
Incomplete Data: What Went Wrong, and How to Fix It

Leonid Libkin
School of Informatics

University of Edinburgh
libkin@inf.ed.ac.uk

ABSTRACT

Incomplete data is ubiquitous: the more data we accu-
mulate and the more widespread tools for integrating
and exchanging data become, the more instances of in-
completeness we have. And yet the subject is poorly
handled by both practice and theory. Many queries for
which students get full marks in their undergraduate
courses will not work correctly in the presence of in-
complete data, but these ways of evaluating queries are
cast in stone – SQL standard. We have many theoreti-
cal results on handling incomplete data but they are, by
and large, about showing high complexity bounds, and
thus are often dismissed by practitioners. Even worse,
we have a basic theoretical notion of what it means to
answer queries over incomplete data, and yet this is not
at all what practical systems do.

Is there a way out of this predicament? Can we have
a theory of incompleteness that will appeal to theoreti-
cians and practitioners alike, by explaining incomplete-
ness and being at the same time implementable and use-
ful for applications? After giving a critique of both the
practice and the theory of handling incompleteness in
databases, the paper outlines a possible way out of this
crisis. The key idea is to combine three hitherto used
approaches to incompleteness: one based on certain an-
swers and representation systems, one based on viewing
incomplete databases as logical theories, and one based
on orderings expressing relative value of information.

Categories and Subject Descriptors

H.2.1 [Database Management]: Logical Design—
Data Models ; H.2.1 [Database Management]: Lan-
guages—Query Languages ; H.2.4 [Database Manage-
ment]: Systems—Query Processing
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1. INTRODUCTION

The need to handle incomplete data was recognized
early in the development of relational database sys-
tems: already in the 1970s, Codd developed the basis
of what would become null-related features of commer-
cial DBMSs [21, 22]. His proposal for a single one-size-
fits-all null value, its propagation through arithmetic
and Boolean operations, and the use of the three-valued
logic for computing with nulls was largely reflected in
the SQL standard. It has, however, quickly become ap-
parent that the adopted design of null-related features
has a number of deficiencies, and it has become one of
the most criticized aspects of SQL design [24, 26].

To illustrate one of the best known points of
such criticism, consider a database of orders and
payments, with relations Order(o_id,product) and
Pay(p_id,order,amount): the first gives order ids and
products they are for, the other indicates that a pay-
ment with a given id was made for an order. We want
to check if there are unpaid orders. A student who has
taken a basic database course will immediately produce

SELECT o_id FROM Order
WHERE o_id NOT IN (SELECT order FROM Pay)

expecting to get full marks. But now take Order =
{(oid1, pr1), (oid2, pr2)}, and Pay = {(pid1,⊥, 100)},
where ⊥ indicates null value. We know that at least one
order has not been paid for, and yet the above query
happily returns the empty set, indicating that no cus-
tomers need to be chased for their payments! The prob-
lem easily confounds SQL programmers: consider a sim-
ple query R−S, where R and S are single-attribute rela-
tions, written as SELECT R.A FROM R WHERE R.A NOT
IN (SELECT S.A FROM S). It will produce the empty



set if S contains just a null value, no matter what R
contains. This goes against our intuition, of course: we
know that if |R| > |S|, then R − S cannot possibly be
empty, but SQL tells us that it is. As [26] nicely put
it, “those SQL features are . . . fundamentally at odds
with the way the world behaves”; a more damning as-
sertion “you can never trust the answers you get from a
database with nulls” is found in [24].

How did we get there? The approach to evaluating
queries with nulls dates back to Codd’s paper [21] from
1975, in which the 3-valued logic approach is advocated.
Problems with it were caught early [37]: a simple query

SELECT p_id
FROM Pay
WHERE order = "oid1" OR order <> "oid1"

when evaluated on the database shown above, produces
the empty table, and yet intuitively we expected the
answer to be ‘pid1’. Indeed, no matter what non-null
value we replace the null with, this is what the query
will produce.

The idea of answering queries consistently with every
possible interpretation of nulls, first proposed in [37] as
a way of fixing some problems with Codd’s 3-valued
approach, led to the notion of certain answers, now
the standard way of answering queries over incomplete
databases. It was first properly defined by [54]. The
definition relies on the notion of a semantics of an in-
complete database D, denoted by [[D]], which is the set
of all complete databases D′ that D can represent. For
instance, such databases can be obtained by replacing
nulls by values (but this is not the only possibility).
Then, given a relational query Q and an incomplete
database D, certain answers were defined as

certain(Q,D) =
⋂

{Q(D′) | D′ ∈ [[D]]}, (1)

i.e., they consist of tuples that belong to the answer no
matter how the missing information is interpreted.

In the theory community, certain answers have be-
come the way for answering queries over incomplete
databases, used across a variety of applications such
as query answering using views [1, 39], data integration
[43], data exchange [7], inconsistency management [15],
and data cleaning [30].

However, this more disciplined approach, compared to
SQL’s 3-valued logic, does not come for free. Let Q be
a Boolean (i.e., true/false) query. Then certain(Q,D) is
true iff Q is true in every D′ ∈ [[D]]. Thus computing
certain answers becomes a form of validity (i.e., check-
ing if a sentence is true in all structures). In fact, when
Q comes from relational calculus, then under the open-
world-semantics (to be defined later), finding certain
answers is exactly the validity problem. However, this
is an undecidable problem, as was shown by Church
and Turing back in the 1930s. Actually, the problem
we look at is slightly different – we are only concerned

about finite structures – but that does not make it eas-
ier. A detailed study of the complexity of finding cer-
tain answers was initiated by [3] which showed hardness
results, coNP-hard and up. In fact, high complexity
bounds are widespread in applications of incomplete-
ness as well, with classes such as coNP, Πp

2, Pspace,
coNEXP, and so on being regularly mentioned, even
for data complexity.

So, where does this bring us? We can summarize the
state of affairs roughly as follows:

Practice: • sacrifice correctness for efficiency;
• the same query evaluation engine for complete

and incomplete data;

Theory: • correctness at the expense of efficiency;
• new semantics for query answering in the pres-

ence of incompleteness.

The picture looks quite bleak: it is almost 40 years
since nulls were introduced, and yet the practice has
taught generations to live with incorrect answers, while
the theory is not really addressing the right problems.
What can we do?

First, we have to recognize that we live in the real world,
and no database vendors will change their products if we
offer them radical solutions, like completely new query
evaluation algorithms. Indeed, it took them many years
to make DBMSs as efficient as they are today, and sig-
nificant changes in basic query processing algorithms
will result in years worth of work to adjust other ele-
ments of their products. We can, perhaps, suggest small
and easily implementable changes. And we definitely
can suggest new algorithms for specialized products.

