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Lübeck, Germany

petzold@iti.uni-luebeck.de

Abstract—Pedestrians are particularly vulnerable road users
in urban traffic. With the arrival of autonomous driving, novel
technologies can be developed specifically to protect pedestrians.
We propose a machine learning toolchain to train artificial neural
networks as models of pedestrian behavior. In a preliminary
study, we use synthetic data from simulations of a specific
pedestrian crossing scenario to train a variational autoencoder
and a long short-term memory network to predict a pedestrian’s
future visual perception. We can accurately predict a pedestrian’s
future perceptions within relevant time horizons. By iteratively
feeding these predicted frames into these networks, they can be
used as simulations of pedestrians as indicated by our results.
Such trained networks can later be used to predict pedestrian
behaviors even from the perspective of the autonomous car.
Another future extension will be to re-train these networks with
real-world video data.

Index Terms—world models, intelligent transportation systems,
machine learning, multi-agent systems, sensor prediction

I. INTRODUCTION

In recent developments in individual mobility we see in-
creasingly automated driver assistance functions. While drivers
are relieved by higher degrees of automation, the requirements
for functional safety increase. Assistance systems focused on
longitudinal vehicle control, such as adaptive cruise control,
overtaking assistants, and emergency braking systems, have
proven to be advantageous for road safety [1]. However, there
are no appropriate substitutes for these radar-based systems in
urban areas, where cars share traffic space with vulnerable road
users (VRUs) [2], such as pedestrians and bicyclists because
humans may be difficult to detect by radar [3]. Vision-based
systems have the potential to overcome some disadvantages of
LIDAR or radar systems. They have low costs and increasing
capabilities due to advances in artificial intelligence (e.g.,
deep learning). Still, VRUs remain a major challenge also
for camera-based autonomous driving [4]. Accident blackspots
are found where paths of different road users cross, such as
crosswalks and intersections in urban areas [5].

We propose a new approach to predict the behavior of
VRUs in urban traffic. Intuitively, the line of sight (or even
eye contact) between a driver and a pedestrian standing at
the side of the road is important and can provide information
about whether a person is about to enter the road. We study
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how this implicit knowledge can possibly be exploited. Using
image data, we train artificial neural networks (ANNs) to
predict positions and trajectories of pedestrians in the near
future. Key to our concept is that we develop agent models of
pedestrian behavior using the pedestrian’s actual perspective
and field of view. We believe that with today’s technology the
pedestrian’s perspective can be derived from the data available
to the autonomous car. A vehicle’s surrounding can already be
captured by 360-degree cameras today, and advances in pose
recognition [6] of pedestrians allow to reconstruct their per-
spective at least partially. In this preliminary study, we present
our results for the toolchain that works on the pedestrian’s
view exclusively. Initially we focus on pedestrians crossing
streets at crosswalks, but our approach is easily extended to
address also other VRUs, such as bicyclists and scooter riders.

We present our results based on synthetic data obtained
using the CARLA simulation environment [7]. We have devel-
oped scenarios that correspond to central European road traffic
situations, in particular intersections and crosswalks, as these
are the accident blackspots in urban traffic of cars and pedes-
trians [5]. We have extended CARLA’s semantic segmentation
of the simulated camera image to recognize crosswalks as
a separate category. For the simulation of pedestrians, we have
developed detailed motion sequences and animations including
head movements before entering the road (left and right or
shoulder check). From these pedestrian crossing situations we
collect synthetic data and train ANNs, i.e., variational autoen-
coder (VAE) and long short-term memory (LSTM) network,
that can then be used to predict pedestrian behavior. For these
simulated scenarios, we are able to predict the behavior of
a pedestrian for the immediate future. Our main contribution
is the toolchain processing pedestrian perspective vision data
and outputting a pedestrian model with predictive power. In
future work, we plan to apply this toolchain to real-world
data and to derive pedestrian perspective images from the
autonomous car’s 360-degree camera data. Our vision is to use
these pedestrian models to inform autonomous driving systems
about probable dangerous VRU situations with enough look-
ahead to initiate a safe brake actuation.

