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ABSTRACT
This paper addresses the question of identifying a concept depen-
dency graph for a MOOC through unsupervised analysis of lecture
transcripts. The problem is important: extracting a concept graph
is the first step in helping students with varying preparation to un-
derstand course material. The problem is challenging: instructors
are unaware of the student preparation diversity and may be unable
to identify the right resolution of the concepts, necessitating costly
updates; inferring concepts from groups suffers from polysemy; the
temporal order of concepts depends on the concepts in question.
We propose innovative unsupervised methods to discover a directed
concept dependency within and between lectures. Our main tech-
nical innovation lies in exploiting the temporal ordering amongst
concepts to discover the graph. We propose two measures—the
Bridge Ensemble Measure and the Global Direction Measure—to
infer the existence and the direction of the dependency relations
between concepts. The bridge ensemble measure identifies concept
overlap between lectures, determines concept co-occurrence within
short windows, and the lecture where concepts occur first. The global
direction measure incorporates time directly by analyzing the con-
cept time ordering both globally and within lectures. Experiments
over real-world MOOC data show that our method outperforms the
baseline in both AUC and precision/recall curves.

Keywords
Concept Dependency Graph, Temporal Order, Bridge Ensemble
Measure, Global Direction Measure, Edge Direction, Edge Existence.

∗King AbdulAziz University, Jeddah, Saudi Arabia.

1. INTRODUCTION
This paper presents two methods to identify extant concept relation-
ships in lectures from a Massive Open Online Course (MOOC).

The problem of concept relationship discovery within MOCCs will
help adapt to learner diversity where students from all over the globe
take classes fromMOOCs. Developing a fine-grainedmap of the con-
cepts presented in the MOOC, indicating pre-requisite relationships,
can facilitate students browsing into course materials flexibly. In
addition, such a map can help in emphasizing the important topics in
the course and how they are related, which can help improve students
understanding. It can be further used to represent the knowledge
state of a student at the concept level, and thus enable personalization
in recommending course materials or quiz questions to students. In
this paper, our goal is to construct such a map automatically for any
course in order to accommodate students’ diversity by supporting
personalized learning.

Generating such a concept dependency graph presents a number of
challenges. First, the instructor cannot predict the prior preparation
of the students taking the class or the granularity at which she
should develop the concept graph, and ensuring that such a concept
graph remains up to date every year is time consuming. Second, an
instructor does not introduce concepts in a rigid order, wherein she
will always present the prerequisite concept before introducing the
main concept; which makes it difficult in determining the presence
and the direction of a relationship between concepts.

We propose innovative unsupervised methods to discover a directed
concept dependency graph. We use lecture transcripts, as do Chaplot
and Koedinger [2], to model the dependency structure between
course concepts. Where Chaplot and Koedinger focus on modeling
the prerequisite structure between units or lectures, we instead focus
on inferring the dependency structure among concepts that appear
within and between lectures. Our main technical innovation lies
in exploiting the temporal ordering amongst concepts to discover
the graph. To the best of our knowledge, we are the first to use
temporal features to construct the dependency graph. We propose two
measures—the Bridge Ensemble Measure and the Global Direction
Measure—to infer the existence and the direction of the dependency
relations between concepts.Both proposed measures outperform the
baseline method [2] in AUC and the precision/recall curves.



The rest of the paper is organized as follows. In section 2, we formally
frame our problem before describing the two proposed measures in
section 3. Section 4 elaborates our approach for the evaluation and
section 5 presents some limitations. Finally, we discuss some related
work in section 6 before concluding our work on section 7.

