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1. Introduction
Copyright © 2018 by authors and

Scientific Research Publishing Inc. Let X be an arbitrary nonempty set and D be a nonempty set of subsets of the set

This work is licensed under the Creative . . . g
v ensect ey X If Dis closed under the union, then D is called a complete X-semilattice of
Commons Attribution International

License (CC BY 4.0). unions. The union of all elements of the set Dis denoted by the symbol D .
http://creativecommons.org/licenses/by/4.0/  Tet B, be the set of all binary relations on X. It is well known that B, isa
semigroup.
Let fbe an arbitrary mapping from Xinto D. Then we denote a binary relation
a, = |J({x}x f(x)) for each £ The set of all such binary relations is denoted

xeX

by B, (D). Itis easy to prove that B, (D) is a semigroup with respect to the
product operation of binary relations. This semigroup B, (D) is called a com-
plete semigroup of binary relations defined by an X-semilattice of unions D.
This structure was comprehensively investigated in Diasamidze [1] and [2]. We
assume that t,yeX, Yc X, aeB,, TeD and J#D' cD. Then we

denote following sets

ya={xeX|yax}, Ya=Jya,

yey
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V(D,a)={Ya|YeD}, X" ={Y|D=Yc X}
Yo ={yeX|ya=T}, V(X ,a)={Ya|@=Y c X}
D, ={z'eD|teZ'}, B,={aeB,(D)|V (X" .a)=D

Let D:{D,ZI,ZZ,W Z } be finite X-semilattice of unions and

> “m-1

C(D)={R.B,B, P, } be the family of pairwise nonintersecting subsets of

0>41

D Z .. Z

XIf o= ! " | is a mapping from Don C(D), then the equali-
L B - By

ties D=PURURU---UP,, and Z =RU |J ¢(T) are valid. These

TeD\Dy
equalities are called formal.
Let D be a complete X-semilattice of unions « € B, . Then a representation

of a binary relation ¢« of the form a= U (YT“ xT ) is called quasinormal.

Ter(x".a)
Let P,R,P, P, be parameters in the formal equalities, Se B, (D), S,
. m-l —
be mapping from X\D to D.Then f= U[ExUtﬁ]U U ({t’}xﬂz (t'))
i=0 teP, {'eX\D

is called subquasinormal represantation of . It can be easily seen that the fol-
lowing statements are true.
a) feB,(D).

m—1

b) U(EXUI,H c B and p=p forsome p,.

i=0 teP,

¢) Subquasinormal represantation of /S is quasinormal.

o 5-(B R o P
) A= RB BB - P_P

B, and p, are respectively called normal and complement mappings for

j is mapping from C(D) on DU{J}.

p.
Let aeB, (D). If a#50p for all §,eB,(D)\{a} then a is called

external element. Every element of the set Bj = {a € B, (D)| V(X*,a) = D} is

an external element of B, (D).

Theorem 1. [1] Let X be a finite set and a,feB, (D). If B is sub-
quasinormal representation of } then aofB=aopf .

Corollary 1. [1] Let B'c BC B, (D). If a#5°p for acB, 56&\{0{},
B eB\{a} and subquasinormal representation of feB\{a} then a#5op.

It is known that the set of all external elements is subset of any generating set
of B, (D) in[3].

2. Results

In this work by symbol %,,(X,4) we denote all semilattices D = {Z3,ZZ,ZI,D}
of the class %, (X,4) which the intersection of minimal elements Z,(Z, =J.
This semilattices graphic is given in Figure 1. By using formal equalities, we

have Z,\Z,=F =@. So, the formal equalities of the semilattice D has a form
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A

Figure 1. Graphic of semilattice D:{Z3,Z2,ZI,D} which

the intersection of minimal elements Z,Z, =@ .

