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Abstract

To cope with the increasing number of ageing population, a type of care

which can help prevent or postpone entry into institutional care is prefer-

able. Activity recognition can be used for home-based care in order to help

elderly people to remain at home as long as possible. This paper proposes a

practical multi-sensor activity recognition system for home-based care uti-

lizing on-body sensors. Seven types of sensors are investigated on their

contributions toward activity classification. We collected a real data set

through the experiments participated by a group of elderly people. Seven

classification models are developed to explore contribution of each sensor.

We conduct a comparison study of four feature selection techniques using

the developed models and the collected data. The experimental results show

our proposed system is superior to previous works achieving 97% accuracy.

The study also demonstrates how the developed activity recognition model

can be applied to promote a home-based care and enhance decision support

system in health care.
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1. Introduction

The number of ageing population worldwide has increased rapidly. In

2010, there were 520 million people aged 65 years and over and is expected

to increase to 1.9 billion people in 2050 [1]. Population ageing affects people

in various aspects from society, politics to health care. Health care in par-

ticularly is greatly affected as people health deteriorate as they get older.

These effects include high demand in long-term care, poor standard of care,

and financial constraints in care expenditure. Different studies have been

carried out with the aim of overcoming these effects. For example, an au-

tonomous intelligent system was proposed in [2] for planing nurses’ working

time in order to provide effective care to alzheimer patients. The influenc-

ing factors that lead to initiate adoption of healthcare information systems

was studied in [3]. The investigation was conducted in [4] to identify the

level of autonomy-disability of an elderly people living in a nursing home for

forecasting, planning and management of healthcare and social services.

Due to the effects of increasing older population, it is important to en-

courage preventive care to help prevent acute illness or delay entry into

institutional care e.g. nursing homes, hospitals, etc. Examples of preven-

tive care are ageing healthy and home-based care. Healthy ageing are such

as eating healthy, regular exercising, regular health check-up, etc. Ageing

healthily could extend longevity and reduce the possibility of acute serious

illness. Another preventive care is to provide care at home such as health

monitoring, activity monitoring, etc. Home-based care allows elderly people

to be monitored seamlessly from their own homes allowing them to remain

at home as long as possible. With current advance in sensors and technology,

home-based care is possible and affordable for general population.
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Activity recognition is a part of home-based care. By manipulating and

mining sensor data, current activity of a person can be determined. This

information can be used to provide home monitoring, detect early sign of

deterioration, provide a mean of assurance for family members, etc. Prior

works in activity recognition are usually performed through visual sensing.

However, this is not practical for elderly care application due to privacy

issues resulting from the use of cameras. Due to this reason, a non-visual

based activity recognition approach is more suitable. Recently, non-visual

based activity recognition [5, 6] have been studied in an attempt of proposing

a model that is practical and highly accurate.

Although these studies have demonstrated that activity recognition can

benefit from combining information from multiple sensors, it is not yet clear

how each of the sensors help in the detection of human activities. In this

paper, we investigate seven types of sensors including accelerometer, temper-

ature, altimeter, heart rate monitor, gyroscope, barometer and light sensor

to understand how the loss of a particular sensor affects the classification ac-

curacy and to which type of activity. We have collected a real data set from

a group of elderly people performing a range of daily activities. This paper

also studies several feature selection techniques and classification techniques

in order to propose a practical activity recognition model. We compared

our approach with other studies to demonstrate the superior in our model.

2. Related works

Based on sensors location, there are two main approaches in activity

recognition i.e. infer activity from detected objects or changes in environ-

ment and infer activity from movement data. Object-based activity recog-

3



nition requires sensors to be attached to numerous objects such as cups,

toothbrush, tooth paste, spoon, etc. within homes. Sometimes sensors are

also placed in environment for example, door switch [7], RFID [8], motion

detectors [7] in rooms. This approach infers activity by observing the se-

quence of objects used or changes in environment. Although the approach

can provide clear semantic toward activity recognition, it requires a large

number of sensors installed in homes. Also, when there is a new object, a

sensor must be tagged and the system needs to be updated. Problems related

to uncertainty e.g. false start and fail to detect object can affect recognition

performance. To address the problems, the approach which infers activity

from movement data obtained from on-body sensors is adopted.

Human activity recognition based on on-body sensors has become popu-

lar due to the advance in sensor technology making sensors more accessible

and affordable. A variety of on-body sensors have been explored such as

accelerometer [5, 7, 8, 9, 10, 11], gyroscope [6, 11], temperature [6, 7, 9], etc.

Accelerometer is shown to be the most powerful sensor for activity recog-

nition as it responds fast to movement change and can reflect the type of

activity well [9]. A number of studies use several sensors attached to differ-

ent parts of human body to increase recognition accuracy. Locations such as

chest [10, 11], wrist [5, 6, 7, 11], thigh [10], waist [12], ankle [10, 11], etc. have

been studied. For example, accelerometers were used on subjects’ wrists, an-

kles and chest [11]. Inertial sensors were attached to chest, right thigh and

left ankle to detect postures and transition activities [10]. However, attach-

ing several sensors on body may decrease mobility or even obstruct daily

activities routine. Also, these sensors may sometimes be perceived as stig-

matisation. It is important, especially for elderly care applications, that the

activity recognition system is practical with high performance.
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Taking aforementioned issues into consideration, some of studies pro-