2. PROBLEM DEFINITION
Informally, the problem explored in this work can be stated as follows:
given course data, predict the dependency relationships between the
course concepts. More formally, let X be the course represented
by an ordered list of transcripts corresponding to each lecture:
X = [T1,T2, . . . ,TM ]where M is the total number of lectures. LetCX

be the set of concepts discussed in the course CX = {c1, c2, . . . , cN },
where N is the total number of unique concepts. Given X andCX , we
aim to generate the concept dependency graph that relates concepts
in CX according to their prerequisite relationships. The resulting
concept dependency graph is described by an edge weight matrix
A ∈ RN×N . Each entry ai j of matrix A will contain the edge weight
for the associated relationship ci → cj , which means concept ci
is a prerequisite for concept cj . The edge weight reflects the level
of confidence in the inferred relationship. Notice that since the
prerequisite relationship has a direction, A is not symmetric.

A =


0 ... ... W(c1 → cN )

W(c2 → c1) 0 ... W(c2 → cN )
... ... ... ...

W(cN → c1) W(cN → c2) ... 0


The problem of constructing the concept dependency graph can be
reduced to the problem of computing the edge weight between pairs
of concepts given course data.

3. LINKING COURSE CONCEPTS
To relate the course concepts according to their dependency relation-
ships, we propose two measures: the Bridge Ensemble Measure and
the Global Direction Measure.

3.1 Bridge Ensemble Measure
The Bridge Ensemble Measure (BEM) captures concept dependency
structure utilizing inter-lecture and intra-lecture strategies. It contains
three components: Bridges, Sliding Windows, and the First Lecture
Indicator.

3.1.1 Bridges
Let us look at how instructors naturally introduce concepts and their
prerequisite(s). Let CX be the set of concepts presented in course X
and let ca and cb be concepts in that set. Determining the presence of
a concept ca in a lecture transcript Ti is discussed further in section
4.1. Suppose that ca is a prerequisite to cb . Then it stands to reason
that (1) ca will be introduced before cb in the course progression,
and (2) while explaining or talking about cb , the instructor will
naturally refer to ca .

Bridge concepts allow us to exploit the temporal nature of lectures
to infer concept dependency relationships across lectures. Intuitively,
bridge concepts are introduced in an earlier lecture but re-appear in a
later lecture when some new concept(s) are introduced. Accordingly,
bridge concepts signal a prerequisite relationship from the bridge
concepts to the new concepts introduced in the later lecture. For
example, in Figure 1, the bridge concepts c3 and c4 are more likely
to be prerequisite to concepts c5, c6, and c7 discussed in lecture L2.
Formally, let Li be the set of concepts in the lecture i in course X ,

C1

C2

C3

C4

C5

L1 L2

C6

C7

Figure 1: The bridging concepts (c3 and c4) between
lecture L1 and L2 and the resulting candidate prerequisite
relationships.

and Lj be the set of concepts for the lecture j where j > i. The
intersection Lj ∩ Li contains all the concepts that appear in both
lectures. We call these bridge concepts. The difference Lj \ Li
contains difference concepts which are the concepts present in the
later lecture j but not in the earlier lecture i. If ca belongs to the
bridge concepts and cb belongs to the difference concepts, then
there is evidence for the dependency relationship ca → cb and the
edge weight W(ca → cb) should increase. As a result, the bridge
set Bji = {(ca → cb) | ca ∈ Lj ∩ Li ∧ cb ∈ Lj \ Li} contains all
candidate prerequisite edges from lecture Li to lecture Lj . If we
replicate this exercise for every possible pair of lectures, we will end
up with a comprehensive set of all possible candidate bridge edges
Bridges for the course:

Bridges = BM(M−1) ∪ BM(M−2) ∪ ... ∪ B21 (1)

To calculate the edge weight of candidate edges in Bridges, we use
the following bridge scoring function

W(ca → cb) ≈ FBridges(ca → cb) (2)

where

FBridges(ca → cb)

=
The number of lectures where we observe both ca and cb

The number of lectures where we observe cb

=
|{Lj |ca, cb ∈ Lj }|
|{Lj |cb ∈ Lj }|

. (3)

Keep in mind that the bridge scoring function will only calculated
for candidate edges belong to Bridges. Other pairs of concepts will
have zero value for the bridging score.