D=RUPRUPR
=RUP,
Zy=PF,

Let 8,5 B, (D). If quasinormal representation of binary relation & hasa
form &=(¥xZ )U(¥ xZ,)U(¥’ x Z,)U(¥ x D) then

8o = (¥ xZ,B)U(Y x2,B)U(¥’ xZ,B)U(¥; x DB)
We denote the set

2,,2,,D}}
|

YixZ,) WUy =X, N =2

=
|
]
m
><DU
—_
)
t><*
S— S— \\'E/ S~—"
Il
N
N

Y xZ,), 5 UE = X5 N =2

It is easy to see that
By, By, = B, By, =B, B;, = B,, By, = B;, (1B, = B, [ B;, =&

Lemma 2. Let D= {Z ,Z, ,Zl,[)} €X,,(X.4). Then following statements are
true for the sets B,,B,,,B,, .

a)lf « :<Y3" ><Z3)U(Y1 le)U(YO“ xD) for some Y,Y,".,YS ¢ D, then «
is product of some elements of the set B,.

D) If B, =(Z,xZ,)U((X\Z,)x )mm 0By )UB, =B,

OIf 0,=(2,%x2,)U((X\Z,)xZ,), then (B,o0,)UB, =B,

) If 0,=(Z,x2Z,)U((X\Z,)xZ,), then B3200'1 B,,.

e)If o,=(2Z,x2Z,)U ((X\Z3) 1), then B,,00,=B8,,.

f) Every element of the set B,, is product of elements of the set B, U B,, .

g) Every element of the set B, is product of elements of the set
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B,UB,U{c}.
Proof. It will be enough to show only a, b and g The rest can be similarly seen.
a. Let a=(%"xZ)U(%“xZ)U(¥ xD) for some Y.Y"Y ¢{D},
8,3 € B, . Then quasinormal representation of & has a form

8 =% x2,)U(% x2,)U(%’ x2,)U(¥; x D)

where Y,Y’.Y] {Q}. We suppose that
B:(P2XZ3)U(PlXZz)U(P3><Zl)U U,({f}xﬁz("))

feX\D
_ [QJ R B P
where S =
o 7, 7, Z,
plement mapping of the set X\D on the set D . So, BeB, since
V(X B ) = D . From the equalities (2.1) and definition of S
Z3/§=P2:E=Zs
ZzB:(EUQ)B:EBUQ:B:ZzUZ:D
ZlB:(PzUPK)B:PzBUPsB:Z3U21:Zl
DB=(RURUR)B=PBURBURS=2,UDUZ =D
8o =1 xZp)U(¥ x Z,F)U(X % Z,)U(¥) < DP )
= (5" D)U(x < D)U (¥’ x D)U (15 x D)
:(ijb)u(x‘fxb)u((yjUYj)xD):a.

] is normal mapping for f and g, is com-

b. Let a€B,oB,UB,. Then aeB,of, or acB,. If aeB,op, then

a=60f, forsome &e B,.In this case we have
§=(%"x2,)U(% x2,)U(%’ x2,)U(¥ x D)
where Y, Y.Y) ¢{@}. Also
a=50p,=(% x2,8)U(% < Z,8,)U(%’ <28 )U(%’ < DB, )
=(% %2, )U(% x Z,)U(¥%° < 2, )U(¥) x D)
= (W xZ)U(¥% %2, )U((%° UY;')x D) € B, \ By,
is satisfied. So, we have (B,of,)UB, B, . On the other hand, if

aeB,cB, then (B,°f)U B, C B, is satisfied. Conversely, if « < B,

then quasinormal representation of « has a form
o =(¥y xZ,)U(¥; x 2, )U(¥; x D)
where Y/, Y)Y/ ¢{@} or Y'Y, ¢{QD} and Y= . We suppose that
Y7,Yy ¢ {J} . In this case, we have
5o By =(¥ x 2,8, )U(¥ x 2,8 )U(Y; x Z,3,)
=(% %2, )U(% x2,)(%’ x D)=«

for 5:(Y3"‘><Z3)U<Yz“xZZ)U(YO“><Zl)eBO.So,wehave By, =(B,°,)UB,,.
Now suppose that YY" ¢{@} and Y =0 . In this case, we have
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aeI§32g(BOOﬁO)U§32.So, (Booﬂo)Uénszz- }

g. From the statement ¢ we have that (B,cf,)UB,, =B,, where S €B,,
by definition of f;. Thus, every element of the set B,, is product of elements
of theset B,UB,,.