posed an activity recognition model based on a single location on human

body [5]. Wrist is an ideal location for on-body sensors as it will not ob-

struct daily activity mobility. In this paper we consider the use of multiple

sensor worn on wrist as we hypothesis that they will help yield more informa-

tion necessary for activity recognition. Some studies were carried out based

on wrist-worn multi-sensors. Multi-sensor wrist-worn equipment was used

to detect walking, walking upstairs, walking downstairs, sitting and running

activities [5]. The study showed that using a combination of accelerometer

and light worn on wrist can produce good classification accuracy. Accelerom-

eter, temperature sensor and altimeter worn on wrist were used to detect

nine activities [6]. It showed that by combining accelerometer with tempera-

ture sensor and altimeter, classification accuracy is improved. Although the

literatures indicated good results on the use of multiple sensors, it is not yet

clear how each of the sensor help in activity classification. This prompt us

to investigate how the loss of a particular sensor will affect the classification

accuracy. Seven sensors have been selected including accelerometer, temper-

ature, altimeter, gyroscope, barometer, light, and heart rate monitor. These

sensors have been used in several prior works [5, 6, 7, 9, 12, 13, 14, 15]. A

study showed that by using gyroscope and magnetometer with accelerom-

eter, the classification accuracy is increased by 17% [13]. Accelerometer

and barometer were used to detect 11 children activities [12]. The results

indicated improvement in accuracy after added barometer. Accelerometer

and light sensor were used in [14] to detect seven office worker activities. A

study showed that combining acceleration and heart rate improve accuracy

of estimation of energy expenditure by 1.4% [15].

Based on these sensors, we propose an activity recognition model where
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we investigated several feature selection and classification techniques. As

feature space becomes larger when several sensors are used, it is important

that only relevant features for classification are selected. The feature selec-

tion technique usually measures the relationship between feature and the

output e.g. by using information theory [16, 17, 18], or by measuring the

variable salient using Neural Network [6, 19], etc. For example, Minimal Re-

dundancy Maximal Relevance (mRMR) [16] employs information theory to

find a subset of features that have high mutual information between feature

and output (maximal relevance) and low information among the selected

features (minimal redundancy). Normalised Mutual Information Feature

Selection (NMIFS) [17] also uses information theory. It claimed to be an

enhancement over mRMR where normalised MI are used as a measurement

of redundancy to reduce the bias of MI toward multi-valued features and

also constraint value to be in [0 1] range. Feature Combination (FC) tech-

nique uses neural network theory to perform feature selection. FC [6] takes

into account a combination of feature to monitor network performance while

features are added to the network. In this paper, we combine Clamping [19]

with mRMR and NMIFS and compare it with other feature selection tech-

niques including mRMR, NMIFS, and FC. Several classification algorithms

such as Support Vector Machine (SVM) [6, 7, 12], Neural Network [6, 9, 11],

Decision Tree [8, 9, 12, 5], etc. have been studied in human activity recog-

nition. In this study, SVM, MLP, and RBF are investigated.
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Figure 1: A practical multi-sensor activity recognition system for home-based care

3. Methodology

3.1. Multi-sensor activity recognition system

This section presents a practical multi-sensor activity recognition system

shown in Figure 1 and describes how it can be used for home-based care. The

elderly person wears sensors including accelerometer, temperature sensor,

altimeter, gyroscope, light sensor, and barometer which are embedded on

watch on their wrists and a heart rate monitor on their chests. The data from

the sensor is continuously transmitted wirelessly through radio frequency to

the PC in the elderly’s home. The PC contains the activity recognition

model (AR) which can recognise and detect daily activities of a user. The

detected activity is perceived wirelessly by a companion robot who provides

assistances or services based on current activity. For example, if the robot

detects that the elderly person is exercising, it can play music or video related

to that exercise. If the house is equipped with smart sensors, the detected

activities can be used to provide information for adaptive services. For
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example, if it is detected that a user is sleeping, the light and the temperature

can be adjusted to the suitable condition.

The detected activities can also be used by carer, health professionals,

and families. To protect the privacy of the elderly person, the system will

not send the raw sensor data over the network. The detected activities are

encrypted when sent over the Internet. For carers, their systems will contain

an activity abnormal detection model to detect abnormality of the elderly

person. When the abnormal activity is detected, a carer can visit the elderly

home and provide help. This will allow independence for both elderly person

and carer, while maintain safety and good care when necessary. The families

of the elderly person will also benefit from the system where they can use it

to monitor them online anywhere and anytime to provide a peace of mind

that their love ones are doing well. Health professionals will have access

to the activity records. Their systems will contain a model which interpret

each activity into activity patterns. They can use this as a complement to

normal independent assessment and to support illness diagnostic. Also, if

they detect any changes in behaviour, they could send a request to elderly

person’s system to retrieve a raw sensor data for further analysis or arrange

a home or hospital visit for a check up on the elderly person.

Any sensor data sent from the elderly person must be encrypted and au-

thorisation system must be installed and used whenever someone requested

to access the data. Also, there must be a signed agreement on who can have

access to what information and the elderly must give their consent prior the

use of the system to ensure privacy and visibility.
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3.2. Decision support system for health care

This section describes how the proposed multi-sensor activity recogni-

tion can be used to enhance the decision support systems (DSS) for health

care. Figure 2 shows the design of the DDS. The proposed method is used

for classifying the complex sensor data into activities to generate a database

of activity records over times. The data management is used for manage

databases from several sources. The operations that the data manage-

ment carry out includes organize, search, query, add, update, and delete

databases. It also connects to the user interface management to provide in-

terface for the users to perform operations with the databases. Besides the

activity database, other databases related to health care information such

as medical records, hospital resources, carer records, independence assess-

ments, etc. are connected with the data management so that the DDS can

cooperate several sources to make reliable decisions.
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Figure 2: Decision support system for health car

The model management (MM) is used to manage models, select suit-

able models for different problems, execute the model, combine results from

9



models. MM is connected to data management and UI to retrieve input

data and to present outputs. The models are used to predict, simulate, etc.

information. Example are such as a model to predict decline in daily ac-

tivities, schedule the carer timetable, classify independence level, simulate

utilities in hospital, etc.