Second, we must develop a theory applicable to a vari-
ety of models: relational, XML, graph data, with differ-
ent types of incomplete information. But we also need
a good testbed for such a general theory. Nulls seen
in earlier examples correspond to SQL’s view of miss-
ing information in standalone databases. But we can
have incompleteness due to a multitude of other reasons,
in particular, data interoperability. Incompleteness in-
evitably arises when we move data between different
applications, such as in data integration and exchange
scenarios [5, 7, 29, 43]. For example, suppose that from
the Order relation, we want to build a database of cus-
tomers and their preferences. Such a transformation is
usually specified by rules known as schema mappings
[7], for instance,

Order(i, p) → Cust(x), Pref(x, p)

saying that if an order was placed for a product p, then
a customer x must exist who placed that order, and
that customer x prefers product p. From the tuple
Order(oid1,pr1), this rule will generate tuples Cust(⊥)
and Pref(⊥,pr1), and from the tuple Order(oid2,pr2)
it will generate Cust(⊥′) and Pref(⊥′,pr2). Note that
it is important for us to remember that, while the val-
ues ⊥ and ⊥′ are not yet known, when ⊥ is replaced



by some value c in Cust(⊥), it must be replaced by the
same value c in Pref(⊥,pr1), and likewise for ⊥′. On
the other hand, ⊥ and ⊥′ may be replaced by the same,
or by different constants – there are no restrictions.

What this example tells us is that we must have a mech-
anism for saying that some nulls should always be re-
placed by the same constant. Such nulls are known as
näıve, or marked nulls [2, 40]. They are the most com-
mon model of nulls used in integration/exchange tasks
[7, 29, 43] and in fact have been implemented as part of
schema mapping and data exchange tools [38, 55].

Thus, while the approach to incompleteness we are
about to present does not assume any particular data
model, we shall be using, as the main illustration, the
model of näıve nulls in relations (of course SQL’s nulls
are just a special case of it). In this model the stan-
dard interpretation of nulls is that a value is missing.
This is not the only possibility: other nulls, such as
‘non-applicable’ or ‘no-information’ exist as well [44,
67]. However, all the results that we show here apply
regardless of the nature of nulls: all that we need is a
definition of the semantics of incomplete databases for
results to work.

Plan of the paper Our goal is to make an attempt at
building applicable theory of incompleteness. We start
by recalling the basics of existing relational theory of
incomplete information in Section 2. In Section 3 we
discuss a number of serious shortcomings of this theory.

In Section 4 we explain the basics of a different ap-
proach to incompleteness, based on a duality between
objects and queries. Combining the two, we present a
simple model of incomplete objects (not just relational
databases) that lets us define the notion of certainty in
a principled way. We do it in Section 5, and show that
there are actually two different notions of certainty: one
represents it as an object, and the other as the knowl-
edge we possess about that object.

We then use the new notions of certainty to apply them
to query answers and extract what should rightly be
called certain answers to queries. This is done in Sec-
tion 6, which shows that sometimes it is actually very
easy to compute certain answers using existing query
evaluation technology. The key is the right notion of the
semantics, of both input databases and query answers,
and the right representational mechanism for query an-
swers. Section 7 outlines directions for further work.

2. RELATIONAL INCOMPLETENESS

We now present formal definitions for some of the basic
notions related to incomplete information in relational
databases, see [2, 34, 40, 66]. But first, we briefly recall
the main languages we deal with here, cf. [2]. The basic
language will be relational algebra, on the procedural
side, and first-order logic (FO), or relational calculus,

on the declarative side. The selection-projection-join-
union fragment of relational algebra is also referred to
as the positive relational algebra (the difference opera-
tor is removed). Logically, it corresponds to the ∃,∧,∨-
fragment of FO, also known as existential positive for-
mulae. In terms of its expressiveness, it is exactly the
same as unions of conjunctive queries, denoted by UCQ.
Recall that conjunctive queries are select-project-join,
or ∃,∧-queries; queries in UCQ are their unions.

Incomplete databases and their semantics

We assume that databases are populated by two types
of elements: constants (such as numbers, strings, etc.)
and nulls. The set of constants is denoted by Const and
the set of nulls by Null. These are countably infinite
sets. Nulls will be denoted by ⊥, sometimes with sub-
or superscripts.

A relational schema is a set of relation names with asso-
ciated arities. An incomplete relational instance D as-
signs to each k-ary relation symbol S from the schema
a k-ary relation over Const∪Null, i.e., a finite subset of
(Const ∪ Null)k. Such incomplete relational instances
are referred to as näıve databases [2, 40]; note that
a null ⊥ ∈ Null can appear multiple times. If each
null ⊥ ∈ Null appears at most once, we speak of Codd
databases; these model SQL’s nulls. If we talk about
single relations, it is common to refer to them as näıve
tables and Codd tables.

We write Const(D) and Null(D) for the sets of constants
and nulls that occur in a database D. The active do-
main of D is adom(D) = Const(D) ∪ Null(D). A com-
plete database D has no nulls, i.e., adom(D) ⊆ Const.

Below, R is a näıve table and S is a Codd table:

R:
⊥ 1 ⊥′

2 ⊥′ ⊥
S:

⊥1 1 ⊥2

2 ⊥3 ⊥4

with Const(R) = Const(S) = {1, 2} and Null(R) =
{⊥,⊥′} and Null(S) = {⊥1,⊥2,⊥3,⊥4}.

Each incomplete database can represent many possi-
ble complete databases. The exact set of complete
databases it represents is the semantics of an incomplete
database. The semantics is by no means unique, but
in this paper we concentrate on the two most common
ones, based on open-world and close-world assumptions
[40, 58], usually abbreviated as owa and cwa. The key
notion for both is a valuation of nulls, which is a map-
ping v : Null(D) → Const. This mapping associates a
constant value with each null. It naturally extends to
databases: v(D) is simply the result of replacing each
null ⊥ ∈ adom(D) by v(⊥).

With that, we define cwa and owa semantics as follows:

[[D]]
cwa

= {D′ | D′ = v(D), v is a valuation}
[[D]]

owa
= {D′ | D′ ⊇ v(D), v is a valuation}

Under cwa, we believe that an incomplete database
represents information fully, except some missing val-



ues. Thus, databases represented by it are obtained by
substituting values for nulls. Under owa, the database
is open to adding new facts: thus, after substituting
values for nulls, one can add new tuples.

