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Abstract 18 

Large-scale ecological restoration has been widely accepted globally as an 19 

effective strategy for combating environmental crises and to facilitate sustainability. Assessing the 20 

effectiveness of ecological restoration is vital for researchers, practitioners, and policy-makers. 21 

However, few practical tools are available to perform such tasks, particularly for large-scale 22 

restoration programmes in complex socio-ecological systems. By taking a “before and after” 23 

design, this paper formulates a composite index (Ej) based on comparing the trends of vegetation 24 

cover and vegetation productivity to assess ecological restoration effectiveness. The index reveals 25 

the dynamic and spatially heterogenic process of vegetation restoration across different time 26 

periods, which can be informative for ecological restoration management at regional scales. 27 

Effectiveness together with its relationship to socio-economic factors is explored via structural 28 

equation modeling for three time periods. The results indicate that the temporal scale is a crucial 29 

factor in representing restoration effectiveness, and that the effects of socio-economic factors can 30 

also vary with time providing insight for improving restoration effectiveness. A dual-track strategy, 31 

which promotes the development of tertiary industry in absorbing the rural labor force together 32 

with improvements in agricultural practices, is proposed as a promising strategy for enhancing 33 

restoration effectiveness. In this process, timely and long-term ecological restoration monitoring is 34 

advocated, so that the success and sustainability of such programmes is ensured, together with 35 

more informative decision making where socio-ecological interactions at differing temporal scales 36 

are key concerns. 37 

Key-words: ecological restoration, effectiveness assessment, temporal scale, socio-ecological 38 

system, rural economy, structural equation modeling. 39 



 

 

1. Introduction 40 

Since the turn of the millennium, numerous restoration initiatives have been established 41 

across the globe to restrain environmental degradation and ecological destruction caused by 42 

human activities (Benayas et al., 2009). As an interventionist activity, evidence strongly indicates 43 

that ecological restoration has achieved its major goal of enhancing biodiversity and restoring 44 

ecosystem services (Clewell and Aronson, 2013). A meta-analysis of 89 restoration assessments 45 

across a wide range of ecosystem types, revealed that biodiversity and ecosystem services were on 46 

average enhanced by 44% and 25%, respectively (Benayas et al., 2009). Significant restoration 47 

achievements in some specific ecosystem types and degraded regions have also been reported 48 

(Calmon et al., 2011; Meli et al., 2014). As a result, ecological restoration activities are now 49 

widely recognized as significant contributors to global sustainability. Given the large spatial extent 50 

of restoration and conservation coverage, more than 11% of the global land surface (Andam et al., 51 

2008), coupled with government funding, analytical tools are needed to accurately assess 52 

restoration effectiveness so that researchers and policy-makers can promote successful 53 

management interventions. Unfortunately, even well-designed research programmes are often 54 

poor at evaluating the effectiveness of large-scale ecological restorations (Martin et al., 2014). 55 

This is in part due to poorly specified metrics, limited information on spatial and temporal 56 

variability, and insufficient knowledge of human impacts. The lack of agreed scientific methods 57 

for assessing restoration effectiveness limits the incorporation of ecological restoration in land-use 58 

planning and decision making. In turn, this presents a challenge to governments and managers 59 

when restoration projects up-scale from individual sites to landscape and regional levels (Cao et 60 

al., 2009; Lamb et al., 2005). 61 



 

 

Focusing on the temporal dimension of ecological restoration can provide detailed 62 

understanding of the effects of restoration activities (Levrel et al., 2012), and research has 63 

investigated temporal responses of different types of ecosystems to restoration initiatives. For 64 

instance, Jones and Schmitz (2009) compared ecosystem recovery and noted forest ecosystems 65 

took the longest to recover, with an average time of 40 to 50 years, whereas aquatic and terrestrial 66 

grassland ecosystems had much shorter recovery times of 20 to 25 years. Vegetation recovery in 67 

coastal marine and estuarine ecosystems has been found to take less than 5 years due to the 68 

short-lived and high-turnover nature of its biological components (Borja et al., 2010). In these 69 

cases, the focus was on the recovery of the ecosystem’s structural characteristics without 70 

considering the degree to which functional ecosystem performance was regained. While a general 71 

consensus is that temporal scales of restoration strategies should not be ignored (Jones and 72 

Schmitz, 2009; McAlpine et al., 2016), few studies have established a restoration chronosequence 73 

that characterizes the dynamics and functionality of restored regions over time (Berkowitz, 2013). 74 

