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ABSTRACT

Given the high computational cost of function evaluation in
most real world problems, the development of efficient op-
timization algorithms has raised a lot of interest. In this
paper, we describe the design of both an efficient multi-
objective optimization approach and an enhancement tech-
nique to reduce computational cost. First, we propose a
multi-objective optimizer based on the particle swarm strat-
egy, that provides very competitive results. Then, we pro-
vide the first proposal to incorporate the concept of fitness
inheritance into a multi-objective particle swarm optimizer.
After a study of several different techniques to incorporate
fitness inheritance into our approach, we conclude that this
enhancement technique is able to reduce computational cost
without dramatically deteriorating the quality of the results.
Also, we show that when fitness inheritance is applied dy-
namically throughout the evolutionary process, savings of
about 32% of the total number of evaluations can be ob-
tained without affecting the quality of the solutions. Fur-
thermore, even reducing the computational cost by 78%, the
proposed approaches are able to obtain very good approxi-
mations of the true Pareto front.

Categories and Subject Descriptors: 1.2.8 [Artificial
Intelligence|: Problem Solving, Control Methods, and
Search — Heuristic Methods; G.1.6 [Numerical Analysis]:
Optimization.

General Terms: Algorithms, Performance.

Keywords: Fitness Inheritance, Multi-Objective Optimiza-
tion, Particle Swarm Optimization.

1. INTRODUCTION

Since function evaluation in real world applications is usu-
ally very expensive, the use of Evolutionary Algorithms
(EAs), which are population-based techniques, becomes very
expensive, too. The main motivation for our work was to
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design an efficient algorithm, in terms of the number of func-
tion evaluations performed, for solving multi-objective prob-
lems. First, we proposed a multi-objective optimization al-
gorithm inspired on the particle swarm strategy. The results
obtained by our approach were very competitive. Then,
with the aim of reducing computational cost, we incorpo-
rated into our multi-objective algorithm an enhancement
technique called fitness inheritance. In fitness inheritance
[16], the fitness value of an offspring is obtained from the
fitness values of its parents. In this way, we do not need to
evaluate every individual at each generation, and the num-
ber of function evaluations is reduced. From the results
obtained, we concluded that fitness inheritance techniques
are able to significantly reduce the computational cost with-
out decreasing the quality of the results in a dramatic way.
Thus, we proceeded to study different mechanisms to incor-
porate fitness inheritance into our approach. Finally, with
the aim of obtaining more savings in the number of evalu-
ations performed, we decided to analyze the possibility of
applying fitness inheritance following a dynamical scheme,
along the evolutionary process. With this mechanism, that
we applied using the best inheritance technique found in the
previous study, we were able to obtain very good approxi-
mations of the true Pareto front, even with a 78% of savings
in the total number of evaluations.

2. STATEMENT OF THE PROBLEM

We are interested in solving problems of the type:

minimize [f1(Z), f2(Z), ..., fi(Z)]
subject to: (1) ¢:i(Z) < 0,4 = 1,2,...,m , (2) (%) =
0,7 = 1,2,...,p, where k is the number of objective func-
tions f; : R* — R. We call & = [z1,z2,. . .,:vn]T the vector
of decision variables. We thus wish to determine from the
set F of all the vectors that satisfy (1) and (2) to the vectors
1, x35,..., 2y that are Pareto optimal. We say that a vec-
tor of decision variables ¥* € F is Pareto optimum if there
does not exist another & € F such that f;(Z¥) < fi(Z*) for
every i =1,...,k and f;(Z) < f;(Z") for at least one j. The
vectors Z* corresponding to the solutions included in the
Pareto optimal set are called nondominated. The objective
function values corresponding to the elements of the Pareto
optimal set are called the Pareto front of the problem.