Lemma 3. Let D={Z,.Z,.Z,.D}€%,,(X.4) . If |X\[)| >1 then the
following statements are true.

a)If a=XxD then @ isproduct of elements of the set B, .

b)If a=XxZ, then a isproductofelements of the set B,.

olf a :(Y;Z XZS)U(YI“ ><Z1) for some Y,Y” ¢ J, then «a is product of
elements of the B,.

dIf a= (Yf‘ ><Z3)U(YO" XD) for some Y,Y,” ¢, then a is product of
elements of the B,.

e) If a= (YZ“ xZZ)U(YO‘" XD) for some Y)Y, ¢, then a is product of
elements of the B,.

f) If a :(Yl" XZI)U(YO” XD) for some Y*,¥” ¢, then a is product of
elements of the B,.

Proof. c. Let quasinormal representation of « has a form
a=(¥x2Z)U(¥*xZ2,) where ¥.,Y” ¢{@}. By definition of the semilattice

D, |X|23. We suppose that |Y3"‘|21 and |¥*|>2. In this case, we suppose
that
B=(Ax2)U((RUR)xZ)U U ({r}xA.(1))
teX\D
hB_@Plefi. 1 o for B and B i 1
where f=| 7 7, 7, is normal mapping for B and B, is comple-

ment mapping of the set XxD on the set 5\{23,21}:{22} (by suppose
|X\5|21 ). So, pBeB, since V(X*,ﬁ):D . Also, ¥’ =Y% and
YUY UY’ =Y° since |Yf|21,|Y2‘5|21,|Y15 21,|Yf|20. From the equalities
(2.1) and definition of B we obtain that

Z3E=P2§=Z3

Z,B=(RUP)B=RBURS=2UZ =2,

2B=(RUR)B=RBUPS=2,UZ =7,

Dﬁ:(Pl up, UQ)BZEEUQBU%EZZUZ} Uz =2
5o p=(1x2,B)U(¥ x25) V(¥ x2,5)U(¥ < DB)
= (5 xZ,)U(5 <2, )U(r <2, )U (1% <2))

=(1 =z, )U((5 UR UR)xz )=a

Now, we suppose that >2 and

P=((RuR)xZ,)U(Rx2)U U ({r}xA(1))

@ R B P
o 7, 7, Z,

Y}d

)710(

>1. In this case, we suppose that

where ﬁl =[

J is normal mapping for B and g, is com-

plement mapping of the set X xD on the set D\{Z,,Z,}={Z,} (by suppose
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|X\D|21 ). So, BeB, since V(X".B)=D . Also, ¥JUY’ =Yy and
YUY =Y since |Y35|21,|Yf|21,|Yf|21,|Yf|20. From the equalities (2.1)
and definition of B we obtain that

Z3,E=PzE=Zs

Z,B=(RUR)S=PRURE=2UZ =2,

2p=(RUR)S=PBUPRE=2UZ =2,

Dp :(Pl UPz UP3)5=1’13UP25UP33=21 UZ3 UZ3 =Z,
8o =¥ x2,B)U(; xZ,B)U(¥’ x2,)U(;' x DP)
=(% %z, )U(% x2,)U(¥ x Z,)U(¥y x Z,)
(P UR )2z )U((K UK )x2)=a
Lemma 4. Let D={Z,,Z,,Z,,D} €3%,,(X,4),
o, =(Z,xZ,)U((X\Z,)x2,) and o,=(2,xZ,)U((X\Z,)x2,). If X=D
then the following statements are true
a) If a:(Y;“st)U(YO“xD) for some Y*,Y; ¢{@}, then @ is product
of elements of the B,UB,, .
b) If a:(YZ“xZZ)U(YO“xD) for some Y,",Y; ¢{@}, then a is product
of elements of the B, U{o,}.
QI a=(%“x2)U(¥xD) forsome YY" ¢{D}, then & isproduct of
elements of the B,, U{c,.0,}.
Proof. First, remark that Z,0,=Z,, Z,0,=Dc,=2,, Z,0,=2,, Z,0,=2,,
Do,=D.
a. Let a:(Y;”st)U(YO‘*xD) for some Y,¥y ¢& . In this case, we
suppose that
§=(%x2,)U(% x2,)U(¥ xD)
and

