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ABSTRACT 

The dynamic nature of emergency decision making exerts difficulty to decision makers for achieving effective 
management. In this regard, we suggest a dynamic decision making model based on Markov decision process. 
Our model copes with the dynamic decision problems quantitatively and computationally, and has powerful 
expression ability to model the emergency decision problems. We use a wildfire scenario to demonstrate the 
implementation of the model, as well as the solution to the firefighting problem. The advantages of our model in 
emergency management domain are discussed and concluded in the last. 
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INTRODUCTION 

Emergency management consists of several phases, including prevention, mitigation, preparedness, response, 
and recovery. This article concentrates on the decision making during the response phase, because in this period, 
emergency decision making is dramatically different from traditional decision making that applies rational 
decision models (Flin, 2001; Klein, 1986), and effective decision making can be especially challenging under 
the stressful and time-pressured conditions of extreme events (Boin et al., 2005). 

During a wildfire, due to the rapidly development of the fire and lack of dynamic thinking ability, decision 
makers tend to make decision based on their mental model. Modelling the interaction of decision effect and fire 
evolvement, probabilistically and quantitatively, will support the decision maker under dynamic decision 
making environment. 

In this paper, we first investigate the dynamic decision problem, and map it into a formal schema. Then the 
problem is formulated as a Markov decision process (MDP) model, which makes it possible to apply 
mathematical methods. An example of wildfire fighting is also given to demonstrate the application of MDP. 
Finally, we discuss the advantages of MDP in emergency management. 

DYNAMIC DECISION MAKING 

According to Brehmer (1992), a dynamic decision making problem has four characteristics, which are: 
 A series of decisions is required to reach the goal.
 The decisions are not independent; that is, later decisions are constrained by earlier decisions, and in turn,

constrain those that come after them.
 The state of the decision problem changes, both autonomously and as a consequence of the decision

makers’ actions.
 The decisions have to be made in real time.
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Obviously, most emergency decision problems share such features, and the results of dynamic decision making 
theory have enormous potential in emergency management domain. Some sequential decision problems can be 
modeled as constrained optimization, yet, it is impossible to find analytical solutions for most dynamic decision 
problems (Rapoport, 1975). Stochastic control theory sheds light on these problems. A generic dynamic 
decision problem schema is illustrated in Figure 1 (Bertsekas, 1987). This system has a set of possible actions A, 
a set of system states X, an output set Y, and a set of uncertainty factors E, which is further decomposed into 
uncertainty about the state (Ex) and uncertainty about the output (Ey). 

Ex X A Y EY

Figure 1. A generic dynamic decision problem 

At a specified time step, the decision maker observes the state of a system. Based on the observed state, he/she 
chooses an action. The action choice yields two outcomes: the decision maker receives an output (immediate 
reward or cost), and the system evolves to a new state at a subsequent time step according to a probability 
distribution determined by the action choice. At this subsequent time step, the decision maker faces a similar 
problem, but the state of the system and possible actions may be different from the previous one. 

MODEL FORMULATION 

Markov decision process (MDP) provides a mathematical framework for modeling dynamic and probabilistic 
decision making problems, and it has already been used to model real world problems in a variety of disciplines, 
including operations research, ecology, economics, and communications engineering (Puterman, 2005). 

An MDP problem can be defined as a tuple , where 
 is a set of states. 

 is a set of actions. 

 is a transition function, a mapping specifying the probability  of going into state  if action 
 is executed when the current state is . 

 is a reward function that gives a finite numeric reward value  obtained when the system 
goes from state  to state  as a result of executing action . 

Here, it should be noted that the time element is implicit in this kind of expression. Since most of the emergency 
response would be finished at some time, we can enumerate the time steps as .  

The dynamic decision problem in the previous section can be modeled with MDP. First, MDP is obviously a 
sequence decision process. Second, the dependence of decisions can be evaluated by the value function, in terms 
of accumulative utility as,  

 . (1) 

Third, the system transitions can be acquired with two components. One component consists of autonomous 
changes of the system in probability of , whereas the other component consists of the state transition 
controlled with the actions in probability of . Then, we can use Bayes’s theorem to calculate the 
posterior probability of the system transition , denoted by  in conditional probability 
terms, 

 . (2) 

Forth, we can use computers to solve the MDP problems, and therefore support the decision making in real time. 
The solution of an MDP problem can be calculated using value iteration (Bellman, 1957), policy iteration 
(Howard, 1960), and other approximate algorithms (Kocsis and Szepesvári, 2006). 

A feature of MDP is that the solution of a problem, which is called the optimal policy, denoted as ,  

. (3)

Equation (3) explicitly gives a trajectory of actions for achieving the goal--maximizing the total expected utility 
or minimizing the cost. This means the decision makers know that at what time step, which action should be 
taken to gain an optimal outcome. This helps the decision makers gain their control of the dynamic process of 

246



Yu et al. Emergency Decision Making: A Dynamic Approach

Proceedings of the 11th International ISCRAM Conference – University Park, Pennsylvania, USA, May 2014 
S.R. Hiltz, M.S. Pfaff, L. Plotnick, and P.C. Shih, eds. 

emergencies and make effective decisions. We will use a concrete example to explain how the MDP model can 
be formulated and support the emergency decision making in the next section. 