II. RELATED WORK

VRU detection and behavior prediction is an active topic of
research for autonomous vehicles [8]. A lot of work on VRU



detection and behavior prediction focuses on the interaction
between vehicles and pedestrians [9], but mostly from the
perspective of the car [10]. Many approaches for pedestrian
trajectory prediction are trained and validated on datasets that
provide not only images of pedestrians but also action and
environmental priors [11], [12], [13]. Priors provide additional
context about tracked agents and environments to account for
feature relevance and improving prediction performance.

Most approaches consider the problem of pedestrian be-
havior prediction from the perspective of a vehicle and gen-
erally use monocular RGB images as input. Autoencoders
are often used to convert data to a lower-dimensional rep-
resentation [14], which helps to process complex data effi-
ciently. Ho, Keuper, and Keuper describe another tracking
system based on an autoencoder [15]. They use the latent
space representation of their visual tracking cues to make
their system robust to spatial or temporal changes. Another
autoencoder-based technique is variational recurrent neural
networks (VRNN) [16], which include high-level random
variables in the latent space of a VAE [17]. Hoy et al. [18] use
a VRNN to perform object tracking on the Daimler Pedestrian
Path Prediction Dataset [19]. This tracking is used to generate
a binary crossing/stopping classification of each pedestrian.
Poibrenski et al. [20], [21] present a multimodal approach to
trajectory prediction that feeds past trajectories and scales of
pedestrians into a conditional autoencoder with RNN decoder-
encoder architecture. Kooij et al. [22] model pedestrian and
cyclist trajectories as a switching linear dynamical system
multiple linear models approximate complex nonlinear data
dependencies. Using a stereo camera, their approach switches
prediction states based on both, the observed static and dy-
namic environment as well as agent’s actions. Saadatnejad et
al. [23] deal with generating an invariant, canonical represen-
tation of pedestrians in traffic. The authors use OpenPose [6]
and a generator-discriminator architecture similar to generative
adversarial networks (GANs) [24]. A canonical representation
of pedestrians is invariant to different poses, occlusions, trans-
formations and lighting changes. It is useful for recognizing
and tracking pedestrians that are occluded from the camera for
a long time. Rasouli et al. [25] introduce the use of behavioral
and contextual information to improve pedestrian behavior
prediction. Makansi et al. use mixture density networks to pre-
dict the movement and emergence of pedestrians in traffic [26].
They calculate a reliability prior using semantic segmentation
data to determine all possible future positions for a given
object class. Based on this data, the ego-vehicle’s motion is
compensated, and future pedestrian positions are predicted.
Mangalam et al. divide the task of pedestrian motion and
pose prediction into local and global motion components [27].
These subproblems are solved using an RNN with a recurrent
encoder-decoder architecture. Cao et al. [28] predict sequences
of human poses in 3D using a 3-stage hierarchical approach.
In the first stage, the authors utilize a single RGB frame and
a history of 2D poses to generate target positions. In the
second stage, the paths to these target positions are calculated.
Finally, the human poses are estimated. Another approach

using an encoder-decoder architecture was proposed by Yin
et al. [29]. Using a transformer network, they integrate ego-
vehicle speed, optical flow and past pedestrian trajectories
to predict trajectories. They compensate for the ego-vehicle’s
motion by separate center and pedestrian patches.

Other approaches on pedestrian behavior prediction are
not bound to the ego perspective of a vehicle but use
infrastructure-based sensors. Zhao et al. [30] present a pedes-
trian tracking system that uses LIDAR data fed into a deep
autoencoder neural network. Sun et al. [31] focus on SLAM
data. They propose the T-Pose-LSTM, which provides real-
time 2D pedestrian trajectory predictions.