3. PARTICLE SWARM OPTIMIZA TION

Kennedy and Eberhart [6] initially proposed the swarm
strategy for optimization. The Particle Swarm Optimiza-
tion (PSO) algorithm is a population-based search algorithm



based on the simulation of the social behavior of birds within
a flock. In PSO, individuals, referred to as particles, are
“flown” through a hyperdimensional search space. A swarm
consists of a set of particles, where each particle represents a
potential solution. The position of each particle is changed
according to its own experience and that of its neighbors.
Let Z;(t) denote the position of particle p;, at time step t.
The position of p; is then changed by adding a velocity ;(t)
to the current position, i.e.:

Fi(t) = Tult — 1)+ 5(0) (1)

The velocity vector drives the optimization process and re-
flects the socially exchanged information. In the global best
version (used here) of PSO, each particle uses its history of
experiences in terms of its own best solution thus far (pbest)
but, in addition, the particle uses the position of the best
particle from the entire swarm (gbest). Thus, the velocity
vector changes in the following way:

T (t) = Wi (t—1)+Crr1(Tpbest; —Ti (1)) +Cara(Tgpest, — T ((t)))

2
where W is the inertia weight, C; and Cy are the learning
factors (usually defined as constants), and 71,72 € [0, 1] are
random values. In this work, we use W = random(0.1, 0.5)
and C1, Cy = random(1.5,2.0).

PSO must be modified in order to apply it to multi-
objective problems. In most approaches (which will be gener-
ically called MOPSOs, for Multiple-Objective Particle Swarm
Optimizers), the major modifications of the PSO algorithm
are the selection process of pbest and gbest [2, 9, 8].

4. FITNESS INHERIT ANCE

The use of fitness inheritance to improve the performance
of GAs was originally proposed by Smith et al. [16]. The
authors proposed two possible ways of inheriting fitness: the
first consists of taking the average fitnesses of the two par-
ents and the other consists of taking a weighted (propor-
tional) average of the fitnesses of the two parents (based on
the similarity between the offspring and the parents). They
applied inheritance to a very simple problem (the OneMax
problem) [16] and found that the weighted fitness average
resulted in a better performance and indicated that fitness
inheritance was a viable alternative to reduce the computa-
tional cost of a genetic algorithm.

Fitness inheritance is applied to an individual with certain
probability (like the crossover or the mutation operator).
Otherwise, the individual is evaluated using the true fitness
function. This probability is called inheritance proportion
pi. The inheritance proportion p; is a parameter that has to
be fixed by the user, and its value determines the number of
evaluations that are going to be saved. For example, if the
inheritance proportion has the value of 0.1, it means that
the corresponding EA is going to save a 10% of the total
number of evaluations (this is an approximate value).

Salami et al. [15] proposed a “Fast Evolutionary Algo-
rithm” in which they incorporated the concept of fitness in-
heritance. They obtained an average reduction of 40% in the
number of evaluations while obtaining solutions of similar
quality. Bui et al. [1] performed a comparison of the perfor-
mance of anti-noise methods, particularly probabilistic and
re-sampling methods, using the NSGA-II [3]. They applied
the concept of fitness inheritance and obtained a substantial
amount of savings in computational time (reaching 30% in

Begin
Initialize swarm. Initialize leaders.
Send leaders to e-archive
crowding(leaders), g = 0
While g < gmaz
For each particle
Select leader. Flight. Mutation.
= If(p;) Inherit Else Evaluation.
Update pbest.
EndFor
Update leaders, Send leaders to e-archive
crowding(leaders), g+-+
EndWhile
Report results in e-archive
End

Figure 1: Pseudocode of the MOPSO algorithm.
The symbol (=) indicates the line in which the con-
cept of fitness inheritance is incorporated.

the best case), without deteriorating the performance.

5. DESCRIPTION OF OUR WORK

In this section, we describe first the MOPSO approach
proposed and then our studies about the incorporation of
fitness inheritance techniques.

5.1 Multi-Objecti ve
Particle Swarm Optimization

In the first stage of our work, we proposed a MOPSO
approach in [11], and an updated version in [10]. The fit-
ness inheritance techniques proposed later, were incorpo-
rated into this approach. The MOPSO proposed in [11, 10]
is based on Pareto dominance, since it considers every non-
dominated solution as a new leader (a leader is used as the
gbest solution in Equation 2). Additionally, the approach
also uses a crowding factor [3] as a second discrimination
criterion which is also adopted to filter out the list of avail-
able leaders. For each particle, a leader is selected in the fol-
lowing way: 97% of the time a leader is randomly selected
if and only if that leader dominates the current particle,
and, the remaining 3% of the time, the selection is done by
means of a binary tournament based on the crowding value
of the available set of leaders. If the size of the set of leaders
is greater than the maximum allowable size, only the best
leaders are retained based on their crowding value. This
approach also uses different mutation (or turbulence) opera-
tors which act on different subdivisions of the swarm. This
is done by means of a scheme by which the swarm is sub-
divided in three parts (of equal size): the first sub-part has
no mutation at all, the second sub-part uses uniform mu-
tation and the third sub-part uses non-uniform mutation.
The available set of leaders is the same for each of these
sub-parts. Finally, this MOPSO approach also incorporates
the e-dominance concept [7] to fix the size of the set of final
solutions produced by the algorithm. Details about distinc-
tive aspects of this algorithm can be found in [11]. Figure 1
shows the pseudocode of the proposed MOPSO algorithm.