In health care, experiences or expertise may be needed to make critical

decisions. Therefore, the DDS contains the knowledge management (KM)

which is used to store the knowledge resulting from the decision made by

experts. The knowledge includes the process and/or information required to

make decision by experts. KM consists of subsystems such as representation,

validation, inference, and explanation of the knowledge.

The DDS contains the user interface management (UI) to manage dif-

ferent terminals for users to interact with the DDS. UI includes several

interfaces suitable for different tasks and user groups. For example, the in-

terface for management staffs should present overall result with graphical

formats, while information of a particular task in details are presented to

operational staffs. High usability is crucial aspect of the acceptance of DDS.

The DDS can be used to generate a monthly activity graph which shows

the amount of each activity carried out in different months. This can be used

to see the trend and detect changes in activities and support the decision

whether to contact the person to come to the hospital and to which depart-

ment or a home visit or whether further activity data should be requested

from the patient. For example, if the graph shows the decline in walking over

several months, this could suggest there is a problem with ambulating. This

would help reduce the number of hospital visits, improve hospital resources

utilization, and increase earlier detection rate.

The DDS can be used to support the decision on the type of carer is
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required for different patients. For example, if an activity record shows

no decline or changes in activity pattern, carer may not be needed. If the

activity record suggests the person may have problem with feeding, the carer

who can provide assistance with feeding or cooking should be sent. Also,

based on activity database, the DDS can build a model to predict when it

is likely that the person will need a carer, so that the management of carer

e.g. schedule, number of carer, etc. can be done effectively.

The activity record can be used for the assessment of independence. The

DDS can use this to make a decision whether the carer is needed or predict

when the carer will be needed in order to manage resources effectively. The

activity database can be used as part of the other clinical decision support

system to give more information to support the illness diagnostic or dis-

ease symptom. For example, if the activity record shows the patient has

very little sleep per day could influence the decision of the specific sleeping

disorder.

3.3. System design justification

The design of the system was based on the practicality factors for the

assisted living system which was gathered from a questionnaire study. Ques-

tionnaires were distributed randomly at a major local hospital, nursing

homes, general population in Stafford and the elderly club in Swansea to

investigate senior adults perceptions on six assistive technologies and six

factors regarding technology adoption. Descriptive statistics were used to

analyze quantitative data. Qualitative data were analyzed by categorization

techniques. The response rate of 74.7% was obtained of which 49 people were

aged 60 years and over. The participants perceptions toward assistive tech-

nologies were positives except for video monitoring system. Privacy, cost,
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usability, reliability, functionality and misuse of technology were identified

as concerns in assistive technologies adoption. The findings from this study

indicate that privacy and cost are the most important issues which may

affect technology adoption.

3.4. Sensor characteristic and implementation

We used the EZ-430 watch with integrated accelerometer, temperature

sensor and altimeter on the CC430F6137 microcontroller with the MSP430

CPU from Texas Instrument (See Figure 3). The accelerometer measures

3-axis acceleration between ± 2G (G = 9.81 m/s2) with sensitivity of 56

count/G. The pressure sensor can measure between 30 -120 kPA with 6 Pa

resolution. The heart rate monitor chest strap is from BlueRobin. It has

built-in 868 MHz radio frequency which can transmit a range up to 800

meters. Temperature, altitude, and heart rate are logged in an 8 kB flash

on the watch. Acceleration is transmitted wirelessly to PC via application

implemented on MatLab based on 868 MHz radio frequency. Gyroscope,

barometer, light sensor are implemented on Gadgeteer FEZ Cerberus board

with 168 MHz 32bit Cortex M4 processor. The gyroscope can measure up

to ± 2000 ◦/s with 14.375 LSBs per ◦/s sensitivity. The barometer measures

between 300 and 1100 hPa absolute Pressure Range. The 2 GB SD card

is used to log the data. The board was powered using an 800 mAh power

bank for a light weight application. The board was placed on the power bank

which was placed on top of the wrist watch. Accelerometer and gyroscope

are sampling at 33 Hz, while the others are at 1 Hz.

3.5. Sensor location justification

As the aim of this study is to propose a practical multi-sensor activity

recognition system for home-based care, it was decided that the sensors
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Chronos watch

Power bank

Figure 3: The location of the sensors. The gyroscope, barometer, and light sensor on

Gadgeteer board are mounted over the Chronos watch. The participant wore two watches

and a heart rate monitor on her chest.

should be worn at a users wrist. The justification of the system design

on this work has been based on the literatures and innovative ideas. For

example, the justification that using the accelerometer on the wrist is based

on literatures that wrist is the optimum location for wearable sensor as

it does not interrupt daily activities. Also, literatures indicate that it is

possible to predict activities based on wrist-worn accelerometer.