Another solution is to use 2D map data as training data is
readily available [32]. Zhang et al. [33] predict if pedestrians
jaywalk using a standard LSTM. They use video data captured
by a camera installed at the crosswalk. Using a perspective
transformation, the authors map pedestrian positions from the
video data to a 2D map representation. The LSTM uses loca-
tion, traffic light state, and several social factors to predict if
a given pedestrian will jaywalk. Vasquez et al. [34] use Inverse
Reinforcement Learning (IRL) to safely navigate a mobile
robot through crowds of pedestrians. Fahad et al. [35] use
IRL as well to generate realistic pedestrian trajectories with
social interactions on a 2D navigation grid. Employing social
affinity maps extracted from human motion trajectories, they
train a deep neural network (DNN), which generates trajec-
tories. The authors focus on the social interactions between
pedestrians. Especially the social forces technique [36] has
proven as a valid approach for pedestrian trajectory estimation
that also takes into account social interactions [37]. Alahi et
al. [38] model the social dependencies in crowds of pedestrians
using their Social LSTM, which can model multiple pedestrian
trajectories in parallel and thus understand their interactions.
Improving on that, Cheng et al. [39] use a Grid LSTM and so-
cial pooling to model pedestrian interactions. Chou et al. [40]
use motion features and a map-based rasterization approach
to generate pedestrian trajectories using a convolutional neu-
ral network (CNN) architecture based on MobileNetv2 [41].
Ivanovic et al. [42] use a conditional VAE to predict pedestrian
behavior. Their data-driven approach considers not only the
social interactions between pedestrians, but also the movement
of vehicles on the road.

Many of these approaches see pedestrians as black boxes
and reduce their interactions with the environment to features
that immediately concern their navigation. In this paper, we
predict the pedestrian’s perspective and consider the pedes-
trian as an agent with sensory inputs and outputs, providing
a stochastic causal link between the pedestrian’s environment
and their actions. We model such sensory inputs for our
prediction model, providing a world representation for an
individual pedestrian.

III. METHODS

We generate a realistic pedestrian vision model in the au-
tonomous driving simulator CARLA [7]. A considered pedes-
trian (in the following called ego-pedestrian) is controlled



by hand-coded state machines to create realistic pedestrian
trajectories and head movements. We use this pedestrian agent
to collect image (view of the pedestrian) and movement data
(executed movement actions of the pedestrian) in simulations.
For this study, we restrict ourselves to simple street crossing
behaviors. The ego-pedestrian approaches a street crossing,
waits if vehicles are approaching, and crosses to the oppo-
site sidewalk. With this data, we train a VAE [17] and an
LSTM [43] (see Secs. III-B and III-C). We take images from
the pedestrian’s point of view that are immediately semanti-
cally segmented by the simulation environment CARLA. The
LSTM is provided with input of a latent vector of a VAE that
encodes the semantically segmented vision. First, the collected
images are used to train the VAE. Second, the respective latent
vectors and sequence of pedestrian actions as movement labels
are used to train the LSTM. Code can be found on our Git
repository1 and supplementary materials on Zenodo [44].

A. CARLA and image segmentation
We developed a pedestrian behavior model for use in virtual

3D traffic environments as in CARLA which is an autonomous
driving simulator based on Unreal Engine 4.2 CARLA uses
a state-of-the-art 3D engine and provides support for detailed
pedestrian animations. We created a small custom map that
features a street that loops in on itself, a four-way intersection
and a pedestrian crossing. The map is designed to resemble
a central European town, so we use corresponding road
signage and right-hand traffic. Using the CARLA API’s hier-
archical walker skeleton, we control leg, arm, and head joint
parameters independently to generate realistic movements. We
collect image data from the perspective of the controlled ego-
pedestrian. We attach a virtual camera to the ego-pedestrian’s
head joint, making the camera pose dependent on the ego-
pedestrian’s pose. The head joint is subject to a chain of 6 kine-
matic transformations. CARLA defines these transformations
as base, root and hips transformations, followed by two spine
transformations (spine and spine01) and a neck transformation.