MODEL APPLICATION 

x1 x2 x3 x4

y1

y2

y3

y4

No fire

On fire

Figure 2. Initial state of a wildfire scenario 

We use a supposed wildfire scenario to illustrate the application of MDP in emergency context. Considering a 
forest region consisted of 4 by 4 grids (as shown in Figure 2), each of which is denoted with its coordinate 

. The states are the fire status of the grids, which are denoted as , see Equation (4). Each grid has 
at most 8 neighbors, and the neighboring relationship is as , defined in Equation (5). Whether 
a grid on fire is affected by its neighbors, the more neighbors on fire, the larger probability it will be ignited. We 
suppose the probability 0.1, 0.6, 0.9 for the number of on fire neighbors 1-3, 4-6, and 7-8 respectively, as 
expressed in Equation (6). At each time step, a decision maker can put out an on fire grid with a successful 
probability of 0.6. The action put out a fire at the grid  is marked as , as in Equation (7). The 
reward function is the cost of the wildfire, and we assume each on fire grid at a time step costs 1 unit value, see 
Equation (8). For example, the cost of the state in Figure 2 is -5. The above description use a factored manner of 
MDP, and this can save us a huge amount of space to express the problem.  

(4)

 (5)

 (6) 

 (7) 

, (8)

(9)

The goal of decision makers is to minimize the total cost of the wildfire during the firefighting process 
(Equation 9); in other words, to put out the fire as soon as possible. This is quite a typical problem, since the 
state of the fire is spread autonomously and affected by actions the decision maker executed, both in a 
probabilistic manner.  

This problem is simulated with RDDL (Sanner, 2010), and solved with PROST (Keller and Eyerich, 2012). The 
solution of the problem (Figure 2) is depicted in Table 1. At each time step, the RDDL drives the state transition 
according to the model definition, and send the state to the PROST. The PROST receives the state and 
calculates the best action, and sends the action back to RDDL to drive the next state. The action choice is based 
on value function. For example, the action set of the state of Figure 2 includes , , 

, , and . The value of each action is -92.2, -91.9, -91.4, -92.1, and -92.2 
accordingly. (These values are calculated according to PROST, and only approximate the true value function.) 
Therefore, the optional action of this state is to put out the fire at .  

Table 1 clearly shows the state transition according to the fire spread and the effect of firefighting actions. 
Although the action has a probability of failure, there exists some grids worth putting out with priority [e.g. 
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grid ], while some not [e.g. grid ]. This is helpful, since for human decision makers it is hard to 
distinguish such difference. Moreover, the explicit solution of action sequence would alleviate the decision 
pressure, so even a less experienced decision maker can cope with such complex emergency situation. 

Time t=0 t=1 t=2 t=3 t=4 t=5 

State □□■□ 
□□■□ 
■■■□ 
□□□□ 

□□■□ 
□□■□ 
■■○□ 
□□□□ 

□□■□ 
□□○□ 
■■○□ 
□□□□ 

□□■□ 
□□○□ 
■■○□ 
□□□□ 

□■○■ 
□□○□ 
■■○□ 
□□□□ 

■■○■ 
□■○□ 
■■○□ 
□□□□ 

Action 

Time t=6 t=7 t=8 t=9 t=10 t=11

State ■■○■ 
□■○□ 
■○○□ 
□□□□ 

■■○■ 
■■○■ 
■○○□ 
□□□□ 

■■○■ 
■■○■ 
○○○□ 
□□□□ 

■■○■ 
■■○■ 
○○○□ 
□□□□ 

■■○■ 
■■○○ 
○○○□ 
□□□□ 

■■○■ 
■■○○ 
○○○□ 
□□□□ 

Action 

Time t=12 t=13 t=14 t=15 t=16 t=17

State ■■○■ 
■■○○ 
○○○□ 
□□□□ 

○■○■ 
■■○○ 
○○○□ 
□□□□ 

○■○■ 
■○○○ 
○○○□ 
□□□□ 

○■○■ 
○○○○ 
○○○□ 
□□□□ 

○■○○ 
○○○○ 
○○○□ 
□□□□ 

○○○○ 
○○○○ 
○○○□ 
□□□□ 

Action 

□ no fire ■ on fire ○ put out

Table 1.  Dynamic decision process illustration 

DISCUSSION 

Constrained by psychological limitations along with social and organizational factors, decision makers 
demonstrate bounded rationality (Simon, 1997). Decision makers make inferences about the uncertain 
environments of emergency events under constraints of limited time, limited knowledge, and limited 
computational capacities (Gigerenzer, 2004). MDP can serve as a basic tool to support the dynamic emergency 
decision making problems, and makes the decision problems quantitatively represented and computationally 
solved. 

Using MDP as a formal model of dynamic decision making problems will help decision makers build up an 
integrated comprehension of the emergency management. The formalization of states of a system requires the 
consideration of all possible domains relating to the emergencies’ evolvement and emergency management. The 
actions describe the consequences of different response tasks and missions. The uncertainty may be in the 
actions or in the exogenous factors, and therefore the transition probability of states can be described as a joint 
probability of the objective world and human intervention, for which it is easier to deal with separately. These 
measures reduce the uncertainty and complexity of the decision environment. 

Moreover, MDP even works in some situations without complete information. The information of the disaster is 
impossible fully observed due to the distortion and delay of information. Partially observable Markov decision 
process is an extension of MDP (Cassandra, 1998), which enables the agent make inference from the partially 
observed information of the states and estimate the most likely states where it might lie on. 

Last but not least, MDP can be implemented as software or systems for real-time decisions support. Online 
algorithms of MDP (Keller and Helmert, 2013) generate policies in an interactive manner, which is able to 
generate policies according to given states in real-time. As a result, the stress of the decision makers would be 
alleviated under time pressure and urgency with such decision support systems. 

CONCLUSION 

Dynamic decision making is inevitable in emergency management, particularly in the response phase. This 
article uses mathematical method to model the dynamic decision problem. MDP can essentially grasp the 
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dynamic features of emergency decision problems, and execute smoothly in urgent situations. Hence, MDP 
helps relieve the negative factors of the emergency decision environment, and supports effective decision to the 
emergency managers.  
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