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Abstract 
In this paper, we propose a method to solve coupled problem. Our computa-
tional method is mainly based on conjugate gradient algorithm. We use finite 
difference method for the structure and finite element method for the fluid. 
Conjugate gradient method gives suitable numerical results according to some 
papers. 
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1. Introduction 

Problem involving fluid structure interaction occurs in a wide vatiety of engi- 
neering problems and therefore has attracted the interest of many investiga- 
tions from different engineering disciplines. As a result, much efforts has gone 
into the development of general computational method for fluid structure sys-
tems [1] [2] [3] [4] [5] [6]. 

Amongst the computational methods for fluid structure interaction problem, 
we cite the fixed point method, the Newton method, the Quasi-Newton method, 
the fictitious domain method. In this work we present a method based on the 
conjugate gradient algorithm. In effect, the fluid interaction problems occur in 
biomedical fluids areas for example blood flow interaction with elastic veins. 
Thus, this paper aims at showing that, we can combine the finite difference me-
thod, the finite element method and the conjugate gradient method to solve fluid 
structure interaction problem. On the one hand, we use finite difference method 
to approximate the structure model in order to have a linear systems, On the 
other hand, we solve the stokes equation by the finite element method. Moreover, 
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conjugate gradient method will be intruduced to compute the displacement of 
the structure. Thus, the velocity v  and the pressure p  of the fluid are done in 
the deformed domain. In addition, the fluid represented by the blood is mod-
elled by two dimensional Stokes equation for steady flow and the structure 
represented by the body vessel is modelled by the one dimensional beam equa-
tion. 

2. Position of Problem  
2.1. Domain Fluid 

The fluid domain noted 2u
FΩ ⊂   is represented in the Figure 1. 

Where, the border 1 2 3 2
u
F∂Ω = Σ Σ Σ Γ   .  

- 2Γ  is the interface between the fluid and the elastic structure  
- 1Σ  is The inflow  
- 2Σ  is a rigid border  
- 3Σ  is the outflow  
- L  is the domain length 
- H  is the domain height 
- u  is the displacement of the structure 

2.2. Fluid Properties 

The fluid is considered to be Newtonian, incompressible and its state is describ- 
ed by the velocity ( )1 2,v v v=  and the pressure p . The balance equations are  

,  in  F u
Fv p fµ− ∆ +∇ = Ω                        (1) 

0,   in  u
Fv∇ ⋅ = Ω                           (2) 

1 2,  on  v G= Σ Σ                          (3) 

20,   on  v = Γ                           (4) 

30,   on  d
vpI n
n
∂

− + = Σ
∂

                      (5) 

- µ : the fluid viscosity  
- dI  the identity matrix  
- ( )1 2,F F Ff f f=  the volume force of the fluid  

- n  is a unit normal vector  
- ( )1 2,G G G=  the velocity profil in 1Σ   

 

 
Figure 1. Reference domain. 
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2.3. Structure Properties 

The structure is assumed by elastic beam. We note [ ]: 0,u L →   the displace- 
ment of the structure, it is modelled by the beam equation  

( ) ( ) ( )( ) [ ]4 , , 0, ,Du x p x H u x x L= + ∀ ∈               (6) 

with the boundary conditions, 

( ) ( )0 0u u L= =                         (7) 

( ) ( )0 0u u L′ ′= =                         (8) 

where,  

• 
( )

3

212 1
E hD

ν
×

=
−

  

• E  is the Young modulus  
• h  elastic structure thickness  
• ν  the Poisson's coefficient  
Remark: In Equation (6) we assume that only the pressure force is acting on 

the interface and also u  is the transversal displacement [3]. 

3. Coupled Problem 

The coupled problem is to find ( ), ,u v p  such that: 
( ) ( ) ( )( ) [ ]

( ) ( )
( ) ( )

4

1 2

2

3

, 0,

0 0
0 0

,   in  
0,   in  

,   on  
0,   on  

0,   on  

F u
F

u
F

d

Du x p x H u x x L

u u L
u u L

v p f
v

v G
v

vpI n
n

µ

 = + ∀ ∈


= =
 ′ ′= =
− ∆ +∇ = Ω
∇ ⋅ = Ω


= Σ Σ
 = Γ

∂− + = Σ ∂



 

In order to solve this coupled problem, we transform its continuous problem 
into a discreet problem by using finite difference method and finite element 
method. 