For instance, relation R1 below belongs to both [[R]]
cwa

and [[R]]
owa

, for R depicted above (as it is obtained by
valuation ⊥ 7→ 3, ⊥′ 7→ 4), and relation R2 is in [[R]]

owa
,

as it also adds the tuple (5, 6, 7):

R1:
3 1 4
2 4 3

R2:
3 1 4
2 4 3
5 6 7

A more expressive representation mechanism for incom-
plete information is that of conditional tables. Such a
table is of the form

D =







condition
t1 c1
· · · · · ·
tn cn

, c







where t1, . . . , tn are tuples and c, c1, . . . , cn are condi-
tions: Boolean combinations of statements x = y, where
x, y ∈ Const ∪ Null. Note that conditions may use nulls
not present in the tuples. Conditional tables are usually
viewed under the closed-world semantics [[D]]

cwa
which

consists of databases {v(ti) | v(ci) = true, i ≤ n},
where v is a valuation so that v(c) is true. For example,
consider a conditional table

D =





condition
1 ⊥ = 1
0 ⊥ = 0

, (⊥ = 0) ∨ (⊥ = 1)





The only valuations satisfying (⊥ = 0) ∨ (⊥ = 1) are
⊥ 7→ 0 and ⊥ 7→ 1. Hence [[C]]

cwa
= {{0}, {1}}; condi-

tional tables thus can encode disjunctions: C says that
either 0 or 1 is in the database.

Query answering

Fix a semantics [[ ]] of incompleteness, and assume we
are given a query Q and an incomplete database D.
Of course we know how to evaluate Q on complete
databases. So the key object for us to work with is

Q([[D]]) = {Q(D′) | D′ ∈ [[D]]}

of query answers on all databases that are possibly rep-
resented by D. If we have an incomplete database that
represents this set, then we have our query answer.
That is, if there is a table A (for answer) such that

[[A]] = Q([[D]]), (2)

then we declare A to be the answer to Q on D.
Indeed, we get a single table that captures exactly
the space of all possible query answers. If this hap-
pens for all incomplete database from some class K
(Codd/näıve/conditional tables, or others) and for all
queries Q from a language L, then we say that K forms
a strong representation system for L under [[ ]].

Strong representation systems, as the name suggest,
are quite strong, and thus are hard to come by.
The best known example is that of conditional ta-
bles for full relational algebra (equivalently, first-
order logic) under [[ ]]

cwa
, see [40]. To give an ex-

ample, let us revisit the query R − S. If our
database D has R = {1, 2} and S = {⊥}, then
Q([[D]]

cwa
) = {{1, 2}, {1}, {2}}, depending on whether

the null ⊥ is instantiated into 1, or 2, or another con-
stant. This can be represented by a conditional table

condition
1 ⊥′ = 1 ∨ ⊥′ = 2
2 ⊥′ 6= 1

Indeed, going over possible values of ⊥′, one can see
that it generates exactly Q([[D]]

cwa
). One problem with

such an answer is that it is hardly meaningful to hu-
mans, and one probably would not be happy getting
this answer from a DBMS.

Since (2) is too strong a condition, one tries to replace
it by

[[A]] ∼ Q([[D]]) (3)

where ∼ is some equivalence relation. This idea led
to the notion of a weak representation system based on
the following equivalence. For two sets of instances, I1

and I2, and a query language L, we let I1 ∼L I2 if
⋂

{q(D′) | D′ ∈ I1} =
⋂

{q(D′) | D′ ∈ I2} for each q
in L. If (3) holds for ∼L over a class K of instances
for each query Q ∈ L, we say that K forms a weak
representation system for L under semantics [[ ]]. The
best known examples are, under both [[ ]]

owa
and [[ ]]

cwa
:

• Codd tables for selection/projection queries; and

• Näıve tables for UCQs (positive relational algebra).

The key reason weak representation systems are of in-
terest is that they let us compute certain answers.
Given an instance D, let Dcmpl be the complete part
of it, i.e., all the tuples in D without nulls. Then, if
we have a weak representation system, it follows that
Acmpl = certain(Q,D). Thus, certain answers are ob-
tained by keeping the complete portion of the answer
given by (3).

What makes the connection particularly attractive is
that sometimes A is just Q(D), i.e., one näıvely evalu-
ates Q on D as if nulls were the usual values. In such
a case, when A in (3) equals Q(D), we say that naive
evaluation works for Q. It then follows that

Q(D)cmpl = certain(Q,D). (4)

It is known that näıve evaluation works for UCQs under
both open and closed world semantics [40]. Moreover,
under owa, the result is optimal for FO: if we have a
Boolean (yes/no) FO query and näıve evaluation works
for it, then it is equivalent to a UCQ, i.e., a positive
relational algebra query [51]. To see how näıve evalu-
ation fails for non-positive queries, consider the query
πA(R − S) where R = {(1,⊥)} and S = {(1,⊥′)} are



relations over attributes A,B. Then näıve evaluation
computes {1}, while the certain answer is ∅.

If näıve evaluation works, i.e., (4) holds, computing cer-
tain answers can be done by a straightforward query
evaluation following by an extra selection operation,
throwing out tuples with nulls (or simply adding IS
NOT NULL conditions in the WHERE clause of the original
query). Thus, we do not need to invent new evaluation
techniques.

As for the complexity of computing certain answers, for
full relational algebra (first-order logic) it is undecid-
able under [[ ]]

owa
and coNP-complete under [[ ]]

cwa
, for

data complexity (that is, for a fixed query, when only
database is the input), see [3, 33]. This makes it pro-
hibitively expensive under cwa, and plain impossible
under owa, but the good news is that due to (4), the
complexity is very low (AC0 ( DLogSpace) for posi-
tive relational algebra queries.

It is a general phenomenon that by going away from
positive queries, one loses tractability of finding cer-
tain answers, demonstrated for many problems related
to handling incompleteness in databases [7, 13, 15, 17,
18, 29, 43, 53, 62, 66]. There are some classes extend-
ing UCQs for which certain answers can be computed
tractably – for instance, Boolean combinations of con-
junctive queries [33] – but the algorithms, despite hav-
ing polynomial time bounds, are too complicated to be
efficiently implemented on top of existing DBMSs.

3. CRITIQUE OF THEORY

There has been plenty of criticism of practical ap-
proaches to incomplete information, in particular SQL’s
treatment of nulls, see, e.g., [24, 25, 26], but the the-
oretical approaches have so far been spared. We put
an end to it now. In fact much of theoretical research
on incomplete information took the notions of strong
and weak representation systems and certain answers
as sacrosanct but we shall argue that their untouchable
status needs to be re-examined.

Semantics of query answers. Let us look at the seem-
ingly uncontroversial (2) saying that if we are lucky
enough to getA satisfying [[A]] = Q([[D]]), then A should
be viewed as the answer to Q onD. At the first glance it
looks like a reasonable condition, but nonetheless there
is one assumption built into it that is not unassailable.
Note that (2) requires that both the input database D,
and the answer A, be interpreted under the same se-
mantics [[ ]]. However, a priori, there is no reason for
it. Why, for instance, should the answer to a query be
interpreted under cwa if this is the semantics of the
input?