In these evaluations, the process of ecological restoration is affected both by natural factors 75 

and by human activities, which provides multifaceted interactions between ecological effects and 76 

socio-economic drivers (Timilsina et al., 2014). In fact, recent research has indicated that 77 

socio-economic factors exhibit a growing influence on changes to ecological processes (Lü et al., 78 

2015; Petursdottir et al., 2013; Zhang et al., 2013). The impacts caused by socio-economic factors 79 

were found to be dominant over climate variations, in driving large scale ecological changes 80 

nationally in China and related to the implementation of a series of large scale ecological 81 

conservation and restoration programmes (Lü et al., 2015; Zhang et al., 2013). However, detailed 82 

mechanisms concerning the role of socio-economic factors on ecological restoration effectiveness 83 



 

 

are still unclear at the regional scale. The purpose of this study is to tackle these deficiencies and 84 

to examine the effectiveness of large-scale ecological restoration over different temporal scales, as 85 

well as the possible time dependent relationships between restoration effectiveness and 86 

socio-economic factors. 87 

In China, large-scale ecological restoration and conservation programmes, such as the ‘Three 88 

Norths Shelter Forest System Project’ (since 1978), the ‘Natural Forest Conservation Program’ 89 

(since 2000) and the ‘Grain to Green Program’ (GTGP, since 2000) have been established to 90 

support and promote ecosystem resilience, ecological security, and socio-economic sustainability 91 

(Lü et al., 2012), and ecological restoration policies have been established and refined. The GTGP 92 

is a large-scale programme converting steep cultivated land to forest and grassland. It was 93 

established in 1999 and was fully implemented in 2000 with 97% of China’s counties involved 94 

(Liu et al., 2008). Central government offered farmers grain and financial subsidy every year 95 

based on the area of cropland on slopes that they converted (Liu et al., 2008; Miyasaka et al., 96 

2017). The northern part of Shaanxi province in the central Loess Plateau was selected as a pilot 97 

and demonstration area for the GTGP. It provides a good case study to demonstrate a restoration 98 

effectiveness assessment toolkit in a regional scale. Here the vegetation cover has markedly 99 

increased since the late 1990s (Fan et al., 2015; Zhai et al., 2015), but also socio-economic factors 100 

such as population migration and industrial changes in this region has have an impact on 101 

restoration effectiveness. 102 

Re-vegetation is the most intuitive and effective approach for restoration projects. It 103 

promotes ecological functions, such as increasing biodiversity, carbon sequestration and improved 104 

soil quality (Jin et al., 2014). Changes in vegetation provide simple and cost-effective indicators of 105 



 

 

effectiveness of restoration and conservation programmes (Lü et al., 2015). Using high temporal 106 

and high spatial resolution remote sensing data, it is possible to quantify the basic characteristics 107 

of vegetation / land cover change as well as changes in functional characteristics, such as biomass 108 

productivity. Fractional vegetation cover (FVC) can be derived from remote sensing data and used 109 

to provide an index for characterizing vegetation changes (Wu et al., 2014). Similarly, net primary 110 

production (NPP) provides a measure of standing biomass (Donmez et al., 2011) and is a critical 111 

indicator of ecosystem function (Watanabe and Ortega, 2014). Therefore, these two remote 112 

sensing data products were used to assess the effectiveness of regional ecological restoration in 113 

this research. Specifically, this research: (1) formulates a composite indicator approach for 114 

assessing the effectiveness of ecological restoration at a regional scale based on mentioned FVC 115 

and annual accumulated NPP; (2) quantifies the effectiveness of ecological restoration and the 116 

impacts from different socio-economic factors by using a structural equation modeling (SEM) 117 

approach; (3) highlights the significance of temporal scale effects and the practical implications of 118 

this research for ecological restoration policy and management across large spatial scales. 119 

2. Materials and methods 120 

2.1. Study area 121 

Northern Shaanxi is situated in the middle of Loess Plateau (35° 21′ - 39° 34′ N, 107° 28′ - 122 

111° 15′) and covers an area of 8.03×10
4
 km

2 
(Fig.1). This region is dominated by a semi-arid and 123 

continental climate with a mean annual temperature ranging from 7 to 12 °C, and an annual 124 

precipitation ranging from 350 mm to 600 mm. The study area includes the Yulin and the Yan’an 125 

prefectures consisting of 25 counties, which acted has as a pilot and demonstration region for the 126 

