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Abstract—This study investigates the channel state information
(CSI) feedback problem in large-scale multiple-input multiple-
output (MIMO) systems, which is important for intelligent co-
operative traffic management in smart ports. MIMO systems
depend on CSI feedback for effective precoding, which enhances
the system’s transmission gain. While various strategies have
been developed to minimize CSI feedback overhead, these have
predominantly been assessed in static scenarios. Addressing the
complexity and variability inherent in smart ports, this paper
introduces a novel approach utilizing a Transformer-based method
for CSI feedback. This method integrates the LoRA algorithm,
optimizing computational efficiency during training and enabling
rapid adaptation to complex, evolving environments. Experimental
findings demonstrate that this approach not only requires fewer
computational resources and operates more swiftly but also
exhibits superior adaptability to environmental fluctuations. In
addition, this approach greatly improves the robustness, stability,
and resource optimization fairness of the system compared to
existing CSI feedback techniques.

Index Terms—CSI Feedback,Transformer,Low-Rank Adapta-
tion

I. INTRODUCTION

Recent advances in wireless communication have greatly
influenced various industries, especially smart ports[1]. In
smart ports, communication systems for cooperative trans-
portation must be able to handle the transmission of control
information and multi-channel information efficiently and reli-
ably.Introducing large-scale MIMO systems[2] in smart ports
is an unique challenge.These systems use multiple transmitting
and receiving antennas to increase communication capacity and
efficiency, significantly enhancing signal quality and transmis-
sion rates through parallel data stream transmission. However,
the implementation of MIMO systems depends on precise CSI
feedback to adjust transmission strategies, thereby ensuring
efficient communication and maximizing system throughput.

With more antennas, receivers, and subcarriers, CSI feedback
gets increasingly complex, especially in dynamic settings like
smart ports. The heavy reliance on antennas greatly increases
the need for CSI, as each antenna requires precise channel
data for effective transmission strategies. Rapid changes in
smart port scenarios, such as equipment movement and large-
scale cargo flow, cause frequent changes in channel charac-
teristics, requiring the CSI feedback system to adapt quickly
and accurately. This increases data processing and transmission
demands and requires high real-time accuracy. Additionally,

these systems often manage substantial data volumes, including
high-definition video and intricate control signals.This neces-
sitates additional antennas and higher density subcarriers to
support extensive data transmission, thus dramatically increas-
ing the dimensions of CSI and adding to the complexity of
data processing and transmission.In Smart Ports, many vehi-
cles operate at various frequencies, each with different wire-
less signal propagation characteristics. These characteristics
are influenced by factors such as distance, interference, and
physical obstructions (e.g., containers and port infrastructure).
When conducting remote collaborative operations of large port
machinery, Channel State Information (CSI) feedback must
accurately reflect the conditions of the channel, ensuring the
stability of control signals even within complex electromag-
netic environments. It’s essential to account for these specific
characteristics and environmental factors when processing CSI
feedback from different frequencies, to maintain efficient and
reliable wireless communication.Addressing these challenges,
our research aims to reduce the overhead of CSI feedback in
smart port scenarios while ensuring the timeliness and accuracy
of communication, overcoming the challenges faced by existing
CSI feedback technologies in complex environments while
maintaining the high efficiency of MIMO systems,enhancing
collaborative traffic management.

Using CSI’s temporal and spatial correlations for channel
compression estimation, along with Compressed Sensing (CS)
technology in feedback protocol design, can effectively reduce
CSI feedback overhead [3]. ErikssonT’s[4] compressed sensing-
based CSI feedback method improves channel information
accuracy and lowers feedback load but depends greatly on prior
channel structure assumptions. The CSI matrix, approximately
sparse, has correlated element changes, demanding complex
priors without assured recovery performance. Even advanced
algorithms like BM3D-AMP[5], which apply complex priors
for channel reconstruction, don’t notably enhance CSI recovery
quality due to its sensitivity to these priors’ accuracy.

To tackle CSI feedback challenges, this paper[6] introduces
CsiNet, a Deep Neural Network (DNN) model. CsiNet uses im-
age reconstruction techniques for CSI encoding and decoding.
Unlike traditional methods, it relies on extensive data analysis
instead of mathematical models for CSI compression.

While CsiNet [6] demonstrates commendable performance,
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its extensive parameterization results in high computational
complexity. This issue becomes increasingly pronounced with
the addition of more antennas, receivers, and subcarriers, lead-
ing to significant computational complexity in CSI feedback. In
dealing with the rapidly changing conditions and high-density
scenarios of smart ports, these challenges are further amplified.
This limitation underscores the necessity for a more robust and
adaptive CSI feedback method in these environments.