Why intersection? The equivalence ∼L used in the def-
inition of weak representation systems looks quite ad
hoc. Actually it is: it was defined that way to ensure

compositionality, but its essence is really going from
the very strong requirement (2) to a weaker one that
only certain answers need to be produced. And certain
answers are defined as the intersection of all possible
answers. Again, at first this looks very reasonable: we
want tuples that will be in the answer no matter how
nulls are interpreted. But a closer examination reveals
some problems. To start with, there are models other
than relational. What can one do, for instance, for XML
queries returning documents? (A side remark: much of
the work on incompleteness in XML has been restricted
to XML-to-relational queries, for this very reason [4, 9,
13, 33].) But even more importantly, how do we know
that we do not lose important information by taking in-
tersection and removing information from the answer?

Are certain answers certain? Actually, the standard
intersection-based certain answers need not be. Inter-
section takes some tuples away from potential answers.
At first the intuition appears to be fine: removing tuples
from what is certain, we seem to retain only informa-
tion we are certain about. However, removing tuples
amounts to removing data, not information. In fact,
the process can actually add information: for instance,
under cwa, by removing a tuple we gain information
that it is not in the answer. Hence, certain answers
defined by (1) cannot be called certain in all scenarios.

Semantics and informativeness. Above, we alluded to
the possibility of comparing incomplete databases in
terms of their informativeness. This is a line of work
that was pursued in the 1990s, rather independently
of the rest of the work on incompleteness [16, 49, 57,
64]. The idea was to define orderings stating that one
database has more information than another, albeit for
primitive models, such as Codd tables. Having an or-
dering describing informativeness could be important
for deciding what the proper semantics of query an-
swers is, bringing us back to our first point of discus-
sion. Indeed, it is expected that one should get more
informative answers from more informative databases.
However, there was no real attempt to tie the ordering-
based approach with the basics such as representation
systems and certain answers, and this needs to be done.

Are objects sufficiently expressive to be query answers?
We are used to queries returning database objects
– tables, XML documents, graphs. But are these
sufficiently expressive to describe answers on incom-
plete databases? Specifically, are these sufficiently
expressive to represent sets Q([[D]])? Such sets may
well be infinite, and describing them may require a
more complex representation mechanism than simple
database objects: an example of that was already seen
when we looked at conditional tables. But is it always
possible – and necessary – to have representations that
look like database relations, while they are not?

Can high complexity bounds be avoided? Too much
work has been done on showing high complexity



bounds. A typical picture looks like this: a class of
queries, often a fragment of positive relational algebra,
can be evaluated efficiently; beyond that, intractability
or even undecidability of data complexity is shown.
Such results, while occasionally requiring nontrivial
machinery, are becoming completely standard – but is
this really the direction the field should be going in?
And how much of this owes to the rigid setting (basic
semantics, certain answers) that one is unwilling to
tweak and experiment with? In fact, very often high
complexity is shown in the setting where the semantics
of input databases is the same as the semantics of
query answers. So perhaps there is another reason to
reconsider that assumption.

Thus, despite an extensive literature and cast-in-stone
notions of representation systems and certain answers,
theoreticians do not actually know that much about
handling incomplete information in databases. There
are very basic questions that are still lacking adequate
answers; among them:

• What is the semantics of query answers? When
can/should it be the same as the semantics of input
databases?

• Is taking intersection the only way to define certain
answers?

• What does it mean to have a more informative
data set?

• How do informativeness and semantics relate?

• How can we represent answers to queries over in-
complete databases?

• When can we rely on existing query evaluation al-
gorithms to produce meaningful answers?

It may seem that neither theory nor practice has good
answers to a persistent and ubiquitous problem of han-
dling incomplete information. But perhaps we can
view this positively rather than negatively: this sim-
ply means that we are back at square one, and an effort
must be made to develop a proper theory and to apply
it. Both sides must show some flexibility – in tweak-
ing both definitions and products – but first questions
posed above (and many others) need to be answered.
This paper does not claim to provide all such answers,
far from it. But we shall at least attempt to outline an
approach: one has to start somewhere, after all. Our
idea is to bind together three directions of work on in-
complete information:

1. the standard database approach based on repre-
sentation systems and certain answers;

2. the approach from the knowledge representation
community, based on viewing databases as logical
theories, pioneered by Reiter [58, 60] in the 1980s;
and

3. the approach based on the ideas from program-
ming semantics that used orderings to describe in-
formation content, proposed in the 1990s [16, 49].

4. DUALITY: INCOMPLETE DATA AS
QUERIES

We now describe an alternative way of looking at incom-
plete databases that dates back to [58, 60]. It proved
to be more popular with the knowledge representation
community than with the mainstream database com-
munity. More importantly for us, it developed the idea
of duality between queries and databases (first noticed
in [19]) for incompletely specified databases.

We start with an example. Consider an incomplete rela-
tion R = {(1,⊥), (⊥, 2)}. It can be viewed as a tableau
of a Boolean conjunctive query QR = ∃x R(1, x) ∧
R(x, 2). Complete databases satisfying this query are
precisely the databases in the semantics of R under
owa. If we let ModC(ϕ) stand for all the models of
a formula ϕ among complete databases, then our ob-
servation can be formulated as

ModC(QR) = [[R]]
owa

. (5)

This tells us that the semantics of an incomplete
database can be defined by a logical formula. This can
be extended for other semantics: for instance, the for-
mula

Qcwa

R = ∃x





R(1, x) ∧R(x, 2)

∧ ∀y, z (R(y, z) →

(

y = 1 ∧ z = x
∨ y = x ∧ z = 2

)





has the property that ModC(Qcwa
R ) = [[R]]

cwa
. In gen-

eral, the approach of [58, 60] was to view a database as
a logical theory, i.e., a collection Φ of formulae. A finite
Φ = {ϕ1, . . . , ϕn} can of course be viewed as a single
formula ϕ1 ∧ . . . ∧ ϕn.

What is the advantage of viewing incomplete databases
as logical theories? An immediate benefit is that we
can cast the query answering problem as logical impli-
cation, or, closer to the database language, as query
containment.

Indeed, suppose we have an database D given as a the-
ory Φ so that ModC(Φ) = [[D]]. Take a Boolean query
Q. For it to be true in every database in [[D]] it has
to be true in every model of Φ; thus, Q is true with
certainty iff it is logically implied by Φ, i.e., Φ |= Q. If
Φ happens to be a single query Q′, as in our examples
above, this amounts to checking implication Q′ |= Q,
or, as database literature prefers to call it, containment
of Q′ in Q. Thus, finding certain answers is a special
case of logical implication or query containment.

The connection gives us further insights. Suppose we
have an incomplete database D, a Boolean conjunctive
query Q, and we would like to know whether the certain
answer to Q is true on D. As in (5), we have a Boolean
conjunctive query QD so that ModC(QD) = [[D]]

owa
.