B =(Z:xZ,)U((2,\Z,)x Z,)U((X \ 2,)% D)

where Y.Y; ¢{Q}. It is easy to see that S e B,, and f, is generating by

elements of the B, by statement b of Lemma 2. Also, ¥ =Y and

YUY =¥y since Z,f=2,, Z,f=DB=D and |¥/|>1|r)|>1[r|>0.

So, a isproduct of elements of the B, U B,,. U
Lemma 5. Let

D={Z2,,7,,7,,D} €3,,(X,4)
and

0, =(Z,xZ,)U((X\Z,)xZ,).
If |X \ [)| >1 then S,=B,UB,U{o,} isan irreducible generating set for the
semigroup B, (D).

Proof. First, we must prove that every element of B, (D) is product of ele-
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ments of §,.Let aeB, (D) and

= (¥ x 2, )U(¥ x 2, )U(%* x 2, )U(¥y* x D)
where YUY UY*UY =X and Y"NY, =0, (0<i= j<3). We suppose
(X°,a)|=1. Then we have V(X",a)e{{2,}.{,}.1,}.{D}} .1¢
V(X*,a)e{{Z3},{Zz},{Zl}} then a=XxZ, or a=XxZ, or a=XxZ,.
Quasinormal representations of J,f,,5, and f;, hasform

AN

that

(Y‘5><Z

=(Dxz,)U((x\D ><Z)

U
U
U
U

D><Z

JU(%'

JU((
=(Dx2,)U((x\D)xZ,)

JUl(

(x\D) xz)

where Y'.Y).Y’¢{@} . So, 5eB, , B eB, and B, B eB, since
|X \ D| >1.From the definition of ¢, 5,,, and f, we obtain that

5o =¥ xZ,8)U(Y x2,8)U(% x2,8)U(% xDB)
( ) (Y‘sz)u(yﬁxz)u(xfxg)
( UY‘SUYﬁUY(’)xZ = XxZ,

B = (¥ x 2B, )U(% x 2,8, )U(%° x 2,8, )U(¥; x DB,)
(52, U(35 % 2) V(5 x2,)U(3 x2,)

(WURURUY )xZ,=XxZ,
A=
= (1

Y ><Z3ﬂ3) (Yz‘sszﬁ3)U<)’15><Zlﬂ3)U(YO‘5><Dﬁ3)
U0 %2005 <2) 0 2)
:(Ysb UY2§UK§U)7()5)XZ] =XxZ

That means, XxZ,XxZ, and XxZ, are generated by B,UB,,,
B,UB,, and B,UB,, respectively. By using statement g and h of Lemma 3,
we have X'xZ,XxZ, and XxZ, are generated by B,UB,,U{c,}. On the
other hand, if V(X*,a) = {D} then a@=XxD By using statement a of
Lemma 3, we have « is product of some elemets of B,.

So, S, is generating set for the semigroup B, (D). Now, we must prove that
S,=B,UB,U{o,} isirreducible. Let acS,.

If aeB, then a#cor for all o,reB,(D)\{a} from Lemma 2. So,
a#ocor forall o,7eS \{a}.Thatmeans, a¢B,.

If aeB, then the quasinormal representation of @ has form
a:(Y;’ ><Z3)U(YQ" sz) for some Y, ¢ . Let a=0cf for some
5,BeS\{a)}.