CARLA uses a fixed time step for agent control and sensor
data collection that we set to 60 ms. We collect data using the
semantic segmentation camera provided by CARLA, which
guarantees an error-free segmentation, as the data is generated
based on the built-in object classes. To CARLA’s 23 object
classes, we have added a class for pedestrian crossings, as
they are crucial for our scenario. In addition to image data, we
collect movement information of the ego-pedestrian including
flags if the pedestrian has moved this time step, their body’s
angle parallel to the ground (yaw) in the world coordinate
system, and separately their head’s rotation parallel to the
ground (yaw) in the body’s base coordinate system.

Due to its critical safety, we focus on the ego-pedestrian
crossing the street using a pedestrian crossing. For each
scenario, we generate random numbers of other pedestrians
(uniform distribution unif{0, 50}, in addition to the ego-
pedestrian) and vehicles (unif{0, 20}). The pedestrian and

1https://gitlab.iti.uni-luebeck.de/petzold/pedestrian perception
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Fig. 1. The crosswalk scenario after 5 s have passed, shown from a top-down
perspective. Several pedestrians approach and leave the crosswalk, as well as
cars on both lanes. Directly below the crosswalk the ego-pedestrian (teal)
follows the path (red) defined by the FSM in Fig. 2. Agent detectors placed
on the car lanes are marked in blue (dotted boxes). Since the cars are inside
at least one detector area, the ego-pedestrian waits in front of the crosswalk
in this scenario. The area with green striped borders is the ego-pedestrian’s
view cone and represents the part of the environment the ego-pedestrian sees.

vehicle models are randomly drawn from the blueprint library
provided by CARLA. The library provides a diverse set of
models representing adults and children for pedestrians and
vehicles of different shapes and sizes, including bicycles
and motor bikes. Starting locations and destinations for all
pedestrians except the ego-pedestrian are randomly drawn
from all traversable sidewalk locations. Vehicles spawn from
manually placed, but random spawn points on the street. Agent
movement is controlled by CARLA’s simple AI controllers.

The ego-pedestrian’s behavior is implemented using timing-
based finite state machines (FSMs). The FSMs realize a pedes-
trian trajectory traversing the pedestrian crossing. The first
FSM controls the ego-pedestrian’s two head movements. After
3.6 s the pedestrian looks to the left for 2.4 s. After 1.8 s, the
pedestrian looks to the right for 4.2 s and then looks ahead
for the remainder of the scenario.

The second FSM (see Fig. 2) manages the movement of the
pedestrian’s body. Initially, the ego-pedestrian is spawned on
the sidewalk in the walk state. Following this, the pedestrian
goes through the turnr, look, walk, rest, turnl and walk states,
before finishing the scenario in the end state. State transition
conditions are mostly based on timing cues chosen based on
the ego-pedestrian’s walking speed. The only exemption from
this is the wait for clear transition between look and walk. It
depends on a timer and on the passing of all cars approaching
the crossing inside a detector area stretching 21 m along the
road for each lane. See Fig. 2 for all details of the second
FSM and a top-down view of our scenario is shown in Fig. 1.

B. Visual encoder/decoder

We run 1,000 episodes of our simulated pedestrian crossing
scenario. At each time step t, we record a visual repre-
sentation of the environment ft from the pedestrian’s per-
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Fig. 2. The ego-pedestrian’s behavior, described by a finite state machine. The
walk states are functionally identical and only separated for better readability.
Each state transition is labeled with both the waiting time the FSM’s transition
is based on and a behavioral description what the ego-pedestrian does during
that waiting time. The flag c between the states look and walk is set when
the street in front of the pedestrian crossing is free of approaching cars. The
ego-pedestrian’s path described by this FSM can be seen in Fig. 1.