Thus, under owa, certain(Q,D) is true iff QD is con-
tained in Q. By a well known fact about conjunctive
queries, this happens if and only if the tableau of QD

satisfies Q – but the tableau of QD is D itself. Hence,



the certain answer is true iff D |= Q. Thus, viewing
incomplete databases as formulae, we can use known
results on containment to find cases when näıve evalu-
ation works.

One may notice that we used conjunctive queries to-
gether with the owa semantics, which is described as
the models of conjunctive queries. Is this a coincidence?
Is it possible, for instance, to use näıve evaluation for a
larger class of queries under cwa, since the formula de-
scribing [[ ]]

cwa
uses features beyond those of conjunctive

queries? We shall see later that the answer is positive.

5. INCOMPLETENESS AND CERTAINTY:
A NEW LOOK

With this dual look at incomplete information – as for-
mulae and as structures – we now start addressing ques-
tions posed at the end of Section 3. We want to deal
with them in a setting that is independent of a partic-
ular data model – and yet applicable to all of them.
In other words, we do not want to provide definitions
that will apply specifically to relational databases, or
to XML documents, or to graph databases. What we
want instead is a minimalistic approach that will use
only the key concepts of incompleteness. In fact, it is
easier to work in a general setting so that details of a
concrete data model would not obscure the picture. We
now present such a minimalist model of incompleteness,
following [51, 52].

5.1 Representation systems

To talk about incomplete information, one needs three
key notions: of objects, of complete objects, which form
a subset of the set of objects, and of semantics of in-
completeness, which associates with every object a set
of complete objects represented by it.

To formalize this, we consider triples 〈D, C, [[ ]]〉, where

• D is a set of database objects (e.g., relational
databases over the same schema),

• C ⊆ D is the set of complete objects (e.g.,
databases without nulls);

• [[ ]] is a function from D to subsets of C; the set
[[x]] ⊆ C is the semantics of object x.

We have not imposed any conditions at all, but some of
them are needed to make this definition reflect the real-
ity of incomplete data models. For instance, we expect
a complete object c in the semantics of an incomplete
object x to have more information than x. To express
this, we fulfill our promise and bring the third line of
work on incompleteness – based on orderings – into the
picture. We define the information ordering as

x � y ⇔ [[y]] ⊆ [[x]].

The intuition is that the more objects an incomplete
object can potentially denote, the less information it
contains (in the extreme case, if we have no information
at all, every object is a possibility). We then impose two
conditions on triples 〈D, C, [[ ]]〉:

1. a complete object c denotes at least itself: c ∈ [[c]];

2. a complete object c is more informative than any
incomplete object x it may represent: if c ∈ [[x]],
then x � c.

These conditions hold for [[ ]]
owa

, [[ ]]
cwa

, and many other
semantics of incompleteness.

We want to incorporate all approaches to incomplete-
ness even at this general level, so we now bring in logical
formulae. Let us assume that we have a set F of formu-
lae and the satisfaction relation |= between objects and
formulae: x |= ϕ means that ϕ is true in x. We write
Th(x) for the theory of x:

Th(x) = {ϕ | x |= ϕ}

is the set of formulae true in x. We write Mod(ϕ) for
models of ϕ:

Mod(ϕ) = {x | x |= ϕ}

is the set of all objects satisfying ϕ. These are extended
to sets in the usual way:

Th(X) =
⋂

x∈X

Th(x) and Mod(Φ) =
⋂

ϕ∈Φ

Mod(ϕ).

Also, as before, we write ModC(ϕ) for Mod(ϕ) ∩ C.

Now we turn tuples 〈D, C, [[ ]],F〉 into representation sys-
tems that let us talk at once about objects, their seman-
tics, logical representation, and information orderings.
For that, we add the following conditions.

For formulae. Logical formulae must have enough
power to define the semantics, as in (5), and must re-
spect the informativeness of the objects.

Formally, for each object x there must be a formula δx
so that ModC(δx) = [[x]]. Furthermore, x � y and x |= ϕ
imply y |= ϕ for every formula ϕ. We also require that
formulae be closed under conjunction.

For objects. Sets of objects cannot be too thin: thinking
of relational databases, nulls should be replaceable by
sufficiently many constants. That is, there must be suf-
ficiently many valuations v of nulls so that v(D) ∈ [[D]];
this is definitely true in standard semantics of incom-
pleteness.

To state what ‘sufficiently many’ means, note that for
every finite set C ⊂ Const, we have an equivalence rela-
tion ≈C between databases: D ≈C D′ says that there
is an isomorphism f between D and D′ that preserves
constants in C (technically, both f and f−1 are the
identity on C). Then, for every D, there is a valua-
tion v so that v(D) ≈C D. Indeed, we can just replace



nulls with distinct constants outside of the finite set C.
Thus, we have infinitely many equivalence relations ≈C

such that for every databaseD, and every such relation,
there is D′ ∈ [[D]] so that D′ ≈C D.

Equivalence relations ≈C satisfy some basic properties.
For instance, a formula that only mentions constants
in C cannot distinguish two equivalent databases with
respect to ≈C . Also, if D ≈C∪C′ D, then D ≈C D′ and
D ≈C′ D′.

These conditions can easily be formalized in our basic
model. We assume that there is a family Iso = {≈j}j∈J

of equivalence relations on D so that:

• The set {c ∈ [[x]] | x ≈j c} is nonempty for each
x ∈ D and j ∈ J ;

• for all j, j′ ∈ J , there is k ∈ J so that x ≈k y
implies both x ≈j y and x ≈j′ y; and

• for each formula ϕ ∈ F, there must be j ∈ J so
that x ≈j y implies x |= ϕ⇔ y |= ϕ.

Of course these three conditions hold for the family
{≈C | C is a finite subset of Const}. From now on, we
assume all the above conditions. We then call:

• D = 〈D, C, [[ ]], Iso〉 a domain, and

• RS = 〈D,F〉 a representation system.

We now give examples of those and show how they help
us define the notion of certainty.

5.2 OWA and CWA representation systems

We now provide examples of representation systems cor-
responding to relational owa and cwa semantics. Let
D(σ) and C(σ) be the sets of all relational databases,
and of all complete databases (not having nulls) of
schema σ. The domains will be of the form D∗(σ) =
〈D(σ), C(σ), [[ ]]∗, Iso〉, where ∗ is owa or cwa. The re-
lations in Iso are, as seen earlier, of the form ≈C when
C ranges over finite subsets of Const.

Under owa, the set of formulae F can be taken
to be UCQ, unions of conjunctive queries. Thus,
RSowa(σ) = 〈Dowa(σ),UCQ〉 is a representation system
under owa. The formula δD is simply ∃x̄ PosDiag(D),
where PosDiag(D), the positive diagram of D, is the
conjunction of all atoms in D, where each null ⊥i is
associated with a variable xi. For instance, if D con-
tains a relation R = {(1, 2), (2,⊥1), (⊥1,⊥2)}, then
PosDiag(D) = R(1, 2) ∧R(2, x1) ∧R(x1, x2).