We suppose that §e B, \{a} and geS \{a}. By definition of B, quasi-

normal representation of & has form

6 =(1" 2 )U(1 %2, )U(x <2, )U (3 < D)
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where Y.Y)Y’ ¢{@}. By using Z,cZ cD and Z,cD we have Z}
and Z,f are minimal elements of the semilattice {ZSﬂ, Z,B.Z,p, Dﬂ}. Also,

we have
(Y= Z)U(Yy x2,)=a =54
= (% xZ,p)U(¥; x 2,8)U(¥’ x Z,8)U(¥; x DB)

Since Z, and Z, are minimal elements of the semilattice {Z3,ZZ,D} , this
equality is possible only if Z,=Z,48, Z,=Z,f or Z,=2,8, Z,=Z.,5. By
using formal equalities and PS5, P,5,F,ff € D, we obtain

Zy=2;f=Pp and Z,=Z,f=Rp=hp
Z,=2,p=Pp and Z;=Z,f=Ff=Pp

respectively. Let Z, =P, and Z,=PfB=Pf.If f is sub-quasinormal re-
presentation of f then Sof=604 and

P=((RUR)xZ)U(RxZ)U U ({r}xA(r))
t'eX\D
_ (9 B B B . _
where S = s 7z 7 7 is normal mapping for g and f, is com-
2 3 2

plement mapping of the set XxD on the set DZ{Z3,Z2,ZI}. From formal
equalities, we obtain

F=(2,%2,)U(Z,xZ,)U U ({'}x B, (1)) €5, \aj

t'eX\D

and by using Z, NZ,#J,Z,UZ,=D and |YfUYf|21,wehave

5ep=(1x2,B)U(¥ x2B) V(¥ x2,8)U(1; < DB)
= (52 JU(1 <2, JU(5 < D)U (3 D)

=(%x2,)U(% x2,)U((¥° UX) )x D) 2 a

This contradicts with a =808 .80, 5¢ B \{a}.

Now, we suppose that 5 e B, \{a} and ge S \{a}. Similar operations are
applied as above, we obtain J ¢ 1§32 \{a} .

Now, we suppose that §=0, and BeS, \{a}. Similar operations are ap-
plied as above, we obtain ¢ # o;.

That means a#50f forany aeB,, and J5,8€S \{a}.

If a=o0,,then by the definition of o,, quasinormal representation of & has
aform a=(Z,xZ,)U((X\Z,)xZ ). Let a=5op forsome &,8e€S \{o}.

We suppose that §e B, \{o,} and BeS \{o}. By definition of B,, qua-

sinormal representation of & has form
8 =(¥ %2, )U(¥ x 2,)U(¥ x 2,)U(¥5 x D)

where Y.Y)Y’ ¢{@}. By using Z,cZ cD and Z,cD we have Z}
and Z,f are minimal elements of the semilattice {ZSﬂ, Z,B.Z,pB, Dﬂ}. Also,
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we have
(Z,xZ,)U((X\Z,)xZ)=a=5-p
=(% xz,8)U(% x2,8)U(Y’ x Z,8)U(¥ x D)

From Z, and Z, are minimal elements of the semilattice {ZZ,ZI,D} , this
equality is possible only if Z,=2Z,8, Z, =2, or Z,=2,, Z,=Z,. By
using formal equalities, we obtain

Z,=2.p=Bp and Z,=7,f=FRFURS
Zy=Z:f=hp and Z,=Z,f=Rp=hp

respectively. Let Z,=P,f and Z =RpUPS where RB,PBe{Z,Z} .
Then subquasinormal representation of [ has one of the form

F :(P1XZ3)U(P2X22)U(P3X21)U U,({t'}xﬁz(t’))

5 =(BxZ)U(Rx2,)U(RxZ)U U ({r}xA())
P =(RxZ)U((RUR)xZ)U U ({r}=A (1)
where
o (9 R B BR) o, (9 R B R) o (9 R B A
A=y Z, Z, Zl’ﬁl_Q zZ, 7, ZS’ﬂl_Q zZ, Z, 7,

are normal mapping for S, f, is complement mapping of the set X xD on
the set D= {Z3,ZZ,ZI} and o8 =350 f3, . From formal equalities, we obtain