3.1. Approximation by Taylor Development 

Assumption: We consider u  as a small displacement.  
Thus, the Taylor formula gives 

( )( ) ( ) ( ) ( ),
, , ,

p x H
p x H u x p x H u x

y
∂

+ ≈ +
∂

           (9) 

the Equation (6) becomes: 

( ) ( ) ( ) ( ) ( )4 ,
, ,

p x H
Du x u x p x H

y
∂

− =
∂

             (10) 

we pose ( ) ( ),p x H
x

y
α

∂
= −

∂
, finally we have,  
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( ) ( ) ( ) ( ) ( )4 , .Du x x u x p x Hα+ =                   (11) 

To discretize the Equation (11), we introduce a space step 
1

Lx
N

∆ =
+

. We 

denote by iu  the value of the discrete solution at ix i x= ×∆  for { }0,1, , 1i N∈ + . 
We must also discretize The boundary conditions . A centred formula gives  

1 1 2  et  N Nu u u u− += =                       (12) 

and the boundary conditions ( ) ( )0 0u u L= =  become  

0 1 0Nu u += =                          (13) 

we rewrite the Equation (11) in the discreet form  

( )2 1 1 2
4

4 6 4 ,   1, 2,3i i i i i
i i i

u u u u uD u P x H i N
x

α− − + +− + − +
+ = =

∆
    (14) 

Then, the continuous problem becomes the following algebraic equation 
AU P= , where  

14 4 4

24 4 4 4

34 4 4 4 4

24 4 4 4 4

14 4 4 4

4 4 4

7 4 0 0 0

4 6 4 0 0

4 6 4 0

4 6 40

4 6 40 0

4 70 0 0

N

N

N

D D D
x x x

D D D D
x x x x
D D D D
x x x x x

A
D D D D D
x x x x x

D D D D
x x x x

D D D
x x x

α

α

α

α

α

α

−

−

− + ∆ ∆ ∆ 
− − + ∆ ∆ ∆ ∆

 − − +
 ∆ ∆ ∆ ∆ ∆
 =  
 − −

+ ∆ ∆ ∆ ∆ ∆
− − + ∆ ∆ ∆ ∆

− +
∆ ∆ ∆ 







      















 

( )
( )

( )

11

22

,
,

  et  

, NN

up x H
up x H

P U

up x H

   
   
   = =   
       



 

Proposition 1. Note that A  is symmetric positive definite under this as-
sumption ( ) 0xα ≥ .  

Proof. We will prove that ( ) 0xα ≥  for all [ ]0,x L∈ . 

For all ( ) [ ] [ ], 0, 0,x y L H∈ ×  we have ( ) ( ) ( )2 2
,

, ,Fp x y
f x y v x y

y
∂

= + ∆
∂

, for 

y H=  and [ ]0,x L∈  we have ( )2 , 0v x H = , then ( ) ( )2
,

,Fp x H
f x H

y
∂

=
∂

. By 

choosing ( )2 , sf x H g hρ= − × ×  [3] where g  is the gravity force and sρ  

the structure density, we obtain ( ),
0

p x H
y

∂
≤

∂
. Finally, we deduce ( ) 0xα ≥  

for all [ ]0,x L∈ .  
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3.2. Coupled Approximate Problem 
Since A  is symmetric positive definite, so we can use the conjugate gradient 

method to solve the following coupled problem. Find ( ) ( )( ) ( )21 2
0, u u

F Fv p H L∈ Ω × Ω  

and U  so that  

( ) ( )( )
( ) ( )

21
0

2

: d div d d ,    

div d 0,                                                

u u u
F F F

u
F

F u
F

u
F

AU P

v w x p v x f w x w H

v q x q L

µ
Ω Ω Ω

Ω

 =
 ∇ ∇ − = ∀ ∈ Ω

 = ∀ ∈ Ω


∫ ∫ ∫

∫

 

4. Numerical Method  

To solve numerically the coupled problem we use the following conjugate gra-
dient algorithm. 