We performed a comparative study in which we tested
our approach (without inheritance) using four test functions
taken from the specialized literature of multi-objective op-
timization: ZDT1, ZDT2, ZDT3 and ZDT4 [18]. We com-
pared our approach against three PSO-based approaches:



the Sigma-MOPSO [9], the Cluster-MOPSO [17] and the
MOPSO [2]. Also, we compared our approach against two
multi-objective evolutionary algorithms representative of the
state of the art: NSGA-II [3] and SPEA2 [19]. We performed
20 runs for each function and each approach. The parame-
ters of each approach were set such that they all performed
20000 objective function evaluations. Table 1 shows the ob-
tained results for the Success Counting (SCC)* measure,
which was one of the three measures used in [11, 10]. Also,
Figure 2 shows the Pareto fronts corresponding to the non-
dominated vectors obtained from the union of the 20 Pareto
fronts produced by each approach, for function ZDT4, which
is considered the hardest of the test functions used. As we
can see in Table 1 and Figure 2, the obtained results indi-
cated that our MOPSO approach was highly competitive.

5.2 FitnessInheritancein MOPSO

In [10], we proposed the first attempt to incorporate the
concept of fitness inheritance to a real-coded MOPSO. Since
PSO has no recombination operator, we adopted as “par-
ents” of a particle the previous position of the particle and
its leader. Thus, based on the distance of the particle to
its parents (in decision space), we proposed to assign, as
the new objective function values of the particle, a linear
combination of the corresponding values of the parents. It
should be noted that, in this case, we are not inheriting
fitness (since our MOPSO approach does not use fitness for
selection), but the values of the objective functions. Also, in
order to avoid the generation of invalid particles, we changed
the fitness inheritance mechanism when the leader chosen
does not dominate the current particle. In this case, we use
the values obtained using the original scheme to locate the
closest leader to that position. Then, the objective function
values of such leader are assigned to the new particle. We
can see both types of inheritance in Figure 3.

We tested our approach using the same four ZDT func-
tions previously mentioned. We performed experiments with
different values of inheritance proportion: p;= 0.1, 0.2, 0.3,
0.4. Since the parameters were set such that 20000 objective
function evaluations were performed, the approach with fit-
ness inheritance performed approximately 18000 evaluations
when p;= 0.1, 16000 when p;= 0.2, 14000 when p;= 0.3 and
12000 when p;= 0.4. Table 2 shows the obtained results
(over 20 runs) for the SCC measure, which was one of the
three measures used in [10]. In this case, in Figure 4, we
show the Pareto fronts corresponding to the nondominated
vectors obtained from the union of the 20 Pareto fronts pro-
duced by each approach, for functions ZDT1, ZDT2 and
ZDT3.

From our comparative study, we concluded that fitness
inheritance reduces the computational cost without decreas-
ing the quality of the results in a significant way [10]. Also,
the fitness inheritance technique used was able to generate
non-convex and discontinuous Pareto fronts. These conclu-
sions were somewhat surprising since, previous to the work
presented in [10], Ducheyne et al. [4] tested the perfor-
mance of average and weighted average fitness inheritance
on the same test suite, using a binary GA, and they con-
cluded that although fitness inheritance efficiency enhance-
ment techniques could be used to reduce the number of fit-

lscc = > %4 si, where n is the number of vectors in the ob-
tained set of nondominated solutions; s; = 1 if solution 7 is a
member of the Pareto optimal set, and s; = 0 otherwise.

ness evaluations, they found that if the Pareto surface was
not convex or if it was discontinuous, the fitness inheritance
strategies failed to reach the true Pareto front.