The Transformer model, renowned for its success in natural
language processing, has recently been applied to processing
CSI data [7]. In [7], the self-attention mechanism is utilized to
characterize both short and long-distance dependencies between
data samples. Compared to other methods, this mechanism
better captures CSI features and effectively expands the fea-
ture perception area. The model’s inherent ability to process
sequential data makes it an ideal candidate for addressing the
spatiotemporal variations in wireless channels at smart ports,
although it also increases computational overhead.This may
not be ideal for many resource-constrained devices on smart
ports, and for those with limited computing resources, real-
time communication quality may not be guaranteed.

In light of the aforementioned challenges, we have adopted
an innovative CSI architecture that integrates the Low-Rank
Adaptation (LoRA) algorithm with a Transformer-based frame-
work. This combination makes our approach particularly suited
for real-time applications in resource-constrained environments,
significantly reducing computational overhead. Our solution not
only enhances computational efficiency but also improves the
model’s adaptability in rapidly changing conditions, a critical
attribute for smart port scenarios. Compared to approaches
based on the Transformer architecture, the reduction in the
number of parameters conserves computational resources, low-
ers the risk of overfitting, and offers better adaptability and
generalization in complex electromagnetic environments such
as smart ports. With this novel CSI architecture that amalga-
mates the Transformer and LoRA algorithms, we are effectively
equipped to handle the complex communication challenges in
smart ports, maintaining both the efficiency and flexibility of the
system. The primary contributions of this work are summarized
as follows:

•We proposed a CSI feedback scheme named "Transformer-
LoRA," which effectively integrates a Transformer-based ar-
chitecture with the LoRA algorithm for stable and efficient
CSI feedback.The scheme is optimized for frequently changing
channel characteristics in massive MIMO systems and includes
both an encoder and a decoder.

•It intelligently compresses the CSI data through low-rank
matrix decomposition technology, which reduces the computa-
tional resources required for processing and transmission, and
at the same time improves the adaptability of the model to dif-
ferent channel conditions and frequencies, enabling it to quickly
respond to the frequent changes in the dynamic environment of
smart ports for better cooperative traffic management.

•Through comparative experiments, our model demonstrates
a fast adaptation capability superior to existing techniques

when tested with pre-reserved CSI data. The simulation results
demonstrate the model’s higher efficiency and accuracy in pro-
cessing CSI data under different environmental and frequency
conditions, with an average computational overhead reduction
of 28.31% compared to other schemes.

II. SYSTEM MODEL
Consider a simple scenario within a Frequency Division Du-

plexing network utilizing large-scale single-cell MIMO, where
there are Nt(≫ 1) transmit antennas at the Base Station (BS)
and a single receive antenna at the User Equipment (UE). Or-
thogonal Frequency Division Multiplexing (OFDM) technology
with Ñc subcarriers is also employed. The signal received at the
nth(n = 1,2, . . . , Ñc) subcarrier can be represented as:

yn = h̃H
n vnxn + zn (1)

where h̃n ∈ CNt×1 represents the channel vector for the nth

subcarrier, vn ∈ CNt×1 is the precoding vector, xn ∈ C denotes
the transmitted data symbol in the downlink, and zn ∈C is the
additive noise for the nth subcarrier.Next, the spatial frequency
domain CSI stacking matrix is defined as

H̃ = [h̃1, . . . , h̃Ñc
]H ∈ CÑc×Nt . (2)

The User Equipment (UE) deduces H̃ using pilot signals.
The number of complex parameters is ÑcNt , proportional to
the number of antennas. It is necessary to promptly feed H̃
back to the Base Station (BS) via the feedback link to assist
in generating the precoding vector. However, in large-scale
MIMO systems, the substantial number of antennas leads to
a high number of CSI matrix parameters. Direct feedback of
the uncompressed CSI matrix would consume extensive band-
width resources. To reduce feedback overhead, we employ the
compression method proposed in [7], using a two-dimensional
Discrete Fourier Transform (DFT) to sparsify H̃ in the angle-
delay domain, as shown below:

H = FdH̃FH
a (3)

where Fd and Fa are DFT matrices of dimensions Ñc× Ñc and
Nt ×Nt , respectively. In the delay domain, due to the finite
period of time delays between multiple path arrivals, the first
Nc rows of H contain significant values. We can retain the first
Nc rows of H to form a real-valued matrix Ha of dimensions
Nc×Nt . Ha is then fed into the encoder as shown in Fig.1.In
this work, the encoder fen transforms the channel matrix Ha
into a codewords:

S = fen(Ha) (4)

where s ∈ RM×1 and M < Nc × Nt . The compression ratio
is M/Nc×Nt . Subsequently, the decoder fde reconstructs the
channel matrix Hb from the codewords S sent to the Base
Station (BS) via the feedback link:

Hb = fde(S) (5)

The general approach to CSI feedback is as follows. Initially,
the channel matrix H is acquired on the UE side. A 2D DFT,
as specified in (3), is performed to obtain the truncated matrix



Ha. The encoder (4) is then used to generate the codeword
S. Subsequently, S is sent back to the Base Station (BS) via
the feedback link, where the BS employs the decoder (5) to
retrieve Hb. The final channel matrix in the spatial frequency
domain is obtained by performing the inverse DFT.However,
due to the dynamic and complex nature of port environments,
it is challenging to find optimal encoders fen and decoders fde
using traditional methods and some machine learning-based ap-
proaches. While there are methods involving Transformers, they
also significantly increase computational overhead and burden.
Below, a novel solution is proposed, combining Transformer
and Lora techniques.

III. PROPOSED SCHEMES

A. Overall architecture
The general structure of CSI-LoRA is shown in Fig.1.Upon

acquiring the channel matrix H on the UE side, a 2D DFT is
first performed to obtain the truncated matrix Ha. Ha, a real-
valued matrix of dimensions Nc×Nt , undergoes convolution,
batch normalization, and reshaping. It then passes through a
Transformer-LoRA Layer as depicted in Fig.2, resulting in a
matrix of size S1×S2. This matrix is then reshaped and passed
through a Fully Connected Layer to produce a codeword S of
length S1×S2.

Subsequently, the codeword S arrives at the BS side decoder
via the feedback link. The decoder receives this codeword of
length S1 × S2 through a Fully Connected Layer and feeds
a matrix of size S1 × S2 into the Transformer-LoRA Layer
as shown in Fig.2. After reshaping, convolution, and batch
normalization, a sigmoid function is applied to constrain the
output within the range [0,1], thus converting the codeword S
into the channel matrix Hb recovered by the network.

To train this feedback network, we conduct end-to-end
learning on all kernels and bias values of the encoder and
decoder. The network’s input and output are normalized channel
matrices, with elements scaled within the range [0,1]. The
training algorithm is a type of unsupervised learning algorithm,
and the parameter sets are updated via the ADAM algorithm.

Using the Transformer model in CSI feedback significantly
improves communication system efficiency. The Transformer’s
self-attention mechanism excels in managing sequential data,
especially in fast-changing wireless environments. Unlike tra-
ditional models such as RNN and LSTM, it can learn in-
formation of different levels or types in the sequence by
adjusting the number of attention heads, effectively handling
long-distance dependencies. This allows for a trade-off between
model complexity and performance. For different tasks, various
attention heads may also exhibit diverse performances. Its
parallel processing feature allows for quicker and more efficient
handling of large CSI data, essential in real-time systems.
Additionally, its excellent generalization capability helps the
model adapt to new communication scenarios, boosting overall
system performance.

Although the Transformer model performs better, its greater
complexity may require more computational resources. This is a
critical issue for devices with limited resources, such as mobile

or embedded systems, which often rely on battery power.

B. Low-Rank Adaptation

To address the limitations of the Transformer architecture, we
have integrated the Low-Rank Adaptation (LoRA) algorithm.
LoRA[8] allows indirect training of certain dense layers in
neural networks by optimizing rank-decomposed matrices that
vary during the adaptation phase, while keeping pre-trained
weights frozen. This approach significantly reduces the compu-
tational effort required to update matrices during model training
and enables rapid adaptation to specific domains or different
environments. The core idea of LoRA is to introduce two low-
rank matrices A and B in critical parts of the model, such
as multi-head self-attention and feed-forward neural networks.
These low-rank matrices adjust the original linear transfor-
mation matrix W , without directly modifying it. During the
model’s forward propagation, the original linear transformation
Wx is replaced with (W +AB)x, where x is the input vector.
In this way, LoRA enables the model to learn new represen-
tations without significantly increasing the number of model
parameters. During fine-tuning, only the matrices A and B are
updated, while the original W matrix remains unchanged. This
approach offers multiple benefits beyond merely reducing the
consumption of computational resources and ensuring model
stability. By updating only a small subset of parameters, it also
diminishes the risk of overfitting. Adjusting the size of low-
rank matrices to control the extent of parameter updates further
enhances the model’s ability to resist interference.