However, due to hardware limitation, it was not possible to implements

all the sensors on a single watch. Therefore, it was decided to separate

the sensors between two wrists. We separate the sensors in a way that it

should not interfere with the activity recognition. The sensors which are

related to the movement i.e. accelerometer and gyroscope are worn on the

dominant wrist in order to capture the activitys movement. Also, barometer

and light sensors are also worn on the dominant wrist as they are parts of

the Gadgeteer platform. The temperature sensor which captures the body

temperature and altimeter are worn on the non-dominant wrist. In real

application, we are expected to implement all the sensors into a single watch

and will be worn on the dominant wrist of the elderly person. This location

will not disrupt a user from performing an activity and/or cause discomfort
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Table 1: Participants characteristics for the Wearable-sensor Activity Data Set

Gender Age (year) Weight (Kg.) Height (m.) BMI(kg/m2)

Mean Std. Range Mean Std. Mean Std. Mean Std.

female 72.70 4.76 13.00 50.80 10.75 1.58 0.039 20.44 4.48

male 74.50 2.12 3.00 47.00 14.14 1.58 0.035 18.83 4.85

all 73.00 4.41 13.00 50.17 10.72 1.58 0.037 20.17 4.36

in wearing sensors. The heart rate monitor needs to be worn on a users

chest using a chest strap. Figure 3 shows the location of the sensors on a

participant. Although the chest strap is made from elastic fabric, wearing

the sensor for a continuous time might cause discomfort. The study will

evaluate the trade-off between discomfort and the obtained accuracy.

3.6. Data collection procedure

The project was approved by the Faculty of Computing, Engineering

and Technology Academic Ethics Team, Staffordshire University, UK. Be-

fore the data collection, all participants were asked about their age, gender,

and health issues to evaluate their suitability for participation. We recruited

12 older participants and their characteristics are shown in Table 1. The

number of participants is slightly larger than the average number of partic-

ipants in activity recognition studies .

We studied 13 activities of daily living including brushing teeth, exer-

cising, feeding, ironing, reading, scrubbing, sleeping, using stairs, sweeping,

walking, washing dishes, watching TV and wiping. For exercise activity, the

participants were asked to perform exercise using elastic stretching band.

The participants were asked to carry out each activity for 10 minutes. They

could perform the activity in any order. In total, 33.75 hours of activity

data was recorded. We recorded 12 raw data including 3 axis of acceleration,
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heart rate, temperature, altitude, light, barometer temperature, barometer

pressure, 3 axis of rotation. In total there are 64,084 patterns.

3.7. Feature extraction

It is difficult to built classification boundary directly from raw input,

therefore suitable features need to be extracted or calculated from them.

We first calculated the norm of both acceleration and rotation. There are

14 input data in total (12 raw data + acceleration norm + rotation norm).

For each input, we calculated features from both time and frequency do-

mains. These features include mean, standard deviation (STD), maximum,

minimum, median, mode, kurtosis, skewness, intensity, difference, and root-

mean-square (RMS), energy between 0.3 - 6 Hz, entropy, key coefficient

between 0.5 - 3 Hz, correlations between each acceleration axis e.g. acc-X

and acc-Y and correlations between each gyroscope axis e.g. gyro-X and

gyro-Y. In total, 202 features were calculated.

As our feature space is large, it is important to carry out feature selection

process. This process determines the smallest set of features while retaining

the class discriminatory information. This will allow a classification model

to be constructed effectively and reduce computational cost.

3.8. Feature selection algorithms

In this study, the following feature selection algorithms are investigated:

1. Minimal Redundancy Maximal Relevance (mRMR) [16]

It is based on the concept of the maximal statistical dependency cri-

terion using MI which is used for defining the dependency between

variables. Given two variables, i, j, the MI can be calculated as [20]:
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I(i; j) =

∫ ∫

p(i, j) log
p(i, j)

p(i)p(j)
didj

The mRMR technique employs the minimal redundancy maximal rel-

evance criterion to achieve a maximal dependency condition. By com-

bining mRMR and some subset selection algorithms e.g. forward se-

lection, a subset of features, S, can be found by following steps:

(a) Given S = {} where S is a set of selected features and F =

{f1, f2, ..., fN} where F is a set of N features. Select the fea-

ture fs in F which has the maximum mutual information be-

tween itself and output C where C = {c1, c3, ..., cK} and fs =

maxfi∈F I(fi;C). Update S and F .

S = S ∪ {fs} (1)

F = F \ {fs} (2)

(b) Select feature fs in F which satisfies the following condition:

max
fi∈F

{I(fi;C)−
1

|s|

∑

fj∈S

I(fi; fj)}

Update S and F using (1) and (2). Repeat step (b) until the

desired number of features is obtained.

2. Normalised Mutual Information Feature Selection (NMIFS) [17]

NMIFS is an enhancement of mRMR. Rather than using the average

of MI as a measure of redundancy between feature and the subset of

selected features as in mRMR, a normalised MI (NMI) is used:

NMI(i; j) =
I(i; j)

min{H(i),H(j)}
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where H() is the entropy function. Similar steps as mRMR is carried

out, however the condition in step (b) is changed to:

max
fi∈F

{I(fi;C)−
1

|s|

∑

fj∈S

NMI(fi; fj)}

3. Combination of mRMR, NMIFS and Clamping (COM)

We propose to combine feature rankings from mRMR, NMIFS and

Clamping. The importance of the feature can be calculated as [19]:

Im(fi) = 1−
g(F |fi = f̄i)

g(F )
(3)

where g() is the generalized performance of the network.

Following steps are used to perform feature selection using Clamping:

(a) Calculate the importance of each feature fi using (3). A subset

of features is selected according their importance.

fs = max
fi∈F

Im(fi) (4)

(b) A subset of features is updated using (1) and (2).

These steps are repeated until the desired number of features is reached.