spective, together with its planned action at. This totals in
a dataset Ψ of size ∼ 805k frames that we use to train
a convolutional VAE (ConvVAE) with TensorFlow [45]. The
dataset frames were resized to 45 × 85 pixels and modified
to be represented in 24 channels (i.e., semantic classes of
CARLA plus ours, see Sec. III-A). The ConvVAE is required
to learn nondeterministic abstract encoded representation z
for each of these input frames, which serve as an input for
our prediction model together with action a (see Fig. 3). This
is achieved by sampling from a probability distribution over
all semantic classes for each pixel. Note that we allow the
overlapping of classes, enabling a smooth visual transition
between segmented objects. Accordingly, the ConvVAE has
a 45 × 85 × 24 input tensor and typical encoder/decoder
architecture. On the one hand, the encoder consists of four
chained convolutional layers. The output from these layers is
flattened before it is pushed to two separate branching fully
connected layers forming the subnetworks, which generate and
dense the mean µ and logarithmic variance log σ2 vectors for
50 features. The µ and log σ2 vectors are used to sample
a latent vector z. On the other hand, the decoder is a transpose
of the encoder, and it is trained to decode a latent vector z
back into the 45 × 85 × 24 pixel representation. The output
deconvolutional layer uses a sigmoid function to output nor-
malized pixel values between zero and one, while all other
layers use a Rectified Linear Activation (ReLU) function. We
use the Kullback–Leibler divergence loss function∑

x∈X
Ptrue(x) log

(
Ptrue(x)

Pdecoded(x)

)
(1)

to evaluate the network’s performance by assessing the dif-
ference between the original (Ptrue) and decoded (Pdecoded)
distributions. We split the dataset Ψ into training (90%)
and validation (10%) and train the ConvVAE for 80 epochs
on batches of size 1, 610 (i.e., two episodes). To prevent
overfitting, we pick the network with minimum validation
loss at epoch 62. We use the trained ConvVAE to sort the
data Ψ by time steps, to prepare it for LSTM network
training. Now, a vector ψt at time step t is composed of
100 dimensions representing the current encoded frame’s µt

and log σ2
t for each feature in latent vector zt, three dimensions

CARLA
Encoder Decoder

Predictionmodel
zt

zt+1

Pedestrian perspective Decoded image
at

Fig. 3. Flow diagram showing how, at time step t, the VAE encodes the
pedestrian perspective of the simulated CARLA agent into a latent vector zt,
which is then input to the prediction model together with the pedestrian’s
action at. In turn, the prediction model outputs the next encoded frame zt+1,
which can be looped back to predict further frames.

for ego-pedestrian action at, and 100 dimensions for µt+1

and log σ2
t+1 for each feature at the next time step t+ 1.

C. Prediction model

As a traffic situation prediction model, we train an LSTM
network using TensorFlow and the reformatted dataset Ψ.
With such a prediction model, we aim to predict the future
pedestrians’ surrounding conditions given their current en-
coded visual perspective and sequence of actions in a traffic
scenario (see Fig. 3). Here, we split the data into training
(86%) and validation (14%) subsets. The LSTM network
has 53 inputs, 512 hidden units, and a mixture density
network [46] as an output layer (see [47] for full architec-
ture information). Inspired by Ha et al. [47], [48], we train
the LSTM to output a probability density function p(z) as
a mixture of Gaussian distribution, instead of deterministic
predictions. We can control the randomness level by adjusting
the temperature parameter τ value between zero and one.
We obtain deterministic predictions if τ → 0 and increased
randomness with higher values. This enables us to introduce
uncertainty and variability, while predicting future surrounding
conditions, which is typical in regular traffic situations. The
LSTM receives a sampled encoded frame zt and pedestrian
action at as input at each time step t and outputs p(zt+1),
from which the next encoded frame zt+1 is sampled (see [47]
for more details). We train the LSTM in batches of size 1, 610
for 4 × 106 steps. To prevent overfitting, we use time step
3.8× 106 with minimum validation loss.