Since the results obtained with the first fitness inheritance
technique proposed were promising, we decided to study
other ways of incorporating such concept into our PSO-
based approach. Also, we decided to apply the concept of
fitness approximation in order to reduce the computational
cost. Approximation techniques let us estimate the fitness
of an individual using the previously calculated fitness of its
neighbors [5]. We proposed a total of nineteen techniques:
fifteen fitness inheritance techniques and four approxima-
tion techniques [12]. The fitness inheritance techniques are
based on three main ideas:

1. Linear Combination Based on Distances (LCBD).
In this case, we generalized the idea of the first inheritance
technique proposed. We proposed to calculate the new posi-
tion in the objective space of a particle by means of a linear
combination of the positions of the particles that were con-
sidered to calculate the new position in the search space
(previous position, pbest and leader). Three variants of this
technique were proposed: FI1 ignoring the pbest position
(first technique proposed), FI2 ignoring the previous posi-
tion and FI3 considering the three particles?. See Figure 5
for an illustration of these techniques. In all the inheritance
techniques, if the leader selected does not dominate the cur-
rent particle, we proceed as before. See Figure 3.

2. Flight Formula on Objective Space (FFOS). In
this case, we propose a formula analogous to Equation 2, to
update the position of particle ¢ in the objective space:

) RO =FRE-D+of0) 3
Ufi(t) = vai(t71)+clrl(fpbesti 7fi(t))+02r2(fgbesti 7f2(t))

where fi, fprest; and fgrest; are the objective vectors for
the current particle ¢, its pbest and gbest, respectively. We
use the same values of W, Ci, ri, Cy and ry previously
adopted for the flight in decision variable space. As in the
previous case, three variants were considered: FI4 consider-
ing the whole formula, FI5 ignoring the previous direction
and F16 ignoring the direction to the pbest.
3. Combination Using Flight Factors.
Non-linear Combination (NLC). In this case, we propose to
calculate the new objective position of a particle using the
elements of the flight formula:

filt) = WFi(t — 1) + C171 fppest; + Cara Fypest;

The three variants corresponding to this technique (defined
as in the previous case) were called: FI7, FI8 and FI9.
On the other hand, since W € (0.1,0.5) and Cir1, Cara €
(0.0,2.0), we propose to modify the previous formula in the
following way:

fz(t) = O_V'gfz(t - 1) + 021_81 pbest; + C;Sz gbest;

We obtain the following variants: FI10, FI11 and FI12.
Linear Combination (LC). In this case, we propose to use
the previous formula but in such a way that the result is a
linear combination of the elements considered:

ﬁ(t) = %f:(t - 1) + Giry .]E;besti + Cary f_:]besti

r r

2We consider the position of the leader as the most important.
Thus, the leader is always considered.



Table 1: Obtained results for all the approaches, for functions ZDT1, ZDT2, ZDT3 and ZDT4.

Function SccC oMOPSO[10] | NSGA-II[3] | SPEA2[19] | MOPSOJ[2] | sMOPSOI9] | cMOPSO[17]
ZDT1 average 71 21 27 0 59 8
st. dev. 13.6 7.5 8.1 0 24.2 7.9
ZDT2 average 89 6 7 0 1 29
st. dev. 10 9.8 10.4 0 0 38.9
ZDT3 average 68 44 39 0 26 0
st. dev. 18.2 6.8 6.0 0 25.4 0
ZDT4 average 80 0 0 0 0 0
st. dev. 16.3 0 0 0 0 0
oMOPSO[10] NSGA-II[3] SPEA2[19]
14 14 1&%\
1 12%* p .
"\ N ’ e
MOPSO[2] sMOPSO[9]

mopso  +

cMOPSO[17]

smopso +

cmopso +

Figure 2: Pareto fronts obtained by all the approaches, for test function ZDT4, which is considered the hardest
among the test functions used. We can observe that our MOPSO approach obtained the best approximation
of the true Pareto front.
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Figure 3: The two possible cases of fitness inheritance: (a) when the leader dominates the particle, the new
particle inherits a linear combination of the objective values of the parents; (b) when the leader does not
dominate the particle, the new particle inherits the objective values of the closest leader to the position

corresponding to the linear combination previously calculated.