B =((2,\2,)x2,)U((2,\2,)x Z,)U((2, \ZI)XZ‘)U,VELXJ\D({I’}XBZ ()
B =((2,N2,)x2,)U((2,\2,)x 2,)U((Z, \Zl)xZ])Utregj\b({t’}xﬁz(t'))

B =((2\2,)x2,)U(2,x2,)U U ({r} x5 (7))

f'eX\D
and by using |I/1"U)’()"'|21,we have
Sofl=60p>=50p
=(% xz,8")U(% x2,B')U(¥’ x 2,8 )U(Y; x DB')
= (52, ) V(1 2, )U(1 < D)U (7 xD)
:(foZz)U(foZ,)U((YI‘SUYf)xD)ia
This contradicts with a =808 .S0, 5¢B,\{o,}.
Now, we suppose that 5 eB;,\{0,} and geS \{o,}. Similar operations

are applied as above, we obtain & ¢ B;, \{o}}.
That means a#5of forany aeB,, and 5,8€S \{a}. O

Lemma 6. Let D ={Z,.Z,,Z,,D} €%,,(X.4), 0, =(Z,xZ)U((X\Z,)xZ,)
and o,=(Z,x2,)U((X\2,)x2,). If X=D then S,=B,UB,U{o,.0}

is irreducible generating set for the semigroup B, (D).
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Theorem 7. Let D= {Z3,Z2,Zl,f)} €x,,(X.4),
0, =(Z,xZ,)U((X\Z,)x 2)) and o,=(Z,xZ,)U((X\Z,)xZ,). If X is a
finite set and |X|=n then the following statements are true
a)If [X\D|>1 then |B,UB,U{a}|=4"-3"+2" -2
b)If X =D then |B,UB,U{o,,0}|=4"-3""+2"2 -1
Proof. Let
S, :{(pi |, M ={1,2,--,n} > M ={1,2,---,n},0ne to one mapping}

be a group, ¢,,¢, ¢, €S, (m<n) and Y, .Y, ..--,¥,  be partitioning of

{YWY%,---,Y%} ZL If m=2,3,4

A (i=1)!(m—i)!

X It is well known that £ =

then we have
kX=2""-1
3 1 n—1 n-1
ky=—-3"-2""+
2
1 1 1 1

k;t :__41171 ___3n71 +_.2n71 _ -
6 2 2 6

If ¥, .Y, areany two elements of partitioning of X'and
B:(Y(m ><T])U(Y(/,2 ><T2) where 7,,7,e D and T, #T,, then the number of
different binary relations S of semigroup B, (D) isequalto

2k =2"-2 (2)
If Y.y, .Y, are any three elements of partitioning of X and
Y ><T TY X T Y X T3) where 7,,7,,7, are pairwise different ele-
ments of D, then the number of different binary relations 3 of semigroup
B, (D) isequal to
6k =3"-3-2"+3 3)
If v,.7,.Y,.Y, are any four elements of partitioning of X and
B = (Y ><T TY ><T U(Y% ><T3)U(Y$4 ><T4) where 7,,7,,T;,7, are pairwise
different elements of D, then the number of different binary relations £ of se-
migroup B, (D) isequalto
24-k'=4"-4.3"+3.2" -4 (4)
Let « € B,. Quasinormal represantation of « has form
= (1 xZ)U(x <2, )U (15 <2, )U (55 < D)
where Y, Y7, Y," ¢{@}. Also, Y7, Y7, ¥" or Y, Y,Y" ¥ are partitioning
of X for |X| >4 . By using Equations (2.3) and (2.4) we obtain
|BO| :4)1 _3n+1 +32n _1
Let « e B,,.Quasinormal represantation of & has form
= (YS‘" x Z3)U(Y2" ><Zz> where Y/.Y," ¢{Q}. Also, Y*,Y" are partitioning
of X. By using (2.2) we obtain
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|B,|=2"-2
So, we have
|8,UB, Ufo,}| =4 -3 +27 -2
|B,UB,, U{o,,0)| =4 =3 + 2 -1
since B, By, =B,N{o,.0,}=B,N{cy.0}=0. -
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