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Abstract— With the increased life expectancy and rise in health
conditions related to aging, there is a need for new technologies
that can routinely monitor vulnerable people, identify their daily
pattern of activities and any anomaly or critical events such as
falls. This paper aims to evaluate magnetic and radar sensors
as suitable technologies for remote health monitoring purpose,
both individually and fusing their information. After experiments
and collecting data from 20 volunteers, numerical features has
been extracted in both time and frequency domains. In order to
analyze and verify the validation of fusion method for different
classifiers, a support vector machine with a quadratic kernel,
and an artificial neural network with one and multiple hidden
layers have been implemented. Furthermore, for both classifiers,
feature selection has been performed to obtain salient features.
Using this technique along with fusion, both classifiers can detect
10 different activities with an accuracy rate of approximately
96%. In cases where the user is unknown to the classifier,
an accuracy of approximately 92% is maintained.

Index Terms— Magnetic sensor, radar sensing, assisted living,
feature selection, neural networks, machine learning.

I. INTRODUCTION

LONGER life expectancy in recent years has generated a
growing incidence of multi-morbidity (i.e. the simultane-

ous presence of multiple chronic conditions) and occurrence of
critical events such as falls or strokes in the older population.
This is a serious issue for the wellbeing of the people involved
and their families, as well as posing a series of societal
challenges in terms of effective and affordable healthcare
provision. In particular, it has been shown that timely medical
assistance after fall events can significantly reduce their short
and long-term consequences, and that regular monitoring in
vulnerable population can enable early detection and treatment
of potentially serious health conditions [1]–[3].

A variety of sensing technologies have been investigated to
address these issues and enable detection of critical events
(falls) and automatic monitoring of daily activities. These
include acoustic sensors, Passive Infrared (PIR), pressure
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sensors on floors, video and depth cameras, wearable sen-
sors that can comprise accelerometer, gyroscope, magnetic
sensors, and Radio-Frequency (RF) sensors that can employ
passive or active radar principles [4]–[11]. These different
sensing approaches have disadvantages and advantages, not
only related to the technical implementation or complexity of
the sensors and systems themselves, but also to the perception,
feeling, and required compliance at the end-users’ side, specif-
ically for the people being monitored [12]. Metrics to validate
and compare the different technologies include sensitivity and
specificity in classifying the different activities, computational
complexity, cost of the sensor, detection ranges, false alarm
rates, requirements for the users (e.g. wearables need to
be worn at all times to be effective), and management of
privacy or data integrity issues [12]. These can be significant,
especially when sensors are installed in private areas of the
home environment such as bedrooms or bathrooms.

In this paper, we consider two types of sensors, namely
magnetic sensor and radar, and investigate their performance
in the context of daily activity recognition and fall detection,
when using different algorithms, including neural networks,
for feature extraction and classification. It was reported in our
previous work [13], that magnetometer and radar produced
many of the most robust features when searching for optimal
feature combinations by applying sequential forward selec-
tion (SFS) on the feature set including those extracted from
all the inertial sensors and radar. Magnetometers are easily
miniaturised and integrated in common wearable sensors and
objects [14], [15]. They enable to measure small changes in the
magnetic field induced by the presence of human personnel,
from relatively large variations due to daily activities as in our
work, to the very small variations induced by musculoskeletal
and cerebral activity [16]. However, such magnetic sensors
require the users to wear or carry them and manage their
battery life. This may be an issue for older people less
familiar with technology, especially when physical frailty is
associated to cognitive impairments [17]. Radar sensing has
been proposed recently in the context of ambient assisted
living, and their capabilities and performance are still being
validated in realistic scenarios [18], [19]. Their attractiveness
arises from enabling contactless monitoring, with no reliance
on end-user’s compliance, insensitivity to light and noise
conditions in the environment, and their expected perception
as less invasive than optical sensors, as no plain videos of the
monitored people are collected.
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In this paper, we expand our previous work in to consider a
newer, larger database of sensors’ signatures collected involv-
ing 20 volunteers aged 22-32 years. Although still limited,
this appears to be in the top 3% in terms of number of
subjects compared with some of the works on wearable for
human motion analysis in the literature [13], [20]. Magnetic
sensors have been often used jointly with accelerometer and
gyroscopes for fall detection [7], [21], [22], or not considered
in favour of using only data from the two aforementioned
inertial units [23]–[26]. It is therefore interesting to investigate
what classification performance can be obtained with only
data from magnetic sensors, thus reducing the computational
complexity and potentially battery consumption by processing
data from a single wearable sensor. Radar sensors were also
used for the data collection, to collect simultaneous recordings
together with the wearable sensor. The combination of these
heterogeneous sensing technologies and the fusion of their
information can address the performance limitations of each
individual sensor, and improve the classification achieved for
the overall system.