In algorithm 1, A is initialized with random Gaussian values
and B with zeros, so that ∆W = BA starts at zero at the
beginning of training. The term ∆Wx is then scaled using
α

r , where α is a constant in r. When optimizing with Adam,
adjusting α is roughly equivalent to adjusting the learning rate.

Theoretically, LoRA can be applied to the weight matrix of
any neural network, thus reducing the number of trainable pa-
rameters. Within the Transformer architecture, the self-attention
module contains four weight matrices (Wq,Wk,Wv,Wo), along
with two weight matrices of the MLP models. By employing
various combinations of weights, superior performance can
be achieved across different tasks. For tasks requiring rapid
feedback, lower weights can be used to accelerate response
times. Conversely, higher weight combinations can effectively
reduce model error in tasks demanding high-precision feedback.

IV. EXPERIMENTAL RESULTS

A. Data preparation

The data utilized in this study were sourced from [9] and
[10]. The former encompasses 52,500 Line Of Sight (LOS) and
105,000 Non-Line Of Sight (NLOS) sample data, generated in
an outdoor environment by UMa at a speed of 30 km/h. The
base stations were spaced 200 meters apart, with an antenna
count of Nt = 32and a retained sub-band number ofNC = 13 ,
operating under FR1 at 2 GHz. The latter dataset originates
from a Base Station (BS) equipped with a Uniform Linear
Array (ULA), comprising a total of 320,000 samples. This
dataset consists of data from Nt = 32 antennas and NC = 256



Fig. 1: Architecture of the proposed Csi_Transformer_LoRA with encoder and decoder

Fig. 2: Structure of the transformer layer with LoRA

Algorithm 1 Transformer Model with LoRA
Require: Pre-trained Transformer, rank r, scale α , flags for

LoRA application apply_lora, training data, learning rate
lr.

Ensure: Transformer with updated weights.
1: Initialize the Transformer with pre-trained weights.
2: for each multi-head attention layer and each head h do
3: if apply_lora is true then
4: Initialize LoRA matrices Ah and Bh.
5: Set Ah and Bh as trainable parameters.
6: end if
7: end for
8: Initialize the optimizer with learning rate lr.
9: for each training batch do

10: Forward pass:
11: for each layer and head h do
12: if apply_lora then
13: Compute ∆Wh = α×Ah×Bh.
14: Adjust weights: Wh←Wh +∆Wh.
15: end if
16: end for
17: Compute predictions and loss.
18: Backward pass for Ah and Bh gradients.
19: Update Ah and Bh with the optimizer.
20: Reset Wh after each batch.
21: end for
22: Evaluate and potentially revert LoRA matrices based on

validation performance.
23: return the adapted model.

subcarriers, with only the first 16 rows retained in the angle-
delay domain, operating at 3.5 GHz.

In addition to employing these datasets individually to eval-
uate the performance of the proposed scheme in this paper,
a composite dataset, merging these three datasets, was used
to simulate complex dock environments and CSI feedback sce-
narios involving multiple wireless devices.To reduce the risk of
model overfitting and enhance model robustness and usability,
a portion of the dataset with too much similarity is deleted
and the dataset is disrupted after combination. All training
samples exclude validation and test samples. The datasets were
partitioned into training, validation, and testing sets at a ratio
of 7:1:2. The epoch, learning rate, and batch size were set to

30, 0.01, and 100, respectively. The original channel data H
and the reconstructed channel data Ĥ are quantified using the
NMSE as defined in 6.

NMSE = E
{
∥H− Ĥ∥2

∥H∥2

}
. (6)

At the same time, cosine similarity is also used to measure
the quality of beamforming vectors used in different schemes,
defined as follows:

ρ = E

{
1

Nc

Nc

∑
n=1

ˆ̃hH
n ĥn

∥ ˆ̃hn∥2∥ĥn∥2

}
. (7)

where ĥns the original channel vector of the nth subcarrier, ˆ̃hnis
the reconstructed channel vector of the nth subcarrier.

B. Comparative analysis
The experiment compares the performance of three schemes:

Csi_net[6], Transformer_Net[7], and the proposed Trans-
former_LoRA_Net, under both LOS and NLOS conditions. The
optimal results are presented in Tables I , II and III.