The rankings from mRMR, NMIFS, and Clamping are combined using

the Borda count. Given N features, the highest score N is given to the

most important features and 1 to the least important features. The

score is then combined for all the rankings from each feature selection

techniques. The final ranking is obtained by sorting out the features

in descending order (highest score for the most important feature).

4. Feature combination (FC) [6]

FC monitors the performance of the selected features so that the subset

contains a suitable combination of features. First, the features are
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ranked using the Clamping technique. Then, the features are selected

based on its importance using (4). Before a feature is added to S, an

MLP network is constructed using S and Fi as input and if and only

if g(S ∪ fi) ≥ g(S), then update S and F using (1) and (2). This is

repeated until all features have been evaluated. All feature sets are

combined using Borda count to obtain the final ranking.

3.9. Classification algorithm

After a suitable subset of features is identified, a classification model

can be constructed. In this study, three classification algorithms are inves-

tigated. A brief description on these techniques is reviewed below. Given

input xi ∈ ℜ and output oi ∈ {0, 1, ...,K}.

1. Multi-Layer Perceptron neural network (MLP) [21]

MLP is capable of learning any nonlinear functions by adjusting the

connection weights to minimize the error of the output. It utilizes the

concept of connectionist where several input nodes are connected with

several outputs nodes. These connections are associated with weights

and the network output, and can be calculated as

oi = φ(
∑

i

wixi)

where φ is the activation or transfer function. MLP learns the classi-

fication error through the back propagation algorithm and minimizes

that error by adjusting the weights wi.

2. Radial Basis Function neural network (RBF) [21]

RBF is a network which uses the radial basis function as the activation

function. For N hidden neurons, the activation function is defined as:
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f(x) =

N
∑

i=1

wiϕ(‖x − ci‖)

where ci is the centre vector for neuron i and ϕ is a kernel function

e.g. Gaussian, thin plate spline, etc.

3. Support Vector Machine (SVM) [22]

SVM projects inputs into a higher dimensional space so that non-linear

data can be separated. It searches for hyperplane with a maximal mar-

gin to separate the data by solving the following optimization problem:

min
w,b,ξ

[
1

2
wTw + C

m
∑

i=1

ξi]

subject to:

oi(w
T f(xi) + b) ≥ 1− ξi; ξi ≥ 0

The slack term ξi is used to relax the constraints allowing misclassified

examples. The associated cost parameter C is used for penalizing ξi.

f() is a kernel function which transforms the input xi into a higher

dimensional space. Common kernel functions are such as linear kernel,

RBF kernel and polynomial kernel, etc. This study uses RBF kernel

function f(xi) = exp(− 1
(2σ2) ‖ xi − xj ‖

2) where σ is the width of the

Gaussian kernel. For K-class classification, K binary classifiers are

constructed and one-VS-all classification is applied.

3.10. Statistical tests

Statistical tests were employed to test if the difference in classification

accuracy is significant. First, the data is tested against its normality using

Shapiro-Wilk. If the data is normal distribution, Paired-sample T-test is
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used. Otherwise, Related-Sample Wilcoxon Signed Rank test is used. All

statistics used were carried out at 95% confidence interval.

4. Experimental results

The collected data was pre-analysed and missing data was removed as it

did not statistically affect the data set. Sweeping activity data was removed

as after removing missing data this class only constitutes to 3% of the data

set. Balanced class sampling is used to help build a more accurate deci-

sion boundary and make the model more robust to detect unknown input.

Also, imbalanced class can impose problems such as error in interpreting

classification results, and data from minority class may be treated as noise.

The data was pre-processing using weighted moving average and seg-

mented at 3.88 seconds with 50% overlapping, resulting in 39,328 patterns.

202 feature were extracted as specified in Section 3.7. NaN and constant

valued features were removed. Also to reduce the feature space, we calcu-

lated MI of each feature and decide a cut-off point at 3% of the maximum

MI. Note that, MI is calculated on discretized data using 10 bins. As the

result, there were 141 features. All experiments carried out in this study

uses 10-fold cross validation where 8 folds are used for training, 1 for val-

idation and 1 for testing. The data was randomly selected using uniform

distribution. All experiments were repeated for 10 runs.

4.1. Feature selection

Firstly, features were ranked using the specified techniques mentioned in

Section 3.8. The results from different runs are combined using the Borda

count. Feature selection was performed using Neural Network. A multilayer

perceptron with one hidden layer was used where the hidden node was set
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to α× number of input. Experiments were carried out to determine the

appropriate value of alpha and the number of epoch where trade-off between

accuracy and training time were considered.
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Figure 4: Validation accuracy on different feature selection techniques

The result of averaged validation accuracy is shown in Figure 4. From

the graph, it can be seen that FC achieve the highest accuracy. We tested

the hypothesis if the accuracy difference is significant. The data is not

normal distribution and statistical tests indicated that the accuracy of FC

is significant higher than other techniques (p<0.05). COM is significant

higher than mRMR and NMIFS (p<0.05). The difference in accuracies of

mRMR and NMIFS are not statistically significant (p = 0.315). To sum

up, the performance of the feature selection techniques can be expressed

as FC >∗ COM >∗ mRMR = NMIFS where >∗ indicates significantly

better and = indicates no significant difference at 95% confidence interval.

mRMR and NMIFS produced similar accuracy and selected similar set

of features. The reason is that they are based on mutual information. This

is evident in which mRMR and NMIFS produced similar ranking. When

we investigated why these techniques cannot achieve higher accuracy, it was
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found that majority of the features selected at the beginning were from

accelerometer and gyroscope only. Although features extracted from these

sensors contain valuable information, when using the forward selection strat-

egy this would lead to a selection of redundant features. mRMR and NMIFS

only selects features from accelerometer, gyroscope and light sensor.