3.1.2 Sliding Windows
Bridge edges determined by the Bridge Method do not capture every
possible prerequisite relationship. Consider the case where concept
cb has a strong prerequisite ca , but ca and cb only appear together
either in the set of bridge concepts (Lj ∩Li) or in the set of difference
concepts (Lj \Li). As a result, ca → cb will never appear inBridges
and hence the Bridge method cannot infer the prerequisite relations
between them.

To solve this problem and capture intra-lecture prerequisite rela-
tionships, we zoom into each lecture and consider the proximity of
concepts being presented in the lecture. Let ®Lj = [c1, c2, ..., cn] be
an ordered list of concepts discussed in lecture j, where n is the total
number of concepts. Keep in mind that this ordered list contains
redundant concepts which appear in the order where the instructor
mentioned them. In the sliding windows method, we segment ®Lj



C1 C2 C1 C3 C4 C2 C1 C5 C6 C7Lj =
W1 Wr

K = 4
t0 t1 t2 ………………………… tn-1tn-2

Figure 2: A visualization example of lecture ®Lj with
r = n − K + 1 sliding windows of size K = 4. The sliding
windows captures the proximity of concepts.

into windows Wi = [ci, . . . , ci+K−1] as follows:

Windowsj =
{
{Wi | 1 ≤ i ≤ n − K + 1} n ≥ K{
®Lj

}
n < K .

(4)

Figure 2 depicts the representation of lecture ®Lj using r = n−K + 1
windows of size K = 4. In this study, we choose the K that gives the
best performance; K is set to 10 concepts.

The more windows in which ca and cb appear together, the stronger
the relationship between ca and cb is; thus the edge weight should
increase. The second component of the BEM for edge weights is
the probability of the edge ca → cb given the information we have
about all windows in all lectures Windows =

⋃
j Windowsj .

W(ca → cb) ≈ FBridges(ca → cb) + FWindows(ca → cb) (5)

Where:

FWindows(ca → cb)

=
The number of windows where we observe ca and cb together

The number of windows where we observe cb

=
|{Wi ∈Windows | ca, cb ∈ Wi}|
|{Wi ∈Windows | cb ∈ Wi}|

(6)

We choose to accumulate the bridge weight with the sliding windows
weight because these methods complement each other. Some edges
that captured by the sliding windows method have zero bridging
score and vice versa. Multiplying these two components instead of
accumulating them would eliminate their effect in capturing inter-
and intra-lecture prerequisite edges as the value of these edges will
be zero.

3.1.3 First Lecture Indicator
The third component of the BEM for edge weights comes from the
intuition that the context (other observed concepts) in which a new
concept cb is first introduced plays a strong role in determining what
the prerequisite concepts of cb are. We will assume that cb is first
introduced in lecture j when it has the highest term frequency of the
concept cb compared to other lectures. We call j the lecture indicator
of cb and denote it by LI(cb). When concept ca appears in the lecture
indicator of cb (ca ∈ LLI (cb )), then ca might be a prerequisite to
cb . Another condition we need to examine is the temporal order of
the lecture indicator of concept ca. Naturally, when the instructor
discusses a new concept, he or she needs to explain its prerequisite
concepts beforehand, either in earlier lectures or in the same lecture
where the new concept is being introduced. More formally, then,
LI(ca) ≤ LI(cb). Thus when calculating W(ca → cb) we consider
the first lecture indicator variable FLIca,cb where:

FLIca,cb =

{
1, if ca ∈ LLI (cb ) and LI(ca) ≤ LI(cb)
0, otherwise

C1 C2 C3 C2 Cj C1X =

C1 C2 C3 ……

C1 0 2 1 ……

C2 1 0 1 ……

C3 1 1 0 ……

: : : : ::::::

Global Direction 
Indicator 

(Before Normalization)

Figure 3: A visualizing explanation of the Global Di-
rection Indicator. X represents the course. The matrix
contains the Global Direction Indicator (Before the nor-
malization). Each element in the matrix represents how
many times the concept crow appears before the concept
ccolumn in the whole entire course.