IV. RESULTS AND DISCUSSION

Using the VAE and LSTM described in Sections III-C
and III-B, we have built a sensory prediction model, and by
extension a world model [49], [48], for our pedestrian crossing
the street. One prediction time step corresponds to 60 ms, that
is the same time horizon as the simulation time step. We have
evaluated these models in four different experiments, all based
on the same scenario set up as described in Sec. III-A. These
experiments can be found in our video.3

The first experiment is a quantitative evaluation of the
LSTM’s capabilities to predict one time step ahead (see error
graph Fig. 5, graph r = 1). We generate the one-time-step

3https://vimeo.com/656754927
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Fig. 4. Different modalities of the ego-pedestrian’s vision. You see CARLA’s RGB representation of our pedestrian’s perception (RGB); our model’s input,
the semantically segmented image out of CARLA, at time step t (original); the encoded and once again decoded VAE output (en/decoded); a frame decoded
from predicted sample zt̂+8 with t̂ = t− 8 (predict 8); a frame decoded from predicted sample zt̂+16 with t̂ = t− 16 (predict 16); our pedestrian’s world
model (dream). The shown predictions for t are based on data captured at previous time steps t̂ to allow for direct comparison between all images.

prediction µ̂1
t (and its corresponding log σ2

t ) for time step t
based on data from time step t − 1 by feeding the VAE’s
encoded frame zt−1 and action at−1 into our LSTM. The error
ert = ||µ̂r

t−µt||2 for look-ahead r ∈ {1, 8, 16} is the Euclidean
distance between prediction µ̂r

t and the ego-pedestrian’s actual
recorded data µt. ert for r ∈ {8, 16} are discussed in the
second and third experiment. As seen in Fig. 5, the error
graph for r = 1 has multiple peaks. There are three kinds
of peaks. Some peaks are sudden, without the prediction
error increasing significantly before or slowly decreasing after.
These high peaks are caused by hard-to-predict movements,
often rotations. Large parts of the image are in motion and
many pixels change classes, resulting in high errors. Such
errors occurs at t = 60, when the ego-pedestrian turns their
body to the right and their head to the left, or at t = 85, when
the ego-pedestrian turns their head back to the right (other
occurrences: t ∈ {110, 143, 220}). At time steps 163 and 173
the ego-pedestrian walks while looking to the side, causing
some jitter in the movement and peaks in the error graph. For
another type of peak the error rises slowly beforehand. This
type is caused by pedestrians or cars appearing in the distance
and passing by the ego-pedestrian. Based on the distance and
manner of passing, the resulting spike is larger or smaller.
This happens at t = 55, when a pedestrian laterally crosses in
front of the ego-pedestrian, or at time steps 580, 728 and 738,
when pedestrians approach frontally. These peaks are rather
high, as the pedestrians pass close by the camera. At t = 460
and t = 695, a pedestrian on the opposite sidewalk and a car
approach. As they are further away, their error peaks are lower.

The last kind of error peak appears suddenly and then slowly
degrades. This is caused by pedestrians and cars entering the
frame directly next to the ego-pedestrian and then moving
away from them, e.g., at t = 265 and t = 370. As the sudden
appearance of a car or pedestrian is not predictable, this causes
a high error. Time steps 265 to 330 show a constant low error

without peaks. This happens because the ego-pedestrian does
not turn and there are no other traffic participants in their field
of view, as they face a wall.

The second and third experiments evaluate our model’s
ability to generate valid inputs for larger prediction horizons
(Fig. 5, graphs r = 8 and r = 16). In the second experiment
we generate prediction µ̂8

t by applying our model 8 times.
The first application of our model uses an encoded frame zt−8
and action at−8 as inputs, further iterations use the previous
output frames and corresponding actions. This corresponds
to a prediction 8 time steps ahead and a prediction horizon
of ∼ 0.5 s. In the third experiment, the same thing is done
16 times, generating a prediction 16 time steps ahead and
a prediction horizon of ∼ 1 s. Sampled and decoded outputs
of these experiments can be seen in Fig. 4 and in our video.3

Both experiments show a generally higher prediction error
than the first experiment as they accumulate uncertainty and
noise caused by the repeated application of our prediction
model (higher errors for µ̂16

t than µ̂8
t ). Still, their error plots

are qualitatively similar to µ̂1
t . Spikes in errors are mostly

consistent across all three experiments. As the error for µ̂1
t

only depends on data from the previous time step, difficult-
to-predict movements of the ego-pedestrian only affect one
prediction time step. For µ̂8

t and µ̂16
t , these errors cause a ‘tail’

in the error graph, as the prediction model continues to operate
on visual input data captured before the sudden movement.
Thus, the prediction error is propagated longer for higher
prediction horizons.