Fusing information from different sensors within wearables
(accelerometer, gyroscope, and magnetic sensor) has been
suggested in the literature [7], [21], [22], [27], but their joint
use with radar sensing and experimental validation is, to the
best of our knowledge, a novel research area. Furthermore,
rather than using more complex signal level fusion methods
based on Kalman filtering or Vector Observation [7], [27],
simpler feature level methods to combine information from
magnetic sensors and radar sensors are proposed. The Support
Vector Machine (SVM) and Artificial Neural Network (ANN)
classifiers are implemented to verify that the fusion method
is valid for different classifiers. Furthermore, the influence of
the ANN architecture in terms of the number of neurons in
hidden layers against overall accuracy is presented.

The rest of this paper presents the experimental scenario,
data collection and pre-processing in Section II. This is
followed in Section III by the feature extraction methodolo-
gies while Section IV describes the implemented classifiers.
Finally, Section V discusses the results obtained, with conclu-
sions and future work highlighted in section VI.

II. EXPERIMENTAL SETUP AND DATA COLLECTION

The data analyzed in this work were collected at the Univer-
sity of Glasgow with a group of 20 volunteers aged between
22 and 32 years. The ten activities are described in [20], and
include: walking, walking while carrying an object with both
hands, sitting on and standing up from a chair, bending to
pick up a pen and to tie shoelaces, standing while drinking
and answering a phone call, simulating a frontal fall onto
a mat, and crouching to check under an imaginary bed and
coming back up. A pictorial representation of these activities
and their recording length are given in Fig. 1, along with a
concept figure representing the idea of the overall fusion of
the two sensors, and photos of the radar system with antennas
and the wearable at the wrist of one of the volunteers. These
activities were purposely chosen to be similar in pairs and
to include potential classes that may be misclassified with

Fig. 1. Conceptual schematic of using magnetic sensor and radar together
and pictorial representation of the 10 activities classified. Pictures of the radar
system and its antenna, and the wearable at the wrist of the subject are also
provided.

falls, in particular those like sitting and bending down that
present body movement and acceleration towards the floor.
This will test the robustness of the proposed classification
approach. Falls are particularly critical to be identified reliably,
with low false alarms and low missed detections, as the long
lie time following falls can have very severe effects on the
health of the person affected [1]–[3]. Each of the 10 activities
was recorded for 3 repetitions for each of the 20 volunteers,
generating a dataset of 600 readings in total from each sensor.
Each snapshot recording of activities 1, 2, and 10 had duration
10s; all the other 5s.

The sensors included a nine DOF (Degrees of Free-
dom) wearable Inertial Measurement Unit (IMU) produced
by X-IO Technologies, a Frequency Modulated Continuous
Wave (FMCW) radar operating at 5.8 GHz, and a Continuous
Wave (CW) radar system operating at 24 GHz. The wearable
sensor was placed with a bracelet on the wrist of the dominant
hand of the participants while recording the data. In this
work, we focus only on data from the Hall-effect based
magnetometer sensor Bosch BMM150 within the wearable.
This can measure magnetic fields in the range of ±1300 µT
with approximately 0.3 µT resolution. When the subjects
move the magnetometer while performing activities, different
electric voltages are produced because of the Hall current
effect and recorded by the sensor [15]. The different activities
are expected to produce different sequences of variations of
the magnetic field measured, and therefore different patterns
of recorded voltages that can be analyzed for classification.
The voltage signals related to the magnetic field values along
the X, Y, and Z axis are then digitised at 20 Hz (default
value, whereas those for the accelerometer and gyroscope
are digitised at 400 Hz by default). The operating current
of the wearable at normal mode is 500µA, whereas the