GTGP since 1999 (i.e. over 15 years for the purposes of this study). 127 



 

 

 128 

Fig. 1 Location of the study area on the Loess Plateau of China. 129 

2.2. Data sources 130 

The FVC and NPP data products were both derived from MODIS imagery with a 250 m 131 

spatial resolution from 2000 to 2014 during a 16-day time interval. The dimidiate pixel model for 132 

FVC estimation was calculated from the Normalized Difference Vegetation Index (NDVI) to 133 

assess vegetation response (Leon et al., 2012). The NPP data was computed based on the CASA 134 

(Carnegie-Ames-Stanford) ecosystem model (van der Werf et al., 2006). Socio-economic data 135 

covering 2000-2014 at the prefectural level was taken from the Shaanxi Province Statistical 136 

Yearbooks and annual socio-economic statistical bulletin of each county. These data were used to 137 

describe the underlying socio-economic factors that may influence vegetation restoration at the 138 

county scale. 139 

2.3. Vegetation restoration effectiveness assessment and the use of SEM 140 

The annual mean fractional vegetation cover (FVCmean), the annual maximum fractional 141 

vegetation cover (FVCmax), and the annual accumulated net primary production (NPPannual) were 142 

selected as three indicators for an effectiveness assessment of vegetation restoration in the study 143 



 

 

area. The linear trends of these indicators were calculated by using an ordinary least-squares 144 

regression approach for each pixel in northern Shaanxi (Lü et al., 2015), where a was the slope of 145 

the resultant linear equation which was subjected to the usual t-test for significance from zero. If 146 

a > 0 and p < 0.05, there was a significant positive trend for the variable in question. By contrast, 147 

when a < 0 and p < 0.05, there was a significant negative trend for the variable in question. The 148 

change in trends for the three indicators were estimated for three different overlapping periods, 149 

namely 2000-2005, 2000-2010, and 2000-2014 (see supplementary material Fig. S1). A “before 150 

and after” design (Martin et al., 2014) was used to estimate the effectiveness of vegetation 151 

restoration. Different weights were assigned to the three variables. FVC provides a basic structural 152 

index for assessing vegetation condition and NPP is a functional indicator for vegetation 153 

production that is important for regulating ecosystem processes and functions (Watanabe and 154 

Ortega, 2014). Therefore, an equal weighting of 0.5 was allocated to FVC and NPP as measures of 155 

the structure and function in ecosystems, respectively. Additionally, a greater weight was assigned 156 

to FVCmax as its explanatory power has been found to be higher than FVCmean (Wu et al., 2014). 157 

The comprehensive effectiveness index (ej) was first formulated for each temporal scale: 158 

100% ( )
ij ij ij

e w IN DE=          (1) 159 

where variable i could be one of FVCmean, FVCmax, or NPPannual; j=1 for 2000-2005, j=2 for 160 

2000-2010, j=3 for 2000-2014, wi denoted the weighting factor for variable i set at 0.2, 0.3, and 161 

0.5 for FVCmean, FVCmax, and NPPannual, respectively, INi denoted the percentage area in each 162 

county with a significant increasing trend on variable i and DEi represented the percentage area of 163 

each county with significant decreasing trend on variable i. The difference between INi and DEi is 164 

referred to as the net relative change on variable i. 165 



 

 

To determine the temporal trends in restoration effectiveness, the average of the 166 

comprehensive effectiveness during the initial stage (i.e. 2000-2005, j=1) in the study area was set 167 

as the reference value (ē). Then the relative comprehensive effectiveness index (Ej) for each 168 

temporal scale could be calculated as: 169 

j

j

e
E

e
=         (2) 170 

1 1100% ( )
i i i

avg
e w IN DE =           (3) 171 

SEM is a method for examining hypotheses about multivariate causal relationships in 172 

complex systems, which can involve either observed variables, latent variables or both (Grace, 173 