On the other hand, Clamping ranking selects features from a variety

of sensors such as accelerometer, gyroscope, heart rate sensor, barometer,

light, and altimeter (see Table 2). It can be seen that the result has consid-

erably improved when COM is used. Besides accelerometer, gyroscope and

light sensor, COM also selects features from barometer which means that

this sensor provides valuable information for activity classification. Features

selected from Clamping and FC are similar as FC is modified from Clamp-

ing technique. However, FC searches for only the subset of features which

are complementing each other and reduce redundant features. FC clearly

achieved better accuracy comparing to the other three techniques. However,

according to the graph, the accuracies at the beginning are lower. Thus, in

the case of data set with small number of features (less than 5), using mRMR

should produce a better result. The truncation at 24 features was selected

where the accuracy starts to remain constant.

4.2. Classification

The classification models were developed using classification algorithms

as described in Section 3.9 with 24 selected features. Also, to demonstrate

that the proposed method using more sensors can achieve better accuracy,

we construct another model where 16 features from three sensors were used

and classification is based on SVM [6]. From here, we shall refer this model

as SVM163S . As the SVM163S uses only 16 features, we also constructed
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Table 2: Features selected using different techniques

Sensor Data MRMR NMIFS Clamping COM FC

Accelerometer

X - axis - - RMS, mean RMS RMS, mean

Y - axis RMS, max, me-

dian, mode, key

coefficient, mean,

min

Max, median,

mean, mode, min

RMS, max,

median, key co-

efficient, mode,

mean

RMS, median,

mean, min, mode

Max, median,

mean, min, mode,

RMS

Z - axis Min, median,

mode, mean

max RMS, mean Mean, median,

min, mode

RMS, mean

√

x2 + y2 + z2 Intensity, max,

median, mean,

RMS

Intensity, RMS,

max, mean

Correlation X, Z,

max,RMS

Max, intensity,

RMS, median,

mean

Correlation X, Z,

max, RMS

Temperature - - - - - -

Altimeter Altitude - - Min - Min

Heart rate

monitor

Heart rate - - - - Min

Light Light intensity Max Max Max, min Max, RMS, mean,

median

Max, min

Barometer
Temperature - - Max, median,

RMS, mean

Median, Max Max, median,

RMS

Pressure - - Max, median Max Max, median

Gyroscope

X - axis STD, RMS STD , mode - STD STD

Y - axis - - - - -

Z - axis Std, RMS, inten-

sity

Min, median,

mode, mean

- - -

√

x2 + y2 + z2 RMS, mean, me-

dian, std

RMS, mean, me-

dian

Correlation X, Y RMS Correlation X, Y

classification models using truncation point at 16 features. The classification

is performed using test data and the results are shown in Table 3. The

notation of the model name is given by the algorithm, number of feature,

and number of sensor. For example, RBF167S represents the classification

model using RBF with 16 features from 7 sensors.

The data is normal distribution and statistical test indicated that the dif-

ferences between each model are statistically significant where SVM247S >∗

SVM167S >∗ MLP247S >∗ RBF247S >∗ RBF167S >∗ MLP167S >∗
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SVM163S where >∗ indicates significantly better at 95% confidence inter-

val. We also tested if there is a difference in accuracy when 16 and 24 features

are used. The result indicated that using 24 features obtained statistically

higher accuracy than using 16 features (p<0.05).

Table 3: Test classification accuracy of each model

Model SVM167S SVM247S MLP167S MLP247S RBF167S RBF247S SVM163S

Mean 96.9575 97.2040 94.8496 96.7349 95.3075 95.6734 85.4238

Std. Error 0.0349 0.0310 0.0421 0.0371 0.0413 0.0375 0.0672

The results revealed that SVM is the best classification model among

others. In general, the models can classify walking very well. However,

they have difficulty in classifying feeding activity. The result shows that

in our dataset SVM is superior to MLP and RBF. SVM247S achieved the

highest classification accuracy while MLP167S achieved the lowest accu-

racy. When observing the F-score for each class, it was found that in gen-

eral SVM247S obtained the highest score, especially for exercise activity.

SVM167S achieved slightly better result in classifying brushing teeth and

feeding than SVM247S . When observing precision and recall, it can be

seen that SVM167S achieved higher precision in washing dishes and watch-

ing TV comparing to SVM247S . While SVM247S has higher sensitivity in

obtaining these classes, SVM167S makes prediction more accurately.

When examining classification algorithms using 24 features, we found

that SVM has the highest F-score in most classes except feeding and reading

where MLP is better. RBF has the lowest F-score in every class especially

in feeding which is substantially lower. However, we found that RBF has

comparable or even higher precision with SVM in some classes such as exer-

cising, and reading. MLP has a comparable F-score with SVM in brushing
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teeth, washing dishes and watching TV. When examining at the models us-

ing 16 features (which is not the optimal number of features), SVM has the

highest F-score in all classes. The F-score of RBF is higher than that of

MLP in most classes except for brushing teeth and feeding.