Under cwa, we used different features in the formula
describing [[R]]

cwa
in Section 4. Such formulae use uni-

versal quantification and implication, although in a lim-
ited way: the antecedent in implication was a relational
atom. Such a class of formulae was already studied a
long time ago [23]. Recall that positive FO formulae

are those that do not use negation: they are formed
from atomic formulae using ∧,∨, ∃, and ∀. We now
extend this class to positive formulae with universal

guards, denoted by Pos
∀G. Such formulae are closed

under ∧,∨, ∃, ∀ and the following rule: if ϕ(x̄, ȳ) is

a Pos
∀G formula in which all variables in x̄ are dis-

tinct, and R is a relation symbol of the arity |x̄|, then

∀x̄ (R(x̄) → ϕ(x̄, ȳ)) is a Pos
∀G formula. In Section

6 we also describe this fragment in terms of relational
algebra operators.

Then the cwa representation system is defined as
RScwa(σ) = 〈Dcwa(σ),Pos

∀G〉. For each D with
Null(D) = {⊥1, . . . ,⊥n}, the formula δD is

∃x1, . . . , xn

(

PosDiag(D)∧
∧

R∈σ

∀ȳ
(

R(ȳ) →
∨

t̄∈RD

ȳ = t̄
)

)

,

where the length of ȳ and t̄ is the arity of R, and ȳ = t̄
means

∧

i≤arity(R)(yi = ti).

We can also describe orderings �owa and �cwa corre-
sponding to [[ ]]

owa
and [[ ]]

cwa
. Recall that a homomor-

phism h : D → D′, where D and D′ are two databases
of the same schema, is a mapping h from adom(D) to
adom(D′) so that h(a) = a whenever a ∈ Const, and
for each tuple t̄ in relation R of D, the tuple h(t̄) is in
the relation R of D′, cf. [2, 7]. That is, h replaces nulls
with either other nulls or constants, and leaves con-
stants intact. A homomorphism is called strong onto if
every tuple in D′ is the image of a tuple in D, i.e., if
D′ = h(D). Then [32, 51]:

• D �owa D
′ ⇔ ∃ homomorphism h : D → D′;

• D �cwa D
′ ⇔ ∃ strong onto homomorphism

h : D → D′.

The owa and cwa semantics are not the only possible
ones of course. For instance, one can use a weaker ver-
sion of cwa, in which tuples can be added, as long as
they do not add new elements to the active domain [59].
Then a representation system for this semantics will use
the class of positive FO formulae, and the ordering is
given by the existence of onto homomorphisms, which
map adom(D) onto adom(D′) [32, 52].

We can also connect representation systems and order-
ings. It can be shown that Mod(δx) =↑x = {y | x � y},
i.e., the set of all models of δx is the set of more infor-
mative objects.

5.3 Certainty in representation systems

Recall that to define certain answers to queries, we had
to determine certain information contained in the set
Q([[D]]). Thus, the central problem for us is to under-
stand how to define certainty contained in a set X ⊆ D
of objects. With the dual view of objects as elements of
an ordered set and as formulae, we have two approaches
to defining certainty: as knowledge about the collection
X , and as an object representing what is known about



it. In general, the former is more flexible: we have al-
ready seen this in the example of conditional tables,
which are just encodings of formulae. Trying to repre-
sent certainty as another object of the same kind can
tie our hands too much, although in many important
cases it can be done.

Certain information represented as knowledge The first
attempt to describe with certainty information con-
tained in a set X of objects is to find a formula ϕ
so that Mod(ϕ) = X . This is the approach of strong
representation systems which look for an object A so
that [[A]] = Q([[D]]); indeed, by the duality between
formulae and objects, this is the same as requiring
ModC(δA) = Q([[D]]). The problem is that not all sets
X are of the form Mod(ϕ), for formula coming from
logics of interest to us (of course we could use a highly
expressive formalism but such a formalism would hardly
be useful).

So following the approach of weak representation sys-
tems, we go for the next best thing, and replace equal-
ity by an equivalence relation. But equivalence between
what? We now appeal to the duality again, and view
X as a theory, i.e., Th(X), which says what we know
about X with certainty in a given logical language. In-
deed, Th(X) contains formulae ϕ which are true in all
objects of X .

We now must find a formula ϕ representing this certain
knowledge Th(X). Since two sets of formulae are equiv-
alent if they have the same models, we need a formula ϕ
such that Mod(ϕ) = Mod(Th(X)). This is our certain
knowledge of X , denoted by certainKX . To summarize,

Mod(certainKX) = Mod(Th(X)). (6)

It is easy to show that if Mod(ϕ) = X , or if ModC(ϕ) =
X , then ϕ = certainKX . Thus, (6) is a relaxation of the
very strong notion of strong representation systems.

Certain information represented as object We appeal to
the ordering-based approach to incompleteness. To rep-
resent what we know about X with certainty by an ob-
ject y, this object must be less informative than any
object x ∈ X (as it reflects knowledge contained in all
other objects in X as well). If we have two such objects
y and y′, and y′ � y, then of course we prefer y as it is
giving us more information.

Thus, the object that we seek must be less informative
than all objects in X , and at the same time the most
informative among such objects. This is precisely the
greatest lower bound of X , with respect to � (or

∧

X ,
using the standard order-theoretic notation). We de-
note it by certainOX . To summarize,

certainOX =
∧

X. (7)

A few remarks are in order. Neither certainKX nor
certainOX need exist in general. When they exist, they
may not be unique, but they are equivalent. That is, we

may have different formulae ϕ and ψ satisfying (6) but
they are equivalent: Mod(ϕ) = Mod(ψ). Likewise, the
greatest lower bound is not unique, but for every two
objects x, x′ satisfying the condition of being

∧

X we
have x � x′ and x′ � x, which means [[x]] = [[x′]], i.e., x
and x′ are equivalent. The idea of using formula/object
duality to define certain answers first appeared in [28],
albeit in a very limited context, when F = D and x |= y
was a shorthand for y � x. The definitions we are using
here, as well as the results below, are from [52].

These notions of certainty have some of the expected
properties. For instance, the certain knowledge about
[[x]] is δx, and its object representation is x itself:
certainK[[x]] = δx and certainO[[x]] = x. In partic-
ular, certainO[[x]] |= certainK[[x]], although in general
certainOX |= certainKX need not hold. Also the the-
ory of all objects represented by x is the same as the
theory of x, i.e., Th([[x]]) = Th(x).