Table 2: Obtained results by the approach without and with inheritance, for functions ZDT1, ZDT2, ZDT3
and ZDT4.
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Function SCcC oMOPSO | p;=0.1 | p;=0.2 | p;=0.3 | p;=0.4
ZDT1 average 71 7 64 62 61
st. dev. 13.6 14.5 19.8 16.4 14.8
ZDT2 average 89 83 86 79 7
st. dev. 10 22.5 13.1 22.4 20.7
ZDT3 average 68 73 65 64 59
st. dev. 18.2 11.2 13.9 14.5 21.2
ZDT4 average 80 81 81 60 68
st. dev. 16.3 13 12.8 22.7 25.4
Test Function ZDT1 Test Function ZDT?2 Test Function ZDT3
oMOPSO with p;=0.0 oMOPSO with p;=0.0 oMOPSO with p;=0.0
lﬁ 1 N ﬂ"‘*ﬁw ,\ |
S R U

oMOPSO with p;=0.4 oMOPSO with p;=0.4 oMOPSO with p;=0.4

omopso pi=0.4  + omopso pi=04  + omopso pi=0.4  +
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——
-
-y
¥
-,

i | \ 1 \
| | . | | o
| | . \

) 02 04 06 08 1 o 02 04 06 08 1 ) 01 02 03 04 05 06 07 08 09

Figure 4: Pareto fronts obtained by the approach without and with inheritance, for functions ZDT1, ZDT2
and ZDT3. In the case of the approach with inheritance, for each function, we show the Pareto front
corresponding to the case with the value of p; that gave the worst results with respect to the SCC measure.
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Figure 5: Illustration of techniques FI1, FI2 and FI3. When using technique FI1, the new particle inherits a
linear combination of the objective values of the previous particle and the leader. In the case of technique FI2,
the new particle inherits a linear combination of the objective values of the pbest and the leader. Finally, when
using technique FI3, the new particle inherits a linear combination of the objective values of the previous
particle, the pbest and the leader.



Table 3: Vectors of change in quality for each tech-
nique, for each value of inheritance or approxima-
tion proportion.

Group 0.1 0.2 0.3 0.4 level
FI1 2.6 -4.1 -13.7 | -14.0 2
LCBD FI2 -3.6 | -24 | -11.9 | -129 2
FI3 0.1 -4.9 -13.8 | -17.8
Fl4 0.1 -1.7 -8.7 -13.6
FFOS FI5 | 4.7 | -1.2 | -8.1 | -11.7
F16 1.6 -2.8 -10.1 -16.7
FI7 | -49 | -10.3 | -19.5 | -30.2
FI8 -0.7 | -7.5 | -20.7 | -29.8
NLC K19 -0.2 | -7.3 | -16.7 | -28.5
FI10 | -3.0 -9.2 -19.3 | -33.3
FI11 | -3.6 -6.0 -14.1 -26.7
FI12 | -3.0 -9.5 -17.5 | -22.1
FI13 | -2.1 -2.6 -12.5 | -18.8
LC FI114 | -3.7 | -4.9 | -10.3 | -16.0
FI15 | 0.3 -5.0 | -12.3 | -16.6
FA1 4.2 -3.4 -8.4 -14.1 2
FA FA2 | -0.3 | -11.2 | -16.6 | -15.9
FA3 1.5 0.4 -6.9 | -12.9 1
FA4 0.3 -4.1 -12.3 | -16.2

N =N

where r = W + Cir1 4+ Cara. The corresponding variants
are FI13, FI14 and FI15.

In the case of fitness approximation, we adopt very simple
techniques. On each case, the particle will take the objective
values of the particle indicated: FA1 the closest particle
(leader or member of the swarm), FA2 the closest leader,
FA3 the closest particle (member of the swarm) and FA4
the average of the 10 closest particles (leaders or members
of the swarm). In all cases, we use the Euclidean distance
in decision variable space.