LI et al.: MAGNETIC AND RADAR SENSING FOR MULTIMODAL REMOTE HEALTH MONITORING 8981

supply voltage is approximately 3.3V, hence, the total power
consumption is in the range of 1.65mW. As mentioned in
the introduction, magnetometers enable to measure small
fluctuations in the magnetic field due to human presence and
activities, even when these may generate small values of veloc-
ity or acceleration, not easily captured by the other inertial
sensors (or by the radar). Furthermore, including additional
signal processing on the accelerometer and gyroscope data
(storing, filtering, feature extraction and classification) would
require additional computational resources and related power
consumption, in addition to the normal consumptions of the
sensors themselves. Hence, the focus of our work here to
attempt to maximise classification performance with a limited
number of sensors.

The Ancortek SDR 580-B FMCW radar transmits linear
chirp signals with 400 MHz instantaneous bandwidth at 1 kHz
PRF (Pulse Repetition Frequency). Each backscattered chirp
signal is received and sampled at 128 KHz. The carrier
frequency of the radar is 5.8 GHz, in C-band. The transmit-
ted power of radar system is specified to be approximately
100 mW, with the gain of the Yagi antennas equal to approxi-
mately 17 dB. The CW radar (RF-beam K-MC1) transmits
approximately 18 dBm EIRP (Effective Isotropic Radiated
Power) of power at 24 GHz and the down-converted digitized
signal is sampled at 44 kHz. The FMCW operates with a single
transmitter and receiver antenna whereas the CW radar has
a micro-strip transceiver with transmit and receive capability
within the antenna module.

The operational transmit powers for both FMCW and CW
systems are in the order of 10dBm which is within the range of
wireless LAN and Wi-Fi routers. Both radars are powered by
USB, so their consumption is expected to be limited to USB
specifications, but both operate with 2.5W. When assessing
autonomy and lifetime of the overall classification system,
both radars would be connected to a computer for normal
operation and recording, so their power consumption is less
of an important factor compared to the wearable sensors, for
which is desirable to consider only one single sensor, at a low
recording and transmit rate. For both radar sensors, the activ-
ities’ signatures are well within the unambiguous Doppler
range, thus avoiding any degradation for aliasing. Only data
collected from the 5.8 GHz radar sensor are considered in this
work as they can provide both range and Doppler information
as opposed to the CW radar (only Doppler information).
The data collection was performed in the laboratory of the
Communication, Sensing and Imaging group at the University
of Glasgow, an office-like space with pieces of furniture and
an open area in the middle.

The radar sensors were placed on a wooden table at approx-
imately 80 cm height, pointing to the open area where the
subjects were performing the different activities at a distance
of approximately 2 m (with this changing slightly as the
subjects were performing the various activities). The chosen
antenna height allows to keep the torso of the human subjects
in the middle of the antenna beam to maximise the received
power. The distance was limited by the dimension of the
available measurement space, but it is considered a good
approximation of a normal indoor space size, where the radar

could be deployed on the ceiling or at the walls for monitoring
purposes.

The signals collected by the magnetic sensor were pre-
processed through a band pass filter, with lower and upper
cut-off frequencies of respectively 0.4 Hz to remove bias noise
and 10 Hz to remove vibration noise from the spectrum.