2006). The basic assumption of SEMs is that explanatory models may include hidden or latent 174 

variables. To examine this a series of latent equations are used to generate parameters that are 175 

passed to regression operations and residual correlation evaluations. This method is particularly 176 

useful for identifying latent variables, as it allows a range of variables to be tested simultaneously 177 

and the best fitting model selected for any possible set of measured variables (Byrne, 2016). SEMs 178 

are being increasingly used to explore the interactive effects that drive mechanisms on the 179 

sustainability of socio-ecological systems. For example, Standish et al. (2015) estimated climate 180 

factors, restoration practice and their interactive effects on the richness of restored plant 181 

assemblages by developing a SEM. Tian et al. (2014) assessed the relationships among land cover 182 

change, economic development and population growth in the context of sustainably managing 183 

urban ecosystems. Therefore, this method can be adapted to explore the relationships between 184 

different categories of socio-economic factors and the effectiveness of vegetation restoration. The 185 

contributed indicators for each socio-economic factors could be identified and screened from a 186 

range of measured variables. 187 



 

 

Demographic changes, urbanization and economic productivity, affluence and rural economy 188 

are major socio-economic factors that affect large-scale vegetation restoration in many developing 189 

countries (Cao et al., 2014; Lü et al., 2015; Madu, 2009). In this paper, we hypothesized that 190 

socio-economic factors can be represented as three latent variables, i.e. population pressure, 191 

off-farm economy and rural economy, each of which have an impact on the effectiveness of 192 

vegetation restoration. The a-priori model of the expected relationships among variables is 193 

described in Fig. 2. We identified a number of socio-economic indicators that could affect 194 

vegetation restoration based on a literature search (Table 1). We then performed an extensive 195 

analysis depending on the a-priori model to to identify the most representative indicators for each 196 

of the three latent variables. Total population and rural employment were selected as indicators of 197 

population pressure. Secondary industry and tertiary industry were selected as the indicators of 198 

off-farm economy. Primary industry, income and grain yield were selected as the variables for the 199 

rural economy. The effectiveness of vegetation restoration was treated as an endogenous latent 200 

variable and measured by FVCmean, FVCmax and NPPannual. Counties with Ej greater than 1 during 201 

the three different overlapping time periods indicated they were relatively effective, and as a result, 202 

were selected to develop relationships between socio-economic factors and effectiveness. The 203 

feasibility of the model depends on a goodness-of-fit assessment via the chi-square statistic (χ
2
). 204 

Here a p-value greater than 0.05 indicates that the modelled relationships and the ‘real’ 205 

relationships are considered a match (Hopcraft et al., 2012). AMOS ver.22 was used for the SEM 206 

analysis (Tayyebi and Jenerette, 2016). 207 



 

 

 208 

Fig. 2 The a-priori model for the SEM. Ellipses show the latent conceptual variables. 209 

210 



 

 

Table 1 The socio-economic indicators that may have an impact on vegetation restoration via a 211 

literature search. 212 

Socioeconomic 

factors 

Indicators Description Literature 

Population 

pressure 

Total population Total permanent population  

(Cao et al., 2014; Li et 

al., 2013; Lü et al., 

2015; Luck et al., 

2009) 

Rural populations Permanent population in rural 

areas 

Rural employment Rural labor forces 

Educated 

population 

Population with 12 years 

education and high school 

qualifications 

Off-farm 

economy 

Secondary 

industry 

Annual value-added of 

secondary industry 

(Li et al., 2015; Lü et 

al., 2015; Michishita et 

al., 2012; Su et al., 

2014; Wittemyer, 

2011) 

Tertiary industry Annual value-added of tertiary 

industry 

Investment Total investment in fixed assets 

Fiscal revenues Local fiscal revenues 

Fiscal expenditure Local fiscal expenditure 

Deposit Per capita annual disposable 

income of urban households 

Rural economy 

Primary industry Annual value-added of primary 

industry 

(Cao et al., 2014; 

Cobon et al., 2009; 

Deng et al., 2016) 

Income Per capita annual net income of 

rural households 

Grain yield Total outputs of rice, wheat, 

corn and other grains and 

beans  

Arable land Area of farmland 



 

 

3. Results 213 

3.1. Restoration effectiveness 214 

Although vegetation cover in northern Shaanxi has largely inceased in the last 15 years, the 215 

degree of recovery significantly differed over the three cumulative temporal periods. In the early 216 

stage of the GTGP (Fig. 3a), only 9 out of the 25 counties had effective vegetation restoration (Ej 217 

˚ 1), with the rest showing low effectiveness (Ej < 1). This is because the three vegetation 218 

indicators (FVCmean, FVCmax, and NPPannual) showed no significant change in most of the study 219 

area, with only a scattered distribution of a few significant greening areas (Fig. S1). Over the 220 

longer temporal scale (2000-2010), due to the widespread and significant increases of vegetation 221 