Moreover, certainKX can be viewed as a greatest lower
bound in a well-known ordering on formulae: implica-
tion ψ ⊢ ϕ, which holds if every model of ψ is a model
of ϕ. Thus, for a set of formulae Φ, we can look at its
greatest lower bound in this preorder, denoted by

∧

Φ.
This is the most specific formula ψ that implies every
ϕ ∈ Φ (i.e., every other formula that implies Φ must
imply ψ as well). Note that since ⊢ is a preorder, tech-
nically

∧

Φ is a set of formulae, all of which, however,
are equivalent.

Now the following is an alternative description of certain
knowledge:

certainKX =
∧

Th(X). (8)

With this understanding of how to extract certain in-
formation, we are now going to apply it to sets Q([[D]]),
to see how certain answers must be defined.

6. MAKING CERTAIN ANSWERS EASY

We now want to use concepts from Section 5 to de-
fine certain answers to queries and to see when they
can be computed efficiently, essentially using the ex-
isting technology. But first let us revisit the standard
intersection-based notion of certain answers (1) to see
what may go wrong if we use it. Take a very sim-
ple example: we have a database containing relation
R = {(1, 2), (2,⊥)}, and a query Q that just returns R.
Following (1), certain(Q,R) = {(1, 2)} under both owa

and cwa. This is, however, problematic for a number of
reasons. First of all, such an answer misses information
that there is a tuple whose first component is 2. Even
more importantly, using intersection blindly for defining
certain answers leads to counterintuitive results. Ap-
pealing to orderings describing the degree of incomplete-
ness, we would expect certain(Q,R) not to exceed the
level of informativeness of Q(R′) for each R′ ∈ [[R]], as
it presents information common to all such Q(R′). Un-



der owa, this is easily true, as {(1, 2)} �owa R
′ for each

R′ ∈ [[R]]
owa

. However, under cwa, exactly the oppo-
site is true: {(1, 2)} 6�cwa R

′ for each R′ ∈ [[R]]
cwa

. So
in what sense {(1, 2)} is a certain answer under cwa is
quite mysterious.

What causes this problem is the fact that intersection,
in general, does not correspond to the ordering and the
semantics of query answers. It may do so, but only
under very limited conditions [52]. And if we want to
define certainty as the greatest lower bound for the right
ordering, as in (7) and (8), we need to understand what
the orderings are. Note that we are defining orderings
on query answers, so we are back to one of our basic
questions: what is the semantics of query answers?

To answer this, we use a very basic principle:

if we know more about the input of a query,
then we should know more about its output.

However simple and natural this principle is, it is ig-
nored by most approaches to incompleteness, starting
with the definitions of strong and weak representation
systems that somehow assume the same semantics for
inputs and outputs.

6.1 Queries and naïve evaluation

To state results in a way independent of a particular
data model, we view queries as mappings Q : D → D′

between two domains D = 〈D, C, [[ ]], Iso〉 and D′ =
〈D′, C′, [[ ]]

′
, Iso′〉. The basic principle stated above, that

more informative inputs produce more informative out-
puts, is then the monotonicity of queries: if x � y then
Q(x) �′ Q(y), where �′ is the ordering associated with
the semantics [[ ]]

′
. In particular, using blindly the same

semantics for both databases and query results (as is
often actually done) does not necessarily make sense.

Certain answer to Q on an object x represents certain
information in Q([[x]]). We have shown how to define it
as knowledge, and as object, and the former requires a
representation system RS = 〈D′,F〉 on query answers.
In its presence, we can define certain answers as

objects: certainO(Q, x) = certainOQ([[x]]),
knowledge: certainK(Q, x) = certainKQ([[x]]).

Then the following holds [52]: if Q is both monotone
and generic, then

certainO(Q, x) = Q(x) (9)

certainK(Q, x) = δQ(x) (10)

That is, näıve evaluation works: simply applying Q,
without doing anything else, is what we need. By gener-
icity we mean the standard notion of independence of
query results under permutation: in the above setting,
it is stated as follows: for every j, there is k so that

x ≈k y implies Q(x) ≈′
j Q(y). Relational queries under

the standard interpretation of ≈ satisfy it.

This is great news: we can get properly defined cer-
tain answers without, seemingly, doing anything special.
But a question remains: why do we need representation
systems and (10) when we already have (9) at the level
of objects? The answer is: because in the absence of
a representation system, (9) need not be true; in fact,
one first needs to establish (10) and then derive (9) as
a corollary, as shown in [52].

Thus, if we want to rely on existing query evaluation
techniques to produce correct answers in the presence
of incompleteness, we need two things:

1. A proper semantics for query answers that ensures
that more informative inputs produce more infor-
mative outputs; and

2. a representation system for that semantics.

We now show how to achieve these for relational
databases under owa and cwa.

6.2 Naïve evaluation underowa and cwa

We now look at what näıve evaluation gives us when,
as had been done before, we use the same semantics for
query inputs and query answers; the semantics will be
[[ ]]

owa
and [[ ]]

cwa
. Relational queries expressed in FO, or

relational algebra, are guaranteed to be generic. Thus,
we need to understand when they are monotone.

For now, look at a Boolean query Q, and the descrip-
tion of orderings �owa and �cwa. Then monotonicity
simply means that if D |= Q and h : D → D′ is a homo-
morphism, for owa (or strong onto homomorphism, for
cwa), then D′ |= Q. In other words, Q is preserved un-
der homomorphisms (or strong onto homomorphisms).

Homomorphism preservation is a well known concept in
logic; in particular, homomorphism preservation theo-
rems give syntactic descriptions of classes of formulae
satisfying these semantic conditions. Most of them are
proved for infinite structures, but some work in the fi-
nite case too [20]. For instance, an FO sentence is pre-
served under homomorphisms iff it is equivalent to a
union of conjunctive queries [63]. Preservation results
for onto homomorphisms, however, only work in the in-
finite case, and are known to fail in the finite [6, 65].
Nonetheless, one can take advantage of sufficient condi-
tions for preservation: for instance, it is known that the
class of Pos

∀G formulae is preserved under strong onto
homomorphisms [32].

We can now show when näıve evaluation works un-
der owa and cwa, if we use the same semantics for
databases and query answers. Let Q be a query that
is defined on databases of schema σ and produces
databases of schema σ′. We say that ∗-näıve evaluation
works for Q, where ∗ is owa or cwa, if certainO(Q,D) =



Q(D), where we view Q as a mapping from D∗(σ) to
D∗(σ

′) (remember that we need a semantics of answers
specified in order to define the lower bound which gives
us the notion of certainO).

Then, combining (9) with the preservation result of [63]
and the fact that UCQs form a representation system
under owa, we obtain:

• owa-näıve evaluation works for UCQs, i.e., for pos-
itive relational algebra queries.