The FMCW data were processed according to the usual
range-Doppler processing, based on double Fast Fourier Trans-
form (FFT) on the raw data recorded by the radar, as shown
in [28] and [29]. By stacking the received radar chirps in a
matrix and performing a FFT across fast-time on them, Range-
Time-Intensity plots can be generated. A second FFT can
be performed across radar chirps to generate range-Doppler
maps to identify range bins containing targets’ signatures. The
complex signal at those range bins is extracted and notch-
filtered to remove the contribution near 0 Hz from static targets
such as walls and furniture. This signal is then processed
through Short Time Fourier Transform (STFT) to characterise
their micro-Doppler signatures and generate spectrograms,
in this case with a Hamming window length of 0.3 ms and 95%
overlap. Spectrograms are Doppler vs time patterns, describing
the movement of different body parts over time, such as torso
and limbs [30], [31].

Fig. 2 illustrates the signals for four different daily activities
in terms of radar micro-Doppler signature (spectrogram) and
raw signals of magnetic sensor. Positive Doppler components
are associated to movements towards the radar, and negative
components to those away from the radar. This can be seen in
the example of walking back and forth activity, where the main
contribution from the torso (in red colour) alternates between
positive and negative values as the person walks towards and
away from the radar. In the case of falling (towards the radar
in this case), there is a strong and sudden velocity component.
Phone call and drinking water are performed while the subjects
were mostly stationary, and moving just one arm and slightly
their torso, hence the signature is overall more concentrated
around the 0 Hz component.

As the spectrogram is normalised with respect to the
strongest reflection in each figure, when the distance between
the radar and the target changes, the difference in the signature
would predominantly be in the increased or decreased level of
background noise visible in the spectrogram. This would be
an issue to compensate for in outdoor environments, but less
relevant for the case of indoor measurements over a few meters
as in our work.

It is less easy to empirically infer patterns in the magnetic
sensor’s data, but for example a sudden and brisk transition
can be seen for the falling event at about 1.5 s, similar to what
is shown by the radar spectrogram.

One issue with using radar spectrograms is the dependence
of the micro-Doppler intensity on the cosine angle between the
movement velocity and the radar line-of-sight. This weakened
signature may not contribute to relevant information for classi-
fication. The magnetometer is agnostic to this problem, and it
would continue providing reliable data about the movement of
the subject even in case of unfavourable aspect angles for the
radar sensor; hence, there is scope to fuse information from
these two sensing modalities.
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Fig. 2. Examples of magnetic sensor X, Y, and Z axis signal and corresponding FMCW radar spectrograms for four activities: (a) falling, (b) walking back
and forth, (c) taking a phone call, and (d) drinking water.

III. FEATURE EXTRACTION

Sixty-four numerical features were extracted from the mag-
netic sensor’s data along the 3 axes X, Y and Z, looking at
both the time and frequency domain [27], [32]–[34]. These
are summarized in Table I. Time-domain features (such as
mean, variance, and higher order statistical moments like
skewness and kurtosis) are extracted to evaluate the devia-
tion of the signal, whereas cross correlation-based features
show great potential in classifying activities with significant
change on signal magnitude along two dimensions. Frequency-
domain (spectral) features are extracted to capture the energy
distribution of the signal and include the magnitude of the
Power Spectral Density (PSD) at three different frequency

bands, namely, 0.5-1 Hz, 1-5 Hz and 5-10 Hz, the sum of
Fourier Transform coefficients, and the spectral entropy based
on the Power Density Function normalized to between 0 and
1 of the PSD. For the radar sensor, the 24 extracted features
included a range of features from the spectrogram, its image
texture and the derivative cadence velocity profile. Singular
Value Decomposition based spectral and temporal projections
reduce the information within the spectrogram to the first few
vectors of U and V matrices [35], [36]. The statistical moments
of these indicate the amount of information/activity in the
overall time and frequency bins of the spectrogram. Doppler
centroid and bandwidth [30] are comparative measures which
define the central mass of the micro Doppler signature and its
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TABLE I

FEATURE TABLE FOR MAGNETIC SENSOR

Doppler spread. Image texture-based features were entropy
and the skewness of the grey levels of the spectrogram. These
utilize the information within the texture of the image and give
a metric for the total information content and total texture
shift respectively [37]. Energy curves of the Doppler and
time bins of the spectrogram take the coefficients of the bins
and their subsequent moments enumerate the energy within a
given time/frequency band. The cadence velocity profile [38]
is the Fourier transform of the spectrogram across time which
gives time-localized information within the spectrogram. Step
repetition frequency (the central component) along with upper
and lower values of the shape spectrum of the profile were
used as features.