We performed a study of the nineteen techniques using
the same four ZDT functions and the SCC measure of per-
formance [12]. All the parameters were set in the same way
as in the previous study [10]. Since comparing 19 differ-
ent techniques is very difficult, we decided to represent each
technique with a vector. The vector used is the one con-
taining the average of change in the quality of results with
respect to the approach without inheritance, for each inher-
itance proportion value. In this way, in Table 3 we present
the vectors of all techniques. Since every entry in each vec-
tor is a change in the quality, the bigger the values of the
vector, the better the corresponding technique is. Thus, we
are interested on the vectors that maximize all the entries.
The non-dominated vectors among all the 19 techniques are
the vectors corresponding to techniques FI5 and FA3. That
is, techniques FI5 and FA3 are the best. For this reason,
these two techniques are marked with a level of 1 in Table
3. For these two techniques, in the worst case, the decre-
ment in quality is no more than 13%, even when a 40% of
the total number of evaluations is saved. After eliminating
techniques FI5 and FA3, the nondominated vectors (marked
with level 2) correspond to techniques: FI1, FI2, F14, FI6
and FA1. This leads us to conclude that, in general, the set
of inheritance techniques based on the flight formula on the
objective space (FFOS) were the best.

As we have seen, in all the experiments previously per-
formed, the savings in the number of evaluations was com-
pletely determined by the value of inheritance proportion
pi. With the aim of obtaining more savings, we decided to

study the possibility of setting the value of the inheritance
proportion parameter p; following a dynamical scheme [13].

From the previous work, we concluded that the use of
fitness inheritance decreases the quality of the results as we
increase the value of the parameter p; [10, 12]. So, our
main idea was to increase the savings in number of function
evaluations but setting the value of p; in such a way that
fitness inheritance can be less harmful.

We proceeded to analyze the behavior of our MOPSO
approach, with respect to the improvement on the current
Pareto front throughout the evolutionary process, that is,
along the generations. With this aim, we used the Two Set
Coverage (SC) measure of performance®. Given the current
Pareto front in generation ¢, PF(t), and the Pareto front in
the previous generation PF(t — 1), we calculated the value
of the SC measure: SC(PF(t), PF(t—1)). In this way, we
could know “how much” better is the current Pareto front
with respect to the front of the previous generation.

We performed a set of experiments using our MOPSO
approach without inheritance and function ZDT1, in which
we obtained the average of SC(PF(t), PF(t — 1)) at each
generation [13]. We observed that the most important im-
provement takes place during the first quarter of the total of
generations. In this way, we concluded that at the beginning
of the process it is not convenient to use too much fitness
inheritance. However, towards the end of the process, fit-
ness inheritance is more suitable. Thus, given the previous
conclusions, we proposed to set the value of the parame-
ter p; dynamically with respect to the current generation
number, with the aim of increasing the use of fitness inher-
itance throughout the evolutionary process. We proposed
six different functions to adapt the value of the inheritance
proportion: Let gen be the number of the current generation
and Gmaz the total number of generations:

. en 4
e nonlinearl: pi(gen) = (F=2-)
e nonlinear2: p;(gen) = (G%ZI)Q
] on sin(2M 222 )
e nonlinear3: p;(gen) = cﬁ,m - 6.§
e linear: p;(gen) = Ggﬂiz

1
e nonlineard: p;(gen) = ( na )2

Gmazx

e nonlinear5: p;(gen) = (%)%

These six functions (that we will call adaptive functions)
increase the inheritance proportion value throughout the
evolutionary process. Figure 6 presents a plot of the six
adaptive functions. As we can see in Figure 6, the adaptive
functions are numbered following an ascending order with
respect to the savings on the total number of evaluations
that they define.

In order to test the mechanism proposed, we proceeded
to incorporate it into our MOPSO approach using the fit-
ness inheritance technique FI5, since it was found to obtain
the best results in [12]. In this case, we ran the algorithm
30 times using the same four ZDT functions. Also, based
on the results obtained from an ANOVA (Analysis of Vari-
ance) performed on the parameters of our MOPSO approach

3T his binary measure SC(X, X’) indicates the percentage of so-
lutions in X’ that are dominated by solutions in X.



Table 4: Obtained results for all the test functions and all the adaptive functions.