The statistical results indicated that our models using 7 sensors obtained

significant higher accuracy than the model based on 3 sensors regardless clas-

sification algorithms used. The improvement in accuracy is between 9.43%

and 11.78%. We then compare the F-score of each class between previous

work and our SVM models. The results indicated that the proposed sys-

tem achieved a higher F-score than SVM163S model in all 12 activities

(See Table 5). The F-score of all classes of the SVM247S are higher than

SVM167S except for brushing teeth, feeding and wiping. When observing

the confusion matrix of SVM247S (See Table 4), we found that the model

often confuses between feeding and brushing teeth, wiping and scrubbing,

and walking and using stairs. Ironing and washing sometimes are also con-

fused with feeding. It is observed that these activities have similar motion

on the wrist.

To evaluate the trade-off between accuracy and the use of heart rate mon-

itor, we performed classification without using the feature from the heart

rate where we substitute the feature with the next best feature. The classifi-

cation using MLP obtained 93.1020% ± 0.5850%. The data is normal distri-

bution and the statistical test indicated that by removing heart rate feature,

the classification accuracy is significantly lowered (T = −28.993, p<0.05).

4.3. Sensor contribution

In this section, we consider how each sensor help with classification. We

performed experiments to understand how the loss of a particular sensor
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Table 4: Confusion matrix of the SVM247S

Actual Predicted

Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

Brush 20246 29 280 65 53 20 30 85 0 101 47 44

Exercise 40 20667 26 57 20 16 1 38 17 59 11 48

Feed 289 35 19824 197 142 67 67 63 2 186 78 50

Iron 91 69 162 20210 30 56 10 62 8 127 14 161

Read 61 32 154 101 20463 14 25 20 5 40 68 17

Scrub 9 23 34 58 6 20549 8 29 4 38 40 202

Sleep 65 9 70 24 21 37 20526 124 2 28 26 68

Stairs 86 37 96 38 14 55 44 20498 99 22 30 29

Walk 0 33 3 8 6 38 8 153 20670 6 0 27

Wash 78 28 208 123 54 66 19 34 19 20278 18 75

Watch 13 6 19 8 55 6 30 72 6 20 20742 23

Wipe 43 52 17 112 25 164 21 48 20 195 29 20274

Table 5: F-score comparison between models based on 3 sensors and 7 sensors

Model Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

SVM163S 0.7684 0.8670 0.7575 0.8214 0.8496 0.8615 0.9478 0.8771 0.9530 0.8069 0.9398 0.8055

SVM167S 0.9649 0.9725 0.9471 0.9580 0.9748 0.9685 0.9814 0.9661 0.9883 0.9631 0.9852 0.9653

SVM247S 0.9636 0.9837 0.9464 0.9624 0.9770 0.9765 0.9824 0.9698 0.9889 0.9633 0.9853 0.9650

affects the classification accuracy and to which activity. To control the ex-

periment, top features (based on MI) of each sensor were selected to use in

the classification. The selected features are maximum acceleration Y-axis,

maximum heart rate, maximum barometric pressure, maximum light inten-

sity, RMS gyro magnitude, minimum temperature, and minimum altitude.

Firstly, we generated a classification model (called base model) which

uses all sensors. We constructed the next model by removing one sensor.

For example, model 1 used all sensor except accelerometer. Model 2 used

all sensor except heart rate sensor. In total, 8 models were built. The
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notation of the model is given by M followed by the name of the removed

sensor e.g. MAcc represents model which does not use accelerometer. The

classification was performed using MLP and the number of hidden nodes is

twice the number of input. Table 6 shows mean accuracy of the model when

a particular sensor is not used. The test of normality indicated that model

MLight is not normal distribution, thus we employed Wilcoxon Signed Ranks

to test the effect of the loss of a sensor. The statistical results indicate that

there is a statistical significant different between the base model and all the

other models (p<0.05). Based on the reduced accuracy, the contribution of

the sensor can be ranked from the highest to the lowest as accelerometer,

gyroscope, light sensor, barometer, heart rate sensor, temperature sensor,

and altimeter, respectively. We examined the F-score of each class of each

model (See Table 7). The model which does not include accelerometer has

affect on several activities including brushing teeth, feeding, ironing, reading,

scrubbing, walking, and wiping. The effect on the absent of light sensor is

on sleeping, stairs, and washing dishes activities. The model whithout a

gyroscope sensor has effects on exercise and watching TV activity.

Table 6: The effect of the loss of a particular sensor

Model Missing sensor Accuracy (%) Std. Deviation

Base model None 65.1913 1.4354

MAcc Accelerometer 50.0933 1.4140

MHR Heart rate sensor 62.0873 1.2548

MBaro Barometer 60.7004 1.2010

MLight Light sensor 57.6663 1.1589

MGyro Gyroscope 55.8540 1.4780

MTemp Temperature sensor 62.2528 1.1885

MAlt Altimeter 62.8056 1.1016
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Table 7: F-score of each model
Model Brush Exercise Feed Iron Read Scrub Sleep Stairs Walk Wash Watch Wipe

Base model 0.6771 0.5818 0.5506 0.5856 0.5549 0.7140 0.7382 0.7144 0.7809 0.5191 0.7088 0.6683

MAcc 0.5036 0.4438 0.4239 0.3715 0.4271 0.5025 0.6579 0.6437 0.3858 0.4307 0.6048 0.5325

MHR 0.6493 0.5382 0.5393 0.5797 0.5122 0.6826 0.6995 0.6995 0.7725 0.4459 0.6652 0.6229

MBaro 0.6406 0.5494 0.5397 0.5483 0.4824 0.6771 0.6456 0.6639 0.7596 0.4715 0.6500 0.6211

MLight 0.5688 0.5639 0.4673 0.5640 0.5062 0.6843 0.5994 0.5354 0.7428 0.3973 0.6193 0.6035