Considering both sensors, the feature extraction step gener-
ates a 600 by 88 matrix, denoting the number of observations
and the number of features respectively.

IV. CLASSIFICATION METHODS

Two classifiers, a Quadratic-kernel SVM and an ANN [39]
with one hidden layer, were considered as classifiers to dis-
criminate different activities. SVM uses features to generate a
hyperplane margin based on the distribution of features of a
certain class [40]. It has been compared with weaker learning
algorithms in [13] for indoor activity classification and is
historically known to be a robust classifier. The ANN design
used in this work is a multilayer perceptron (MLP), which is
comprised of one input layer, one or more hidden layers and
then fully connected to several output neurons. All the training
and testing procedures are implemented in MATLAB using
the pre-installed functions within the Statistics and Machine
Learning and Neural Network toolboxes.

The dataset was stochastically divided into two parts, with
70% data for training and 30% data for testing on a per class
basis. The per class basis was set for stratification in the test
set to prevent class imbalance. By using this deterministic
approach unwanted bias in the results is minimised, which
would occur in cases of imbalance between classes in the
training and test sets. This process is repeated 10 times for
each test, and the average results across all the repetitions are
presented.

Fig. 3. Graphical representation of feature level fusion scheme.

A. Feature Selection

In applications such as this where the pool of features is
large and diverse, there can be redundancies in the feature set
which lower the overall classification performance. To prevent
this, features subsets which perform well can be generated
through the method of feature selection. Sequential Feature
Selection (SFS) is one such method, which starts with an
empty set of features and adds them by searching the feature
space for salient features and selecting those improving the
overall accuracy [41]. For SVM classifiers, feature selection
has been shown to increase accuracy by 6 to 7% depending on
the sensor being used [19]. Feature selection has the further
benefit of reducing the overall number of features required for
the optimal set; meaning that for deployment, computational
loads would be minimized for optimal results.

B. Feature Level Fusion

Another method used to improve classifier is feature level
fusion [31], which involves the concatenation of the feature
vectors from different sensors to create a new diverse features
pool, as graphically illustrated in Fig.3. Although increasing
the size of the features pool is likely to introduce redundancies,
SFS can then be used to minimize this effect and get a reduced
set containing the most suitable features from different sensors.

C. Classifier Performance Metrics

To evaluate the performance of the classifiers, metrics can
be derived from the correct classification and misclassifications
events in confusion matrices, as shown in the binary example
in table II (simple but relevant in the case of fall vs non-
fall classification). The diagonal elements indicate the correct
identification for a given class of interest (e.g. A). This is
represented as a True Positive and when the other class which
is not of interest is classified correctly (e.g. B), whereas a false
negative indicates a ‘missed detection’ and a false positive a
‘false alarm’. Typical metrics for classification performance
are listed in [42], notably, sensitivity or recall, specificity and
precision. These metrics have been calculated for the 10-class
case described in this paper. Further metrics to characterize the
overall classification without yielding class by class including
overall classification accuracy and F-measure can also be
considered.
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TABLE II

CONFUSION MATRIX EXAMPLE FOR CLASSIFICATION METRICS

Fig. 4. Accuracy when applying SFS for different sensors and classifiers.

V. CLASSIFICATION RESULTS

This section presents the classification results. Initially, we
evaluate the role of SFS and discuss the features selected by
the algorithm, then we will use individual sensor for activity
classification with SVM followed by comparison of fusion and
neural network approaches.