TABLE I: PERFORMANCE COMPARISON IN LOS

Compression Rate Scheme NMSE ρ

Transformer_Net 0.0332 0.991
1/8 Transformer_LoRA_Net 0.0676 0.960

Csi_Net 0.0591 0.966

Transformer_Net 0.0932 0.947
1/16 Transformer_LoRA_Net 0.1276 0.923

Csi_Net 0.1083 0.941

Transformer_Net 0.2043 0.875
1/32 Transformer_LoRA_Net 0.2296 0.843

Csi_Net 0.2944 0.806

TABLE II: PERFORMANCE COMPARISON IN NLOS

Compression Rate Scheme NMSE ρ

Transformer_Net 0.0472 0.975
1/8 Transformer_LoRA_Net 0.0672 0.959

Csi_Net 0.0541 0.963

Transformer_Net 0.0972 0.951
1/16 Transformer_LoRA_Net 0.1172 0.938

Csi_Net 0.1041 0.942

Transformer_Net 0.2166 0.869
1/32 Transformer_LoRA_Net 0.2459 0.862

Csi_Net 0.2813 0.820

From the above table, it can be found that at low compression
rates, the performance scenarios of the three schemes are
excellent, but at high compression rates, the performance of
Csi_net[6] is somewhat deficient compared to the other two



TABLE III: PERFORMANCE COMPARISON IN 3.5GHz

Compression Rate Scheme NMSE ρ

Transformer_Net 0.0371 0.981
1/8 Transformer_LoRA_Net 0.0382 0.980

Csi_Net 0.0618 0.964

Transformer_Net 0.1162 0.932
1/16 Transformer_LoRA_Net 0.1123 0.929

Csi_Net 0.1652 0.903

Transformer_Net 0.2340 0.867
1/32 Transformer_LoRA_Net 0.2448 0.861

Csi_Net 0.3422 0.803

schemes.CsiBut in complex environments, see Table IV, the
performance scenarios of the three systems have a certain
degree of degradation, and NMSE is elevated for all of them.
Due to the different data formats of the two datasets.

TABLE IV: PERFORMANCE COMPARISON IN FLEXIBLE

Compression Rate Scheme NMSE ρ

Transformer_Net 0.0748 0.959
1/8 Transformer_LoRA_Net 0.0619 0.960

Csi_Net 0.1157 0.932

Transformer_Net 0.1566 0.907
1/16 Transformer_LoRA_Net 0.1470 0.915

Csi_Net 0.1837 0.895

Transformer_Net 0.2941 0.0.810
1/32 Transformer_LoRA_Net 0.2686 0.847

Csi_Net 0.4093 0.784

From 3, it can be seen that under the three compression rates,
Transformer_LoRA_Net is the fastest convergence among the
three schemes and the performance of the system is optimal.

(a) (b)

(c)

Fig. 3: NMSE performance of Csi_Net, Transformer_Net
and Transformer_LoRA_Net during training as a function of
elapsed time for different compression rates

C. System Performance
Finally, a comparison of Transformer_Net[7] and Trans-

former_LoRA_Net was made to obtain the maximum amount
of video memory utilized during their operation using the test
dataset at different compression rates, and it is shown in Table
IV that the Transformer_LoRA_Net scheme can drastically
reduce the amount of video memory required.

TABLE V: MAX DISPLAY MEMORY USED

Compression Rate Scheme MAX DISPLAY MEMORY(MB)

1/16 Transformer_Net 189.8
Transformer_LoRA_Net 136.4

1/32 Transformer_Net 185.3
Transformer_LoRA_Net 133.2

1/64 Transformer_Net 186.9
Transformer_LoRA_Net 131.5

V. CONCLUSION
In summary, this study introduces an innovative CSI feed-

back method in large-scale MIMO systems. The design and
implementation of a CSI feedback system that utilizes both
Transformer and LoRA algorithms is a technical challenge,
necessitating a deep understanding of the working principles
and interactions of these two technologies. Furthermore, main-
taining the system’s robustness and high performance while
optimizing computational efficiency and adaptability.Our ap-
proach opens up new perspectives and possibilities for the
application of CSI feedback techniques in dynamic and com-
plex environments. It focuses on maintaining communication
efficiency and stability in smart ports’ dynamic environments
while conserving computational resources. However, specific
scenarios on smart ports may require further customization
of feedback frameworks to address their unique challenges
effectively. This research is not only important for cooperative
traffic management in the field of smart ports, but also provides
valuable insights for other applications of large-scale multiple-
input multiple-output systems.
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