The BEM for edge weights now becomes:

W(ca → cb) ≈ FBridges(ca → cb)
+ FWindows(ca → cb) + FLIca,cb (7)

3.2 Global Direction Measure
The Global Direction Measure (GDM) is an alternative measure
we propose to capture the dependency relationships between course
concepts by incorporating time directly to consider not only the time
ordering within lectures but also globally throughout the course
delivery. In the Bridge Ensemble Measure, one problem with the
sliding windows method is that the temporal order of concepts within
a window Wi is ignored. This seems reasonable since in a single
window, the instructor might mention the dependent concept before
the prerequisite concepts. However, utilizing the temporal order of
concepts in the entire course might improve the inference of the
direction of the dependency relation. Thus, we propose the idea of
the Global Direction Indicator (GDI).

The global direction indicator keeps track of the global temporal
order frequency of concepts discussed in the course. In other words,
it captures how many times concept ca appears before concept cb in
the whole entire course. The more the concept ca appears before the
concept cb , the more likelihood that the direction of the prerequisite
relation is from ca to cb (ca → cb). To capture the global direction
indicator, we represent the course X as an ordered list of concepts dis-
cussed in all course lectures: ®X = [c11, c12, ..., ci j, ..., cM1, cM2, ...]
where i is the lecture number, j is the concept number, and M is
the total number of lectures. Then, we keep track of temporal order
frequency between any pair of concepts in the whole entire course.
Figure 3 depicts the idea of the global direction indicator.

The formula of the global direction indicator is as follow:

GDI(ca, cb) =
TOF(ca → cb)∑

ci ∈CX
TOF(ca → ci)

(8)

where TOF is the temporal order frequency, ci are all concepts
appear after ca in the course progression. We normalize the TOF of
ca → cb by the total number of times ca appears before any other
concept in the course to reduce the impact of popular concepts that
tend to appear before almost every other concept in the course.

In addition to the global direction indicator, we modify the sliding



windows method to consider the local temporal order of concepts
within a single window:

FDir-Windows(ca → cb)

=
The number of windows where we observe ca → cb

The number of windows where we observe cb

=
|{Wi ∈Windows | ca → cb ∈ Wi}|
|{Wi ∈Windows | cb ∈ Wi}|

(9)

In this case, the directed sliding windows (Dir-Windows) method
captures not only the proximity of pair of concepts but also the local
direction within lectures while the global direction indicator captures
the frequency of the global direction.

The edge weight function according to the GDM is as follow:

W(ca → cb) ≈ GDI(ca, cb) × FDir-Windows(ca → cb) (10)

The rationale behind combining the GDM Components by multiply-
ing them instead of accumulating them is to use the global direction
indicator to improve the direction of edges predicted by the directed
windows instead of predicting the existence of edges. The problem
with the global direction indicator in predicting the edge existence
is that it might give high weight to concepts that appear very often
with the same direction order even if they do not appear together in
any lecture.

4. EVALUATION
In this section, we demonstrate the evaluation process conducted
to assess the performance of the proposed measures. We utilize the
course “Text Retrieval and Search Engines”1 to construct the concept
dependency graph to evaluate our developed measures.

4.1 Building the Course Concept Space
The focus of ourwork is on understanding how to infer the dependency
relationship between concepts, but in order to evaluate the proposed
measures, we must first construct a set of concepts. There is a wide
body of work which attempts to solve the problem of defining and
inferring concepts [3, 9, 10]. In this paper, we use a pre-trained part-
of-speech-guided phrasal segmentation, called Autophrase [10, 8], to
extract salient phrases from lectures’ transcripts. While Autophrase
generates many good salient phrases, some phrases are either too
general or are verb phrases. Our approach to improve the quality
of the selected phrases is to extract phrases from weekly overviews
using the same phrasal segmentation method. At the beginning of
each week in the course, there is a week overview page that explains
the goals and objectives of that week along with the key phrases and
concepts that students need to understand. Utilizing the overview
page of each week aids in filtering out meaningless phrases.