Fig. 4 summarizes the results in terms of classification
accuracy for different sensors and classifiers when selecting
different number of features through the SFS algorithm. The
accuracy profiles as a function of number of features become
stable after using approximately 30 features for the magnetic
sensor individually, and 10 features for the radar. With those
features, the average accuracy is in the order of 93-94% for
the magnetic sensor and 92% for the radar sensor. Adding
extra features will not bring any significant benefit to the
classification and may actually reduce the overall performance
if all the available features are used, as shown in Fig. 4.

Feature selection with feature fusion allows combining the
most suitable features from both radar and the magnetic
sensors. The resulting accuracy outperforms the cases of both
sensors used individually. There is a correspondence between
the most suitable features selected for each sensor individually,
and those selected on the fused set of features. Some of the
best features selected have been listed in Table III.

Fig. 4 shows also the accuracy as a function of the number
of features used as input to a single hidden layer ANN with
50 neurons, assuming a fused pool of features is used. Results
appear to be very similar for SVM and ANN in this case,
with a more detailed discussion in terms of metrics including
computational time provided later on in this section.

TABLE III

ROBUST FEATURES FOR RADAR AND MAGNETOMETER

A. Support Vector Machine (SVM) With SFS

Table IV to VI presents the confusion matrices when SVM
classifier is used with feature selection, respectively for the
magnetic sensor and the radar individually, and then with
feature fusion. A colour code is used with green on the
diagonal elements, and yellow (below 10%) and orange (above
10%) to highlight misclassification events.

From table IV, the magnetic sensor yields high classification
sensitivity and specificity for most of the class; however,
for the A3 ‘sitting down’ and A5 ‘picking up an object’,
the classifier did not perform as well as for the other classes.
Low specificity also occurs for A9 ‘fall’, with multiple false
alarms from different activities, which appears to suggest
this approach and sensor are not optimal for fall detection.
As highlighted earlier, as falls have severe consequences on
the health of the people monitored, the reliable detection
of falls remains a critical requirement. Furthermore, it is
paramount that there are no false alarms when it comes to fall
detection, as these would undermine the confidence of the end-
users (vulnerable people and their carers) in this technology.
From Table V, radar performs well with respect to class A9
‘fall’ with less false alarms. However, there is considerable
confusion between similar activities across the wider set of
classes considered (for example A1 and A2 with walking and
walking while carrying an object). In Table VI the results for
feature fusion are shown. Compared with the individual use
of the magnetic sensor, false alarms for the ‘fall’ class are
removed, at the price of a slightly increased missed detection
with a specific “confusing” activity, A6 ‘tying shoelaces’.
In general, the other activities are classified with accuracy
above 94%, without any instances of misclassification above
10% (no orange elements). The results seem to suggest that
different sensors and related features can contribute to dif-
ferent tasks for assisted living, with some sensors and some
feature combinations more suitable for recognition of a set
of daily activities, and others more suitable for fall detection.
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TABLE IV

CONFUSION MATRIX FOR MAGNETIC SENSOR SVM

TABLE V

CONFUSION MATRIX FOR RADAR SVM

TABLE VI

CONFUSION MATRIX FOR FUSION SVM

This could be exploited by hierarchical and adaptive classifi-
cation schemes as future work.

B. Artificial Neural Network (ANN)

The validation accuracy produced using ANN with a single
hidden layer and between 1 and 50 neurons utilizing different
sensors is illustrated in Fig. 5. Results obtained using fusion
of magnetic and radar sensor outperform those obtained using
each sensor individually, and the fusion result for accuracy
is on average 96%, fairly close to that obtained using SVM.
It is interesting to notice that the plateau of the accuracy is
reached when over 10 neurons are used for the fusion cases,
i.e. at least one neuron or more for each output class. When the
sensors are used individually, the accuracy pattern increases
in a more gradual manner with the number of neurons. For
both radar and magnetic sensor, it appears that the plateau
of accuracy is reached when the number of neurons in the
hidden layer is comparable to the optimal number of features
selected during SFS (approximately 14 features for radar and

Fig. 5. One-layer ANN Accuracy with different sensors and number of
neurons.