(Fig. S1), Ej increased markedly (Fig. 3b). This trend of increasing effectiveness continued for 222 

2000-2014 (Fig. 3c). Geographically, Ej seems to increase from the northern and south central 223 

counties (Fugu, Wuqi, and Yanchang) to the whole study area, which is largely in line with the 224 

spatial trends observed for the three vegetation indicators (Fig. S1). These results are supported by 225 

previous studies which noted that the GTGP in northern Shaanxi mainly concentrated on shrub 226 

and grassland bio-climate zones with large areas of re-vegetated sloping croplands (Feng et al., 227 

2013; Song et al., 2011). 228 

Notable exceptions can be observed however, in the three southern counties of Fuxian, 229 

Huangling and Huanglong, where large tracts of natural forest remained with an area coverage of 230 

60%, which resulted in lower and lower overall relative effectiveness of vegetation restoration 231 

values across all three time periods. This is because the baseline condition of vegetation cover was 232 

already high in these counties and as such, they are not a priority for vegetation restoration, but are 233 

for nature conservation. In these counties, the mean values of FVCmean, FVCmax, and NPPannual 234 



 

 

during 2000-2014 were the highest observed, but the coefficients of variation of these indicators 235 

were the lowest (see supplementary material Fig. S2), which directly implied effective forest 236 

conservation. 237 

 

Fig.3 The comprehensive relative effectiveness of vegetation restoration at a county scale in three 238 

different time periods. 239 

3.2. Relationships between socio-economic factors and vegetation restoration effectiveness 240 

The factors selected for describing socio-economic status in northern Shaanxi included 241 

population pressure and measures of the industrial and agricultural economies. The variance 242 

explained by the three socio-economic factors was 62%, 83% and 91%, respectively over the three 243 

temporal scales, indicating a significant influence on restoration effectiveness. The three latent 244 

variables (i.e. population pressure, off-farm economy and rural economy) were highly correlated, 245 

as hypothesized in the a-priori model (Fig. 2). 246 

The strength of the relationships between socio-economic factors and restoration 247 

effectiveness varied over time. In the first five years (Fig. 4a), the strong negative impact of 248 



 

 

socio-economic factors on restoration effectiveness was only reflected by population pressures. 249 

The impact contributed by the off-farm economy was weak and non-significant but the rural 250 

economy had a positive effect (0.27) in relation to restoration effectiveness. Over longer temporal 251 

scales (Fig. 4b~c), both population pressure and the off-farm economy exhibited significantly 252 

negative impacts on restoration effectiveness, whereas the rural economy was strongly positively 253 

correlated with restoration effectiveness. 254 

Specifically, population pressure was always the most important factor that negatively acted 255 

on restoration effectiveness. However, the contribution from the total population showed a 256 

decreased tendency with path coefficients of 1.00, 0.88 and 0.83, respectively, while the rural 257 

employment were more important contributors over time. As for the off-farm economy, secondary 258 

industry was the leading indicator across time. But the contribution from the secondary industry 259 

did not change while that from the tertiary industry increased significantly over time, which 260 

suggests the latter might be responsible for the increased negative impacts. Only the rural 261 

economy showed a consistent positive impact on restoration effectiveness with path coefficients of 262 

0.27, 0.73 and 0.82, respectively, which was reinforced over time. Despite the rural economy 263 

being sensitive to all three indicators (i.e. income, primary industry and grain yield), income 264 

showed less contribution at the three temporal scales. 265 

Our final models indicated that the off-farm economy was positively influenced by total 266 

population and income (Fig. 4b~c), an influence which had not been revealed in the first five years 267 

(Fig. 4a). In the early stage of the GTGP (Fig. 4a), vegetation restoration had a positive impact on 268 

rural income with a path coefficient of 0.45, because increases in farm income were mainly 269 

dependent on governmental subsidies (Liu et al., 2008). Also, a negative impact of NPPannual 270 



 

 

increases on grain production reflected the influences that the grain cultivation on steep farmland 271 

(slopes ≥ 25
◦
) being replaced by re-vegetation under the GTGP. Our results also revealed that rural 272 

employment benefits from the restoration programmes, which has been similarly identified in 273 

related empirical research (Aronson et al., 2010). These relationships were retained, as well as 274 

relationships among socio-economic factors, because their relevance and interactions are 275 

widespread across a range of linked socio-economic activities. The χ
2
 and other fit indices 276 

suggested that the SEM was reliable and suitable (Table 2).277 



 