After extracting salient phrases, we manually group synonym phrases
together to construct a concept. We follow Siddiqui et al. [11]
definition of concepts by defining a concept as a set of salient phrases
that describe it. This design decision was made to allow for flexibility
in concept description since the same concept can be referred to
using different phrases by different people.

4.2 Ground Truth
To evaluate the effectiveness of the proposed measures, we form
a ground truth concept graph by leveraging students submissions
1https://www.coursera.org/learn/text-retrieval
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Figure 4: The visualization of the ground truth graph
generated from students data.

about concept dependencies in a course (CS 410) at UIUC offered in
the Spring 2017 semester that follows Coursera’s “Text Retrieval and
Search Engines.” Students were asked to submit a weekly summary
of new concepts they have learned along with prerequisite concepts.
The following is an example of a student entry from week 3:

# f-measure: precision, recall
# pr curve: precision, recall
# map: arithmetic mean of average precision
# gmap: geometric mean of average precision

The total number of edges in the ground truth were 239 edges for
74 concepts in the concept space. Figure 4 visualizes the ground
truth concept graph to see how concepts are related. It is clear that
concepts such as “information retrieval”, “search engines”, “ranking
function”, and “evaluation methodology” have higher degree as these
concepts are connected with many other concepts in the course. This
is reasonable as these concepts considered fundamental in this course.
Such a figure can also be seen as a useful topic map that can facilitate
students browsing into course materials covering different topics
flexibly; however, the map shown in this figure was constructed
based on student submissions—with the proposed methods, we can
construct such a map automatically for any course.

4.3 Baseline Approach
Since the problem formulation of using only transcripts to predict
concept dependency is novel, strictly speaking, no previous method
can be directly used to produce the desired output. The closest work
that we can compare with is the work of Chaplot and Koedinger [2],
which also only uses course content without any external knowledge.
In their paper, they develop two methods: a text-based method called
the overlap method, and a performance-based method. Since our
work is a text-based method, we compare our measures to the overlap
method. The main difference between our work and the overlap
method is that we exploit the temporal features of course delivery
while the overlap method does not; this makes the overlap method
an ideal baseline to study the effect of the temporal features on the
accuracy of edge prediction.

The overlap method, however, only predicts the prerequisite relations



Table 1: Performance (area under ROC curve) of concept
graph generation for the three methods considered. Both
of the new measures introduced in the paper outperform
the state-of-the-art ExtendedOverlap method on both edge
existence and edge direction tasks.

AUC (ROC)

Method Existence Direction

Bridge Ensemble Measure 0.80 0.81
Global Direction Measure 0.80 0.78
ExtendedOverlap Method 0.74 0.74
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Figure 5:ThePrecision/RecallCurves ofBridge Ensemble
Measure (BEM), Global Direction Measure (GDM), and
the baseline ExtendedOverlap Method (EOM). GDM and
BEM outperform the baseline method (EOM) in both the
existence evaluation and direction evaluation.

between units (e.g. lectures) using the text overlap between units.
Thus the method cannot be used directly to predict dependency
between concepts, the problem that we attempt to solve. Therefore,
we propose an extension called ExtendedOverlap for solving our
problem as a baseline for comparison. Ourmain idea for extending the
overlap method is to first map a course to a set of lectures where the
concept occurred and then leverage the lecture dependency relations
predicted using the overlapmethod to assess the dependency between
two concepts by accumulating the weight of the dependency relations
of lectures they belong to. All weights are normalized to be between
zero and one. We implemented the overlap method using the noun
phrases with document frequency normalization since they achieve
the highest performance [2].

4.4 Concept Graph Performance
We conduct the evaluation of the performance of the generated con-
cept graphs over two dimensions: edge existence and edge direction.
Edge existence evaluates whether the method predicts correct edges
or not while edge direction evaluation ensures not only the correct-
ness of the edge prediction but also their direction. The AUC values
of all the methods are shown in Table 1. We can notice that both the
Bridge Ensemble Methods (BEM) and Global Direction Measure
(GDM) outperform the baseline ExtendedOverlap (EOM) in terms
of the AUC values for both the existence task and the direction task.