MGyro 0.5995 0.3807 0.4841 0.5147 0.4879 0.5878 0.6676 0.6402 0.7286 0.4489 0.4838 0.6304

MTemp 0.6544 0.5410 0.5405 0.5644 0.5197 0.6968 0.7204 0.6885 0.7541 0.4542 0.6816 0.6155

MAlt 0.6583 0.5541 0.5417 0.5624 0.5157 0.7094 0.7033 0.6885 0.7645 0.4883 0.6814 0.6359

5. Discussion

In this paper we developed several models to investigate the absent of

a particular sensor. It was found that each sensor has a significant contri-

bution toward the classification accuracy in general. This means that each

sensor has given specific information which is useful for activity classifica-

tion. The results also show that accelerometer is the most important sensor

since the classification accuracy has significantly dropped when the sensor is

not used. However, missing this sensor does not strongly affect the detection

of sleeping. This is due to the fact that this activity is not involved in much

movement. On the other hand, missing the light sensor has significantly

affected sleeping detection. This suggests the model uses information from

the light sensor to detect sleeping activity. Similarly, stairs activity is also

affected by missing light intensity information. When observing the plot of

the maximum light intensity of these two classes, it is found that, unlike

other classes, the data from these two activities are rather clustered. There-

fore, missing this information affects the classification of these two classes.

The absent of gyroscope has effect on exercise and watching TV activities.

This shows that although the MGyro model contains accelerometer feature,

it is not enough to detect these activities. RMS of gyro magnitude signifi-
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cantly helps classify these activities. Although the results demonstrate that

each of the seven sensors are important, these models are constructed based

on only one feature from each sensor. It is possible that when a model is

developed with more number of features, information from a particular sen-

sor could be substituted by the other features from other sensor as well. In

fact, in the proposed model, temperature sensors are not selected.

Comparing with SVM163S , the results suggest that the addition of heart

rate sensor, barometer, gyroscope and light sensor improve classification ac-

curacy. This means that they provide valuable information for classification

of the activities studied. The results of the study provide suggestion on

possible sensors for other activity classification systems. Also, these sensors

except for heart rate monitor are used on a users wrist will allow practical

applications of activity recognition for home-based care. The results show

that our proposed system achieves statistically better performance.

The results show that combining heart rate with other sensor signifi-

cantly improves classification accuracy. Nevertheless, the classification ac-

curacy without using heart rate is still high comparing to SVM163S . This

suggests that it is possible to use only wrist worn sensors to maintain its

practicality and better accuracy can be achieved.

Table 5 indicates that our model achieves comparable or in some activ-

ities higher than previous studies. Also, our approach only requires sensor

worn on wrist and chest. We also show that even we remove the heart rate

sensor, high accuracy can be achieved. This is an important aspect for a

practical application in elder care. The system which is not intrusive or

perceived as stigmatization can be easily accepted by the elderly.

Another objective of this study is to compare the performance of 4 fea-

ture selection techniques. Our results suggest that FC is the most appro-
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Table 8: Accuracy comparison between previous works and the proposed system

#activity Sensor location Brush teeth Feed Iron Sleep Stairs Walk Average

SVM247S 12 Wrist,chest 96.36 94.64 96.24 98.24 97.39 98.65 97.20

[11] 12 wrists, ankles, chest - 89.50 - 89.20 90.80 88.20 91.3

[7] 7 Body, environment 64.30 97.80 - 93.90 - 95.00 86.20

[8] - Wrist, objects - - 97.94 92.66 - 84.36 -

[9] 7 On-body - - 87.00 - 79.00 86.00 82–86

[5] 6 Wrist - - - - > 90 - 87.10

[10] 12 Chest, thigh, left ankle - - - 95.4 - 98.1 91.4

priate technique for our application. FC can select a more diversity set of

features comparing to other techniques. It monitors the performance of a

subset of features along the selection to make sure that redundant features

are not selected. However, according to the FC algorithm, redundant fea-

tures may still be selected at earlier stage and we suggest that post checking

should be added to remove any redundant feature after selection. mRMR

and NMIFS only measure the redundancy between 2 variables which was

shown not enough to reduce the overlapped features. The result of this

study implies that the technique which can select a subset of features with

the lowest feature redundancy is the most optimum technique.

6. Conclusion

We have proposed a practical multi-sensor activity recognition system

for home-based care and evaluated it through the real data we collected.

We investigated seven types of sensors including accelerometer, temperature,

altimeter, heart rate monitor, barometer, light sensor, and gyroscope on how

it helps classification accuracy and to which types of activity. In general we

found accelerometer to be the most important sensor. We also found that
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maximum light intensity can be useful for detecting sleeping, stairs, washing

dishes activities. RMS of gyro magnitude can help in classifying exercise

and watching TV activities. Although we found that all the sensors provide

important information toward classification, when larger features of sensors

are available, a particular sensor could be omitted.

We compared the results with previous method which only used three

sensors and the results show that the additional four sensors help improve

activity classification accuracy. We achieve 97.2040% accuracy using six

sensors. The study also demonstrates how the developed activity recogni-

tion model can be applied for home-based care and DDS for health care.

The study also investigated 4 feature selection techniques including mRMR,

NMIFS, COM and FC. The results indicate that FC can select the optimum

set of features as it can select features from diverse sensors which helps re-

duce feature redundancy. We suggest improvement on this technique by

adding a post feature check to remove redundant feature which may be

selected during earlier stage. Also, further investigation on the proposed

model in a natural setting is recommended.
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