Proposition 2. Let A be a symmetric positive definite matrix, and 0u ∈ . 
Let ( ), ,k k ku r z  be three sequences defined by the induction relations 

0 0 0z r P Au= = − , and for 
1

1

1 1

0
k k k k

k k k k

k k k k

u u z
k r r Az

z r z

λ
λ
α

+

+

+ +

= +
≥ = −
 = +

 

with  

( )

2 2
1

2   and  
,

k k
k k

k kk

r r
z Azr

α λ+= =  

Then, ( )
00 1k k k

u
≤ ≤ +

 is the sequence of approximate solutions of the the conju-
gate gradient method [7].  

Description of the computational method  

Step 1: It computes in the initial field the velocity and the pressure.  
Step 2: It uses the conjugate gradient algorithm to find the structure deforma-

tion u . 
Step 3: It computes again the pressure and the velocity in the deformed do-

main 

5. Numerical Results 

Let the real noted test defined by 2test P ε= × . We define the stopping crite-
rion of iterations for the conjugate gradient algorithm by rhoold test>  and 
k n<  where, k  the number of iterations and 2

0rhoold z= . 
We assume that the velocity on the boundary fluid domain is [3]:  

( ) ( )

( ) ( )
( ) ( )

2
2

1 1 2 1 2 1 2 2 1

1 1 2 1 2 1 2 2 2

1 1 2 1 2 1 2 2 3

, 30 1   and  , 0,   on  

, 30  on  , 0,   on  
, 0  and  , 0,   on  

xG x x v G x x v
H

G G x x v G x x v
G x x v G x x v

  
= = − = = Σ  

 
= = = = = Σ
 = = = = Σ


 

We take parameters for fluid and structure in [3] [4]. (Tables 1-3) 
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The Table 3 shows that, if we take the tolerance 3test 1.95 10−= ×  we have the con-
vergence of the algorithm after 10k =  iterations and 21rhoold 5.20 10 test−= × <  and 
the norm of the displacement is 33.3 10u −

∞
= × . 

Freefem ++ [8] is used for the numerical tests. Figures 2-7 following display 
the structure displacement, the pressure and the velocity. 
 

 
Figure 2. Initial grid. 

 

 
Figure 3. Final grid. 

 
Table 1. Parameters of the strcuture. 

Paramerters Values 

E  6 2 20.75 10  g cm s× ⋅  

h  0.1 cm 

ν  0.3 

sρ  
3

g1.1 
cm

 

 
Table 2. Parameters of the fluid. 

Paramerters Values 

µ  g0.035  
L  3 cm 

H  0.5 cm 

g  
2

cm9.81 
s

 

( )1 2,F F Ff f f=  ( )0, sg hρ− × ×  

 
Table 3. Results related to the algorithm. 

Paramerters Values 

ε  610−  

test  31.95 10−×  

rhoold  215.20 10−×  

k  10 

u
∞

 33.3 10−×  
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Figure 4. Pressure profile in the initial domain. 
 

 
 

Figure 5. Pressure profile in the deformed domain. 

 
Figure 6. Velocity profile in the initial domain. 
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Figure 7. Velocity profile in the deformed domain. 

6. Conclusion  

In this paper, we present a method to solve a steady coupled problem. Our me-
thod is based namely on the conjugate gradient algorithm, it takes simulta- 
neously into account three unknown parameters so that each of them depends 
on the others. To get the results it is necessary to solve the fluid in the initial 
domain with the finite element method in order to determine the displacement 
of the structure by the conjugate gradient method and finally to deduce the ve-
locity and the pressure. The velocity, the pressure and the displacement profile 
compared to [2] [3] [5] appear good. In this work, the only thing to skill is to 
reduce the number of iterations and to apply this strategy on the unsteady prob-
lem. 
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