
term learning. Second, this study used a fixed threshold
of 0.5 for investigating false prediction results. However, an
optimal threshold for each participant group or prediction
model could be selected, especially if there are different false
positive or negative patterns observed for different groups
of students. Lastly, this study collected data from a single
vocabulary tutoring system that was used in a classroom
setting. Applying the proposed method to data that was
collected from a non-classroom setting or other vocabulary
learning system would be useful to show the generalization
of our suggested method.
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