function SCcC no-inherit | nonlinearl | nonlinear2 | nonlinear3 | linear | nonlinear4 | nonlinearb
ZDT1 average 87 84 74 71 68 53 21
st. dev. 12.5 12.6 21 18.6 22.7 21.6 13.5
ZDT2 average 92 93 89 83 84 69 45
st. dev. 12.9 6.1 12.2 21.7 22.9 26.6 34.2
ZDT3 average 76 73 72 53 59 37 16
st. dev. 12.7 11.6 15.9 21.5 16.2 18 12.6
ZDT4 average 96 94 93 89 90 77 47
st. dev. 4.8 6.6 6.0 12.6 14.2 18.1 22.6
evaluations (avg.) 20200 16302 13632 10298 10302 6964 4321
savings (avg.) 0% 19% 32% 49% 49% 65% 78%
' } /, =7 tive functions that save more than a 50% of the total num-
. T ber of evaluations, nonlinear4 (about 65%) and nonlinear5
oer o B | (about 78%), affect the results more dramatically. However,
i T as we can see in Figure 7 (which shows the cases on which
S e /X"S—"‘B(%x X ) 7 this effect was more stressed), even in those cases, the ob-
xliZ/ al tained Pareto fronts are very good approximations of the
04r. 7 N true Pareto front.
" . DR X2
0'2?// P S x4 i
Nl ‘ x=gen/Gmax 6. CONCLUSIONS AND FUTURE WORK
0 0.2 0.4 0.6 0.8 1

Figure 6: Plot of the six different functions proposed
to adapt the value of the inheritance proportion (p;)
through the evolutionary process.

[14], we were able to improve the performance of our al-
gorithm by changing the configuration of the values used,
while performing the same number of function evaluations®.
In this way, our MOPSO approach performed 20200 objec-
tive function in the absence of inheritance. Table 4 shows
the obtained results for the SCC measure, which was one of
the three measures used in [13]. The Pareto fronts shown in
Figure 7 correspond to the median value with respect to the
SCC measure and are distributed, for each test function, in
three plots: (1) approach without inheritance and with in-
heritance and adaptive functions nonlinearl and nonlinear2,
(2) with inheritance and adaptive functions nonlinear3 and
linear and (3) with inheritance and adaptive functions non-
linear4 and nonlinearb.

From the obtained results, we concluded that, in general,
it is possible to save even a 32% of evaluations without af-
fecting the quality of the obtained solutions (using adaptive
functions nonlinearl and nonlinear2). On the other hand,
as it was expected from their definition, adaptive functions
nonlinear3d and linear, provide the same percentage of sav-
ings in the number of evaluations (about 49%). However, the
results when using the function linear are, in general, better
than the corresponding results using function nonlinear3. In
this way, we conclude that, given their corresponding defi-
nition, it is important to maintain the true evaluations at
the end of the run, even if we try not to apply inheritance
at the beginning of the evolutionary process. Finally, adap-

“In all the previous experiments, we used a swarm of 100 par-
ticles for 200 generations. The ANOVA indicated that better
results could be obtained by using a swarm of 200 particles for
100 generations.

With the aim of designing an efficient multi-objective op-
timization algorithm, we have first proposed a new multi-
objective particle swarm optimizer that was found to be
highly competitive. Then, we provided the first attempt
to incorporate the concept of fitness inheritance into a real-
coded MOPSO approach, in order to reduce the computa-
tional cost. We studied several different ways of incorpo-
rating such enhancement technique and also experimented
with some simple fitness approximation schemes. Using the
best inheritance technique found, we proposed a mechanism
to adapt the value of the inheritance proportion in a dy-
namical way, throughout the evolutionary process. From
the obtained results, we concluded that it is possible to save
until a 32% of the total number of evaluations without sig-
nificantly deteriorating the quality of the results. In fact,
although the quantitative quality of the Pareto fronts pro-
vided by the approaches that save 65% and 78% of evalu-
ations is more affected, the corresponding plots show that
such approaches are able to generate very good approxima-
tions of the true Pareto front. In this way, although it seems
to be very harmful to save such percentage of evaluations, if
in a real-world application, it is very expensive to evaluate
the objective functions and we are interested only in a few
solutions, the proposed approach may be a suitable choice.

As part of our future work, we plan to test the proposed

approaches on different test functions (including real-world
applications) and also to design new adaptive functions in
order to analyze two possibilities: (1) to increase the savings
obtained without deteriorating more the quality of the re-
sults (2) to improve the quality of the obtained results while
keeping constant the percentage of savings. Also, it would
be very interesting to incorporate the proposed approaches
into a different evolutionary algorithm in order to study how
is the quality of the results affected when a high percentage
of evaluations is saved.
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Figure 7: Pareto fronts obtained for functions ZDT1 and ZDT3, in which the quality of the results was more affected
by the use of fitness inheritance.
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