We also use the precision/recall curve to compare various methods
as shown in Figure 5. It appears that the Global Direction Measure
has the highest curve followed by the Bridge Ensemble Measure
in both dimensions. This indicates that for various recall values
our measures predict more accurate edges than the baseline. It is
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Figure 6: The comparison between the performance of
the Bridge Ensemble Measure components. While the
undirected sliding windows correctly captured the edge
existence in the interval [0.0, 0.2], it fails at predicting
edge directions.

also interesting to notice that in the precision/recall curve of the
existence evaluation (Figure 5 (a)), the Bridge Ensemble Measure
has the highest precision when the recall is less than 0.1 while
in the precision/recall curve of the direction evaluation (Figure 5
(b)) has the lowest precision until it reaches the recall value of 0.2.
This indicates that, in the interval [0.0,0.2], the Bridge Ensemble
method captures the existence of the edges but fails at specifying the
correct direction. To examine the reason, we study the performance
of various components of the Bridge Ensemble Measure as depicted
in Figure 6. It is appear that the undirected sliding windows method
has the highest curve in the existence evaluation (Figure 6 (a)) and
since it only captures the proximity of pair of concepts and how
they are related, it surges the precision/recall curve of the existence
performance in the interval [0.0,0.2] by capturing correct prerequisite
edges. However, since the temporal feature is only used in limited
way as a binary variable among lectures through bridges and first
lecture indicator components, it sometimes fails at predicting the
correct direction of edges between concepts that only appears within
the same lectures. In contrast, the Global Direction Measure exploits
the global direction indicator that keeps track of the global temporal
order frequency and hence emphasizes or corrects the direction
captured by the directed sliding windows method as depicted in
Figure 7. It is clear from Figure 7 that the global direction indicator
improves the edge direction of the directed windows method when
the recall value is less than 0.2 while it emphasize the edge direction
of the directed windows after that.

To further analyze the differences between the Bridge EnsembleMea-
sure and the Global Direction Measure, we examine their behavior
in the existence dimension. We found that all true positive edges and
false positive edges captured by Global Direction measure are also
captured by Bridge Ensemble Measure. However, Bridge Ensemble
Measure has more false positive edges (59 edges) and more true
positive edges (only 4 edges). We examine the source of the extra
false positive edges in the Bridge Ensemble Measure and found that
73% came from the bridge method, 3% came from the first lecture
indicator, and 22% are from both the bridge method and the first
lecture indicator while the sliding windows has zero contribution
(0%). Further examination of these extra false positive errors shows
that some of them capture long distance dependencies such as the
relation “natural language processing”→ “recommender systems”,
which captures the dependency between the concepts explained in
the first and last lectures. By examining the source of this relation, we
found that the bridge method makes the inference of the relation. As
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Figure 7: The effect of the global direction indicator on
the Global Direction Measure. The GDI improves the edge
direction of the directed windows method when the recall
value is less than 0.2 while it emphasize the edge direction
of the directed windows after that

mentioned earlier, bridge method captures the dependency relations
between concepts across lectures and, in contrast to the sliding win-
dows method, it does not require the proximity of concepts within
lectures’ transcripts. This property of the bridge method gives the
Bridge Ensemble Measure the ability to capture long distance rela-
tions between concepts in contrast to the Global Direction Measure
which only captures the local dependencies between concepts (within
lectures).