Fig. 6. ANN accuracy when using multiple hidden layers.

34 features for magnetic sensor). This may suggest that the
ANN can select automatically relevant information from the
feature space and limit the effect of redundancies. There is
further evidence of this in Table IX where the performance
measures are summarized. The accuracy for SFS SVM with
fusion and ANN with fusion but without SFS are similar, as if
the ANN performs internally a form of feature selection.

Fig 6 shows that there is little difference in accuracy when
using multiple hidden layers for the ANN. In this case,
the number of neurons are varied in the last hidden layer and
kept constant at 50 for the other layers. Increasing the number
of layers has a proportional increase in the computational load
and time required for processing, but there appears to be no
discernible difference (about 0.8%) between using one or two
hidden layers aside from the fact that less neurons are required
to reach the optimal point.

Training and testing performance over the epochs of the
ANN with 1 hidden layer and 50 neurons is evaluated
in Table VII, where the training and testing accuracy increase
steadily until 40 epochs after which the model seems to over
fit, probably due to the small data input set. For our case, lim-
iting the number of epochs to 40 will reduce the computational
cost for training and still provide optimal results.

Class-wise comparison of the confusion matrices for the
SVM (Table VI) and the one-layer ANN (shown in Table VIII)
suggests that there is a slight improvement in the classification
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Fig. 7. Comparison of max, min, and mean accuracy when classification tests done with “leave one subject out” approach.

TABLE VII

TRAINING ACCURACY OVER EPOCHS FOR ANN WITH

1 HIDDEN LAYER AND 50 NEURONS

TABLE VIII

CONFUSION MATRIX FOR FUSION ANN WITH ONE HIDDEN LAYER

of A9 ‘fall’, whereas the performance across the whole set of
activities appear to be fairly similar.

The summary of the classification metrics is given
in Table IX, considering the different combinations of sensors
and classification approaches. Note that the ANN considered
here had one-hidden layer and 50 neurons. Overall, the results
appear to confirm the previous trends observed in Fig. 4 and
5, with fusion providing a significant improvement in terms
of classification performance. In terms of computational load,
there is a trade-off between time and number of features
employed, where an ANN with one-hidden layer takes around
2-3 times longer than SVM to finalize the training and testing
across the full data set.

C. Leave One Subject Out

In real-life applications, the classifcation model will not
have data from the test subject, therefore it would be

TABLE IX

PERFORMANCE COMPARISON OF DIFFERENT SENSOR METHODS:
AVERAGE OF ALL 10 CLASSES -∗ INDICATES USE OF SFS

interesting to observe the classifier’s ability to identify activ-
ities from unknown subjects. For the leave one subject out,
observations from one specific participant was selected as
the testing set and the remaining participants were used for
training. This was repeated until all of the participants were
tested upon, then the cumulative classifcation results were
calculated. These results are displayed in Fig. 7, in terms
of ‘min’, ‘max’, and ‘mean’ accuracy. The ‘max’ and ‘min’
variables represent the best and worst-case scenario for an
individual participant under test, and the ‘mean’ is the average
across all the 20 participants. The ‘difference’ variable is the
delta between the accuracy from the stratified test in table IX
and this approach of “leave one subject out”. The results show
a significant variability in accuracy with specific subject, with
the extreme case of individual magnetic sensor for both ANN
and SVM, which yields accuracy of approximately 40%. Radar
performs robustly with both classifiers, as the mean results are
only 2 to 4% lower than the results from the stratified set. The
differences are more prominent for the magnetic sensor as the
accuracy is 12% lower for both classifiers with this sensor.
Feature fusion helps greatly in this scenario, as it enables to
recover this loss and increase the accuracy by 12%.