 

 278 

 279 

Fig. 4 The SEM for the relationships between socio-economic factors and the effectiveness of 280 

vegetation restoration in different time periods. Solid lines indicate a positive influence and 281 

dashed lines indicate a negative influence. Double asterisks (**) means a significant trend at P < 282 

0.01, and one asterisk (*) means a significant trend at P < 0.05. Un-marked paths indicate a 283 

non-significant relationship. 284 

285 



 

 

Table 2 Measures of fit for the SEM model. 286 

Model fit indices Recommended levels 

Estimate values 

2000-2005 2000-2010 2000-2014 

χ
2
/df <5.000 1.144 1.51 1.617 

RMSEA <0.050 0.057 0.051 0.048 

GFI >0.900 0.901 0.977 0.983 

CFI >0.900 0.995 0.996 0.997 

NFI >0.900 0.963  0.990  0.992  

287 



 

 

4. Discussion 288 

4.1. The effectiveness index provides a quantitative indicator of regional restoration performance 289 

Much of the existing research for assessing the effectiveness of vegetation restoration has 290 

used NDVI to quantify vegetation temporal and/or spatial variation (Tong et al., 2017; Zhang et al., 291 

2012). Spatial pattern analysis based on landscape metrics are also widely adopted in effectiveness 292 

assessment to examine spatial pattern, structure and composition of vegetation conservation or 293 

restoration (Fava et al., 2016; Qi et al., 2013). However, vegetation function and the dynamics of 294 

restoration effectiveness are rarely considered. The effectiveness index (Ej) we formulated 295 

provides a comprehensive measure of the effect of vegetation restoration based on changes in 296 

vegetation cover and NPP. Using this elegant and easily calculated index, this paper revealed the 297 

temporal dependency of restoration effectiveness and its spatial heterogeneity. In northern Shaanxi, 298 

three stages were characterized: 1) emergent effectiveness in the early stage of the GTGP (i.e. 299 

2000-2005), 2) increasing effectiveness over a longer temporal scale (i.e. 2000-2010), and 3) 300 

further changes over the entire period (i.e. 2000-2014) resulting in significant improvements 301 

caused by prolonged restoration (Fig. 3a~c). Given the complexity of regional variations, local 302 

knowledge is also needed to identify the reasons for differences in vegetation recovery. For 303 

instance, Ej in the southern counties of northern Shaanxi (Huangling and Huanglong) was 304 

critically related to persistent forest conservation in these counties, but confounded the assessment 305 

of vegetation restoration. Nevertheless, the index provides an indication of effective management 306 

in different stages of restoration. 307 

Improving the effectiveness of ecological restoration can positively affect water flow 308 

regulation and soil conservation (Ran et al., 2013). Vegetation restoration provides opportunities 309 



 

 

to achieve effective control in nutrient losses, sediment loads and non-point source pollution 310 

(Palmer et al., 2014). The effectiveness index formulated in this research provides a simple but 311 

efficient tool for indirectly estimating the relative contributions of vegetation restoration on 312 

hydrological regulation and pollution mitigation at regional scales. 313 

4.2. Socio-economic and temporal dimensions are crucial for understanding restoration 314 

effectiveness 315 

Large-scale restoration projects are part of a complex social-ecological system. The 316 

effectiveness of restoration projects is related to both biophysical and socio-economic factors. At 317 

decadal time scale, changes in geomorphology and soil are negligible but changes in climate have 318 

the potential to be the most significant biophysical factor effecting ecological restoration. For 319 

these reasons, we examined changes in precipitation and temperature based on 21 meteorological 320 

stations within and near northern Shaanxi, from 2000 to 2014 (see supplementary material Fig. 321 

S3). We found that annual precipitation increased significantly in only one of the 21 stations 322 

(Suide) and the mean annual temperature decreased significantly in another (Yan’an) (Table S1). 323 

However, regionally (across the entire study area) no significant change in precipitation and 324 

temperature were found during this period (Fig. S4). These findings are in line with Feng et al. 325 

(2013) who found no significant change in precipitation or temperature across the entire Loess 326 

Plateau and component bioclimatic zones during last decade. Therefore, climate variation was not 327 

considered to be a significant factor associated with regional ecological restoration in this study. 328 

Dynamic restoration processes are subject to continuous change. Consequently, the findings 329 

and outcomes of research into these processes will inevitably vary over time (Lake et al., 2007; 330 