In our video3, you can find predictions sampled from
µ̂8
t and µ̂16

t and their corresponding predicted log σ2
t . These

videos show the stochasticity of the predictions introduced by
the sampling process, as the locations of the other pedestrians
and cars jump forward and backward along their respective
paths. For example, when the pedestrian ahead of the ego-
pedestrian exits the crosswalk, the 16-time-step prediction
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Fig. 5. Prediction error for one scenario of the pedestrian crossing the street
at different prediction horizons r ∈ {1, 8, 16}, given as error per time step.
The error is the Euclidean distance between µt generated by the VAE at t
and prediction µ̂rt for time step t generated by the LSTM at time step t− r.

(predict16) show the pedestrian’s position jumping laterally
from frame to frame. We interpret that as an inherent uncer-
tainty learned by our model (pedestrians may turn left or right
at the end of the crosswalk).

Since our pedestrian’s world model is capable of predict-
ing the future and given its inherent stochasticity, it can
be used to produce new reasonable traffic scenarios of its
own. Here, we present an initial approach to investigating
this, given a predefined sequence of actions to recreate the
ego-pedestrian’s behavior in the crossing scenario described
in Sec. III-A. We loop back the predicted frames into the
prediction model (see Fig. 4) and obtain very innovative new
crossing scenarios. We chose a relatively high temperature
parameter value τ = 0.4, which still outputs scenarios with
reasonable randomness. Low temperature values would result
in less innovative, more deterministic scenarios, i.e., the world
model would devise fewer pedestrians and vehicles into the
scene because they are the main cause of randomness. At
τ = 0, the world model doesn’t include any pedestrian or
vehicle in the output scenarios. In the example output scenario
video3, although the model receives the same original first
image and action sequence from the scenario mentioned above,
it produces a significantly different scenario. For example, the
ego-pedestrian finds a vehicle passing from the left side at the
crossing, that doesnt exist in the original scenario (see Fig. 4).

V. CONCLUSION

We have presented our toolchain for (a) acquiring syn-
thetic data of pedestrians in urban environments, (b) training
a combination of VAE and LSTM networks, (c) predicting
a pedestrian’s future perception, and (d) using these networks
as simplified simulators of a pedestrian’s environment.

As we provide only limited information to our models dur-
ing training, the task of predicting other road users’ directions
of motion may be of increased difficulty. Since the LSTM

gets only one zt as an input, it may not be able to detect
the direction of movement of pedestrians, if they are only
represented as a blob without movement-defining features.

By exploiting the inherent stochastic models encoded in
the LSTM networks, we can easily generate an ensemble of
varied pedestrian behaviors. Similarly, qualitatively different
behaviors can be generated by adding more hand-coded finite
state machines. The scenarios (pedestrian crossing, streets,
types and numbers of road users, etc.) can easily be varied.

We will train a simple neural network as a pedestrian agent
exploring our world model. This agent will feed our LSTM
with movement commands based on the (predicted) latent
vector as input. This pedestrian agent’s behavior might help to
provide more relevant traffic situations to source more training
data and improve the world model.

Using this toolchain, we can numerically obtain statistical
predictions of future pedestrian positions. This statistical data
can then be used to guide the decision making of an au-
tonomous vehicle. As future work, we plan to implement the
required geometric calculations to derive the considered pedes-
trian’s view based on the autonomous vehicle’s perspective.
As there will usually be occlusions and hence unknown areas
within the pedestrian’s visual view, we plan to use machine
learning also to realistically fill these gaps [50]. In future work,
we will acquire real-world videos of pedestrian perspectives
and expand our approach to translate to the real world. We
are confident that this completed toolchain can be applied in
autonomous driving for the advantage of vulnerable road users.

Since the complexity of actively developing traffic scenarios
is high, VAE and LSTM might not be suitable modeling
tools anymore. Therefore, we will look at transformers [51] to
replace both components, encoding and prediction of traffic.
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