The minimum value for each of the sensor-classifier combi-
nations displays the challenging issue of activity classification
for users for whom no data was available at training. It can be
seen as the lower bound of the classification performance for a
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TABLE X

STATISTICAL PARAMETERS OF LEAVE ONE SUBJECT OUT TEST

new subject. This is in some cases significantly smaller (even
53%) than the expected accuracy from the stratified testing,
for which the subject is not completely unknown. Even after
fusion and feature selection, we see that the difference between
this lower bound of performance and the expected rate from
the stratified testing is approximately 24%. Fusion helps the
magnetic sensor in this case as the deltas between the two
testing methods is minimized from 12% to 4%. Therefore,
feature fusion is necessary for ambient activity monitoring as
the additional degree of freedom provides a significant benefit.

Upon closer inspection, it appeared that the minimum
performance case is related to the data of one specific subject,
who moved in a different style compared with the average
of the other subjects, at a slower and more relaxed pace.
This could happen, as subjects were not strictly instructed to
perform activities with a predefined speed and style, to account
for as much realism as possible even in this controlled
experiment. In a sense, the testing data from this subject
can be considered outliers compared with the training data
from the other subjects. This is shown in Table X, which
emphasises that the minimum figure is an outlier by comparing
the lower and upper quartiles of the classification accuracy for
different situations. Radar has lower variance and interquartile
range in classification, whereas for magnetic sensor both are
larger. Through fusion of two sensors’ data at feature level,
the interquartile range is reduced to 0.1 while the variance
remains at the same level as for radar. A closer difference
between the accuracy in the two quartiles is seen as a confir-
mation that only a limited set of samples, namely those for
one specific subject, scored a low accuracy compared with
the other subjects’ data. Comparing different classifiers, ANN
performs better than SVM when we consider the variance
when radar and magnetometer are used individually. But for
the fusion case, their performances are very similar with all
the statistical parameters for both classifiers.

VI. CONCLUSIONS

For assisted living applications such as activity monitoring
and fall detection, inertial sensors including magnetometer
have been widely used, whereas radar has only recently
attracted interest in this area. In order to overcome shortcom-
ings of a single sensing technology sensor fusion methods have
demonstrated advantages in combining information from het-
erogeneous sensors. In this paper, two different classification
methods, one ‘classic’ Quadratic-kernel based SVM and one
‘popular’ multilayer feed-forward ANN have been selected

to validate the performance of our SFS fusion technique
compared to using radar and magnetic sensor individually.
Results show that by using feature selection, we benefit from
an improved classifier accuracy and reduced false alarms,
while simultaneously reducing the computational load through
the removal of redundant features. In this case, for both mag-
netic and radar sensors individually this accuracy improvement
was approximately 2%. More significant improvements were
achieved by using feature fusion, namely approximately 6%
for radar and 5% for magnetic sensor. Additionally, tests
with ANNs show a slight increase of accuracy; a closer look
into the results show that this effect comes from increase in
the detection of certain classes (such as sitting down, tying
shoelaces and, picking up an object) rather than across all of
them. Furthermore, using more than one layer does not appear
to provide an increase, despite having higher computational
costs.

These preliminary results have demonstrated the potential of
multi-sensory fusion in human activity recognition for assisted
living. For future work, more participants with a greater diver-
sity in gender, age and body types will be collected, with a
drive to also perform measurements in different environments
and with different deployment geometries of the radar sensor.
Furthermore, additional features (such as spectrogram-based
features from magnetic sensor, and different time-frequency
transforms such as Cohen class and/or wavelet features from
radar) with potential greater saliency should be extracted. The
apparent relationship between salient features generated by
sequential forward selection needs to be explored further to
understand what makes a good feature set, and how different
features combine to enhance accuracy in order to engineer
and select better hand-crafted features. Training and testing
with more complex neural networks (e.g. Recurrent Neural
Networks and Long Short-Term Memory Networks) will be
explored with a larger database. Their implementation in real-
time on hardware platforms while maintaining the offline accu-
racy of human activity recognition with integrated magnetic
and radar sensing system are still outstanding challenges to
be addressed in future work.
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