Levrel et al., 2012). In this research, restoration effectiveness was found to change during different 331 



 

 

periods, reflecting temporal effects on the vegetation restoration process, where the spatial 332 

heterogeneity of vegetation restoration also varied with time (Fig. 3). Moreover, we quantified the 333 

significant relationships between socio-economic factors and the effectiveness of the 334 

regional restoration—factors have been found to be locally-specific and temporally dynamic 335 

(Borja et al., 2010). Previous studies have often depended on sparse information or specific 336 

indicators and have been mostly grounded in untested assumptions rather than an integrated 337 

analysis (Miyasaka et al., 2017). Here, we integrated a number of core socio-economic factors of 338 

different categories and quantified their changing relationships with restoration effectiveness. Our 339 

results support the hypothesis that socio-economic factors (i.e. population, measures of industrial 340 

and agricultural economies) can have significant implications on restoration effectiveness. The 341 

spatially heterogeneous impacts of some socio-economic factors have been explored and 342 

addressed before (Cao et al., 2014; Jiang et al., 2017). However, we quantified the time dependent 343 

characteristics of different socio-economic impacts using a SEM approach (Fig. 4), which is able 344 

to factor specific information in relation to the effectiveness of regional restoration projects. 345 

Subsequently, a long-term horizon of monitoring and assessment needs to be embraced that 346 

includes socio-economic factors as key components for a comprehensive understanding of 347 

restoration effectiveness at large regional scales. 348 

4.3. Socio-economic factors are important for improving the effectiveness of large-scale 349 

ecological restoration 350 

Demographic factors have a significant negative correlation with vegetation change as 351 

reported in much regional and national scale research (Jiang et al., 2017; Li et al., 2013; Lü et al., 352 

2015; Mganga et al., 2015). In this study, population pressure was also found to have negative 353 



 

 

impacts on restoration effectiveness, consistent with other research. Empirical studies have shown 354 

that improvements in economic welfare can contribute to vegetation restoration, emphasizing the 355 

positive effects of rural economic improvements (Jiang et al., 2017; Lü et al., 2015; Madu, 2009) 356 

and that rural income has a positive relationship with vegetation change (Cao et al., 2014). 357 

However, secondary industry has been found to negatively impact on vegetation in ecologically 358 

fragile regions as a result of industrial growth or urban expansion (Su et al., 2014; Wang et al., 359 

2016). In this research, such economic factors (i.e. the off-farm and rural economies) were found 360 

to have the opposite influence, highlighting a complex relationship between socio-economics and 361 

regional ecological restoration. Secondary industry was the major contributor for its economic 362 

growth for over a decade in northern Shaanxi. 363 

Changes in relationship between socio-economic factors and restoration effectiveness offer 364 

insights for improving the management of large-scale ecological restoration projects. The rural 365 

labor force represents a vigorous group of stakeholders that could facilitate, impede or even 366 

reverse ecological restoration progress (Petursdottir et al., 2013). Promoting the migration of rural 367 

labor could provide an opportunity to mitigate the negative impacts of population pressure on 368 

restoration effectiveness when population growth rates plateau. Deshingkar (2012) noted that 369 

many districts in Eastern India experienced a significant increase in forest cover in situations of 370 

high migration. Examples of successful ecological restoration in Southeast China also 371 

demonstrated the positive impacts resulting from temporary or permanent migration in the rural 372 

labor force (Wang et al., 2011). The labor-intensive tertiary industry plays an irreplaceable role in 373 

absorbing rural labor (Madu, 2009), which was reflected in the early stage of the GTGP, with a 374 

path coefficient of 0.67 found in our research (Fig. 4a). This was because of a large amount of 375 



 

 

rural labor was released at one time. However, the effects of rural labor migration or the pull from 376 

tertiary industry was weakening, which might explain the continuous negative effect of population 377 

(Fig. 4b~c). Fragmentation and the irregularity of vegetated landscapes were also observed with 378 

the development of tertiary industry (Michishita et al., 2012; Su et al., 2014). Thus, the increased 379 

negative effect of the off-farm economy suggests a constraint from the rapid development of 380 

tertiary industry. Therefore, tertiary industry should be promoted as a low emission, 381 

resource-saving and livelihood-supporting approach to urbanization and industrial production to 382 

both realize the transfer of rural labor and facilitate ecological restoration. 383 