By combining (9) with the preservation result for Pos
∀G

[32] and the fact that Pos
∀G forms a representation sys-

tem under cwa, we obtain

• cwa-näıve evaluation works for Pos
∀G queries.

Can we get a better intuition of the power of Pos
∀G

queries? Clearly they add something to the positive
relational algebra, and clearly it cannot be the dif-
ference operator. Recall that many real-life queries
with for-all conditions can be written using the divi-
sion operator of relational algebra. If we have a re-
lation R with attributes A1, . . . , Am, B1, . . . , Bk and a
relation S with attributes B1, . . . , Bk, then R ÷ S con-
tains tuples of A-attributes of R that appear in R in
every possible combination with a tuple from S, i.e.,
R ÷ S = {t̄ ∈ πĀ(R) | ∀s̄ ∈ S : (t̄, s̄) ∈ R}. Division
is a derived operation of relational algebra, it can be
expressed with σ, π,×,∪,−.

The easy way to think of the class Pos
∀G is that it adds

to the positive relational algebra the operation of diving
by a base relation (i.e., S in R ÷ S must be a relation
in the database). In fact, the class is slightly more ex-
pressive, and defined as follows.

Let ∆ be the query returning {(a, a) | a ∈ adom(D)};
it is easily definable in positive relational algebra. Let
RA(∆, π,×,∪) be the class of relational algebra queries
obtained from base relations and ∆ by closing them
under π, ×, and ∪. Now we define RAcwa as follows:

• Each relation name is an RAcwa query;

• RAcwa is closed under σ, π,×, and ∪ (i.e., all op-
erations except difference);

• if Q is an RAcwa query, and Q′ is an RA(∆, π,×,∪)
query, then Q÷Q′ is in RAcwa.

One can then show the following.

• RAcwa = Pos
∀G, and consequently:

• cwa-näıve evaluation works for RAcwa.

Thus, we have two large classes of queries for which
simply evaluating queries using existing technology does
produce correct answers.

7. WHERE DO WE GO FROM HERE?

Summary

We started with a rather bleak assessment of the practi-
cal use of nulls: “If you have any nulls in your database,
you’re getting wrong answers to some of your queries.
What’s more, you have no way of knowing, in general,
just which queries you’re getting wrong answers to; all
results become suspect. You can never trust the an-
swers you get from a database with nulls” [24]. We then
analyzed the state of theoretical research on incomplete-
ness in databases, and concluded that it was in disarray
as well.

But by answering some of the questions posed at the
end of Section 3, we can alleviate some of the fears
expressed in [24]. Not all results become suspect. You
can sometimes trust the result you get from a database
with nulls. One precondition for it is to have näıve, or
marked nulls, but this, as mentioned already, is doable,
and implemented in existing DBMS [38]. Then one can
fully trust answers to positive relational algebra queries,
even extended with a rather liberal use of the division
operator under the closed-world semantics. In general,
if the semantics of the answers is right, one can trust
the answers provided by the standard query evaluation.

As for the key questions about the state of the theory of
incompleteness, we provided a few answers. We argued
that the semantics of query answers need not be the
same as the semantics of input databases, and that it
should be chosen in a way that more informative inputs
provide more informative outputs. Intersection is not
the only way to define certain answers – in fact some-
times it is a plain wrong way to define certain answers.
We should be open to viewing query answers as both ob-
jects and a representation of knowledge about all possi-
ble answers. And we should be free to go back and forth
between several paradigms for dealing with incomplete-
ness: the standard object-based view, the logical-theory
view, and the ordering view.

Future directions

More expressive queries We have seen how to handle
positive relational algebra queries and their extension
with the division operator. Can we push this further?
Of course yes: (9) and (10) tell us that there is no limit
as long as the semantics is chosen correctly. So the
next obvious step is to analyze semantic requirements
for different types of queries, and see when they can
be used together with the standard query evaluation
techniques.

Evaluation techniques Näıve evaluation simply applies
existing query evaluation as is, and it produces the right
answers under the right semantics. But we are assum-
ing we actually know how to apply a given query to a
database with nulls, and this need not always be the



case. There are a variety of possible evaluation tech-
niques that need to be investigated. Returning to our
example from the introduction, it is quite bad that the
query says no payments are missing, but at least we are
not chasing good guys – there are no false positives. Can
this always be guaranteed? Sound evaluation has been
addressed before [61], but we do not fully understand ef-
ficient query evaluation techniques with nulls and their
interaction with the right notions of certainty. The log-
ical approach to incomplete databases also fits in well
with the three-value semantics of SQL: theories repre-
senting databases need not be complete and may lead
to unknown answers [42, 60]. One can also consider
applying existing reasoning procedures with unknown
outcomes (e.g., [48]) to databases with nulls.

Handling constraints This subject has been addressed,
in particular for functional dependencies, with sev-
eral different attempts to define when an incomplete
database satisfies a constraint, see, e.g., [12, 46]. Some
of these results were also applied to database design,
both relational and beyond [8, 47]. However, unlike in
the case of querying, little attention has been paid to
the role of the semantics. But constraints are queries,
after all, and we should be able to apply techniques de-
veloped here to their study. Most constraints, however,
involve universal quantification, and thus special care
needs to be taken in evaluating them.

Beyond relations: XML and graphs We have looked
only at relational databases but of course there are other
models of data. Already a long time ago, analogs of the
basic concepts from [40] were worked out for nested re-
lations [45]. More recently, there was some activity in
studying incompleteness in XML [4, 13, 27, 28]. One
of the key differences is that not only data but also
some structural features can be missing, although it
was shown that structural incompleteness leads to in-
tractability very quickly. Most of these papers used
XML-to-relations queries to define certain answers by
means of intersection; an exception is [28] in which a
rudimentary version of (6) was given. To extend our
techniques to XML, we would need to find classes of
queries satisfying homomorphism preservation condi-
tions, which is not a trivial task at all for tree-like struc-
tures [11] and it becomes even harder with data present.
A few initial results in this direction were very recently
reported in [31]. And in the case of graph databases
we know even less; see [14, 56] for attempts at defining
incompleteness over graph data and RDF.

Applications Some of the most important applications
of incomplete data occur in tasks such as data integra-
tion, data exchange, and consistent query answering:
in fact, in all three of them, the standard semantics of
query answering is based on certain answers. The need
to apply techniques from incomplete databases in these
areas is well recognized, see, e.g., [1, 35, 41] for data in-
tegration and [10, 36, 50] for data exchange. However,
in all the cases, the standard intersection-based defini-

tion is used, and with few exceptions, owa is the dom-
inating semantics. In fact quite often näıve evaluation
is used for query answering in cases where it is known
not to work (as explained in [7, 50]). It thus seems to
be a natural next step to apply the notions of certainty
we presented here in these applications. This may well
involve rethinking several of the semantic assumptions
made in the past.
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