We also conduct a qualitative analysis of the false positive edges to
examine the reason of the high values and hence the low precision
values. We found three types of false positive edges that we may
actually consider correct relations. First, the transitive property edges
that are captured by our measures are not always specified in the
ground truth edges. For example, students specify the relations
“length normalization”→ “ranking function”, and “ranking function”
→ “vector space model”. While both our measures and the baseline
capture these relations, they go further and also capture the transitive
relation “length normalization”→ “vector space model”. Second,
there are issues with relations with differing concept granularities.
For instance, students specify a dependency relation “language
models”→ “dirichlet prior smoothing” while the generated graphs
by the three methods capture the relation “language models” →
“smoothing methods.” The concept “smoothing methods” is more
general than the concept “dirichlet prior smoothing.” Third, there
are missing “true” relations that the students did not specify in the
ground truth. For example, students did not specify the following
relations that are captured by our measures: “tfidf”→ “bm25”, and
“length normalization”→ “bm25.” In general, the three types of false
positive errors can justify to some extent the high values of the false
positive errors and thus the low values of the precision.

In general, the Bridge Ensemble Measure and the Global Direc-
tion Measure outperform the baseline in terms of AUC and preci-
sion/recall curves, with the Global Direction Measure having the
overall highest performance. These results emphasize the positive
effect of the temporal feature on improving the accuracy of the
generated concept graph.

5. LIMITATIONS
There are some limitations in our study. First, in the evaluation we
have not examined the robustness of our measures compared to
the baseline utilizing other courses taught by different instructors.
Second, we use the students’ perspectives of the concept dependency

graph as a ground truth, and we are the first study to do so. However,
in the future we plan to compare various methods’ performance by
utilizing not only the students’ perspectives of the concept graph but
also one generated by instructors. Third, in this study, we include an
edge in the ground truth even if only one student specifies it; in the
future we plan to use some agreement measures before including an
edge in the ground truth. Fourth, we represent the course concept
graph according to the dependency structure without distinguishing
whether the dependency relation captures the hierarchical structure
or real prerequisite relationships. We believe that the ideal structure
of the concept dependency graph is a hierarchical graph with cross
link edges where the hierarchical structure captures the “general
concept” to “specific concept” relations while the cross links depict
the prerequisite relationships between concepts.

6. RELATED WORK
Most prior work focuses on relationships between concepts such
as similarity relations [13] and hierarchical relations [5]. Although
the most important concept relation to learners is the dependency
or prerequisite relation, this relation has been the least studied [4].
Some prior works utilize Wikipedia articles [6, 12, 1, 7], scien-
tific corpora [4], or educational materials from online educational
platforms [14, 2, 7] to model the dependency structure between
concepts. While many studies utilized external knowledge to recover
the prerequisite relations [14, 7] , Chaplot and Koedinger [2] utilize
the course content with students performance to infer such relation.
In contrast, to make our method more accessible, we exploit only
the easily accessible educational materials to model the dependency
relations among course concepts.

Previous research represents graph concepts in various ways. Gordon
et al. [4] identify concepts using LDA topic modeling that fails in
identifying finer-grained concepts. Yang et al. [14] explored four
different representations and found that word and category represen-
tations have similar performance; however, word representation has
slightly better performance on some data sets. One problem with
using category representations is that mapping phrases to Wikipedia
categories affects concept granularities by preferring more general
concepts. On the other hand, Chaplot and Koedinger [2] found that
noun phrase representation outperforms other representations. There-
fore, in this study, we utilize noun phrase representation but extend
it using temporal information.

Previous work developed supervised [1, 12, 14] and unsupervised
approaches [6, 7, 2] to predict the dependency relationships among
concepts. Several studies rely on external knowledge to predict
prerequisite relations across courses [14, 7] while we only lever-
age course materials to model the dependency relations within a
course not between courses. Chaplot and Koedinger [2] address the
dependency structure within courses, but between units instead of
concepts taught within units. Another main difference is the use of
the temporal feature in the course delivery to model the dependency
structure as we are the first study that exploits the temporal feature.

7. CONCLUSIONS
In this paper, we leverage the accessible MOOC content and in-
corporate the temporal feature of the course to construct a concept
dependency graph. We developed Bridge Ensemble Measure and
Global Direction Measure that exploit the temporal order in course
delivery to model the dependency structure. We revealed in the eval-
uation that both developed measures outperform the baseline method
in AUC and in precision recall curves. This finding emphasizes the
positive effect of utilizing the temporal feature of course progression.
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