A sustainable restoration project should also involve the rural economy and take full 384 

consideration of objectives and values of the rural community (Lamouroux et al., 2015). Recent 385 

research has suggested that the direct economic benefit may not be the dominant driver for 386 

improving ecological restoration. A survey in Iceland suggested that aesthetic values over 387 

economic interests were the main reasons for stakeholders practicing restoration projects 388 

(Petursdottir et al., 2013). Deng et al. (2016) also noted that ecological benefits play a more active 389 

role than economic benefits in promoting farmers to conserve the restoration achievements in the 390 

GTGP. Our results indicated that rural income had a minimal impact on the rural economy, at the 391 

three temporal scales. In contrast, improvements in agricultural practice have been found to 392 

alleviate the burden on environment and natural resources (Deshingkar, 2012; Sjogersten et al., 393 

2013). For example, case studies in India indicated that improvements of farm productivity 394 

reduced the area farmed and pressure on forests (Deshingkar, 2012). Our results clearly highlighted 395 

the contribution to restoration effectiveness from agricultural productivity (including grain yield 396 

and primary industry). Therefore, another promising strategy for enhancing restoration 397 



 

 

effectiveness is to fundamentally improve rural livelihoods. Together the migration of the rural 398 

labor force and improvements in farming practice have the ability to promote the rural economy 399 

by diversifying income streams, subsequently improve the effectiveness of restoration in the long 400 

run. 401 

4.4. Spatially-explicit quantification of the relationships between restoration effectiveness and 402 

socio-economics 403 

Our research explored the relationships between socio-economic factors and ecological 404 

restoration effectiveness, and identified the major socio-economic drivers that facilitate restoration 405 

programmes. However, our study also revealed that the relationships between different indicators 406 

of three socio-economic factors (i.e. population pressure, off-farm economy and rural economy) 407 

and their inter-correlations varied over time (Fig. 4). This suggests that multiple interactions exist 408 

in socio-economic systems, interactions that were not the main focus of this study. Nonetheless, 409 

we believe that these changing relationships could be potentially responsible for altering the 410 

effects of socio-economic factors on the restoration effectiveness. 411 

Clarifying these specific relationships, requires for a more sophisticated quantitative 412 

approach, such as adapting the SEM to account for spatial structure in the data with a more 413 

specified objective of detecting local or regional effects on the relationships between the 414 

socio-economy and ecological restoration effectiveness. This requires the investigation of the 415 

effects of spatial autocorrelation in the component linear regressions of the SEM (Lamb et al., 416 

2014), and/or the effects of spatial heterogeneity in the relationships of the same component 417 

regressions. For the latter, the adaptation of the SEM to a geographically weighted methodology 418 

(Gollini et al., 2015; Lu et al., 2014) as explored by Comber et al (2017) is a subject for future 419 



 

 

research. Adapting SEMs to account for spatial effects will potentially provide spatially-explicit 420 

decision support for improving regional effectiveness of ecological restoration through regulating 421 

the socio-economic context and key drivers accurately. This could be a priority for the next steps 422 

in ecological restoration research. 423 

5. Conclusions 424 

This paper proposes a simple and rapid quantitative method for assessing the effectiveness of 425 

large-scale vegetation restoration based on changes in vegetation cover and net primary 426 

production under a “before and after” analytical framework. A composite index (Ej) at different 427 

temporal scales revealed the continuous improvement of vegetation restoration at a regional scale. 428 

By using a structural equation modeling approach, this paper indicated that population pressure 429 

and economic development, dominated by secondary industry, could negatively impact the 430 

improvement of restoration effectiveness. Whereas, improvements in the rural economy could 431 

positively contribute to improving restoration effectiveness. The influence of socio-economic 432 

factors varied over time, which offers dual perspectives for enhancing restoration effectiveness. 433 

First, tertiary industry could potentially relieve population pressure caused by the rural labor force 434 

and facilitate ecological restoration. Second, promoting a rural economy and introducing 435 

comprehensive policies is advocated, particularly focusing on improvements in agricultural 436 

practices. Our research highlighted quantitatively the time-dependent characteristics of the 437 

effectiveness of regional ecological restoration and its relations with socio-economic factors. 438 

Therefore, the dynamic nature of socio-economic context should always be considered in the 439 

planning, monitoring, and adaptive management of large-scale ecological restoration programmes 440 

for developing and promoting effective and flexible restoration interventions. 441 
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